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1 Brief Abstract

I develop and test a new class of penalized spline models for estimating demographic rate

schedules, with a particular interest in applying the methods to sparse data from small

areas or small sub-populations. I propose adaptations of the P-spline approach (called D-

splines) that regularize and smooth high-dimensional splines by using speci�c demographic

knowledge rather than generic arithmetical rules. Preliminary tests of four alternative D-

spline estimators on simulated small-area mortality data are promising: D-spline estimators

appear to have low errors and to produce schedules that reliably re�ect known properties of

human mortality schedules.

2 Notation

2.1 High-dimensional spline function for a demographic schedule

Model a (generic) demographic rate schedule over A single-year ages 0 . . . (A− 1) as

g = Sθ

where S is a A × K matrix in which each of the K columns is a B-spline basis function

[4] over 0 . . . (A− 1) and knots are closely-spaced. For all of the analysis in this abstract, I

will assume that there are A = 100 ages 0 . . . 99, and that S is a 100 × 36 matrix of cubic
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B-spline basis functions constructed using knots at 32 ages 3, 6, . . . , 96.1

2.2 Data and likelihood

Suppose that there is observed data y for which we have a (log) likelihood model L(θ) =

L [y|g (θ)]. In all of the analysis in this extended abstract I assume that y consists of age-

speci�c exposure and death counts (Nx and Dx, respectively) for a small population, and

that the log likelihood is Poisson. In that speci�c case the schedule g represents age-speci�c

log mortality rates, and the log likelihood is

L(θ) = c−
∑
x

Nxexp(θ
′sx) +

∑
x

Dx(θ
′sx)

where sx is the K × 1 vector that makes up the row of S that corresponds to age x.2

2.3 Penalties and regularization

As an estimator, a high-dimensional spline function g = Sθ is often quite vulnerable to

sampling noise. For example, Figure 1 displays the maximum likelihood �t for θ ∈ R36

using the 100 × 36 cubic B-spline S matrix described above, with age-speci�c data for

female exposure and deaths over 2009�2011 in the municipality of São Borja in the southern

Brazilian state of Rio Grande do Sul. During this three-year period the municipality had

approximately 94,000 woman-years of exposure and 688 female deaths over ages 0�99.

It is evident from Figure 1 that the �untamed� spline over�ts mortality rates, in the sense

that the true schedule of log rates is unlikely to have up-and-down �uctuations within small

age ranges like those in the �tted model. This illustrates a classic bias-variance tradeo�: a

high-dimentional spline function is �exible enough to represent small-scale features in the true

rate schedule accurately (low bias), but that same �exibility means that it may overinterpret

coincidental features of sample data (high variance). From many studies of large populations

with reliable mortality statistics, we know that log mortality rates in human populations

tend to increase fairly smoothly over ages 40�99. Thus, although a spline model correctly

estimates the broad pattern of sharply decreasing mortality at young child ages followed

by increases in adolescence and adulthood, the �tted spline function obviously exhibits too

much curvature and non-monotonicity at adult ages.

1S is constructed in R with the command splines::bs(0:99, knots=seq(3,96,3), de-
gree=3,intercept=TRUE).

2More precisely, sx = S′ex, where ex = (0 . . . 1 . . . 0)
′
is an A× 1 vector with 0s everywhere except for the

position corresponding to age x.
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Figure 1: 36-dimensional spline without penalties: Max Likelihood Fit
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2.3.1 P-Spline penalties on parameters

A P-spline approach to estimation [5] �regularizes� or �tames� the spline by adding a penalty

term to the log likelihood. For the purposes of this paper, the key feature of these penalties

is that they apply to the vector of spline coe�cients θ ∈ RK rather than to the estimated

demographic schedule g = Sθ. In a P-spline approach the researcher maximizes the penalized

function

f(θ) = L (θ)− λ θ′D′Dθ

where D is a (K − p)×K matrix of constants such that Dθ is the vector of pth di�erences

in spline coe�cients.
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With equally-spaced knots for the spline basis functions in the columns of S, the penalized

log likelihood function f(θ) has higher values for for demographic functions that �t the

data and which approximate pth-order polynomials [2]. Maximizing the penalized function

therefore requires a tradeo� between �tting the data and simplifying the �tted curve, where

�simplifying� means choosing a smoother curve that looks more like a pth-order polynomial.

P-splines represent an elegant approach to the bias-variance tradeo�s for spline models

illustrated in Figure 1. Importantly, they are the foundation of theMortalitySmooth package

in R [2]. As an example, Figure 2 shows the estimated log mortality rates for the São Borja

data in Figure 1, using 3rd-order di�erencing penalties on θ, 33 internal knots (identical

to those in Figure 1) and the MortalitySmooth defaults for other parameters, including the

critical smoothing parameter λ.3

The P-spline �t in Figure 2 represents a signi�cant improvement over the unpenalized

maximum likelihood �t to the same data in Figure 1. The P-spline curve is a more plausible

model for São Borja's mortality schedule: it is smoother, nearly linear over older adult ages,

and (almost) monotonically increasing. These are common features in mortality schedules

estimated from large populations, and the P-spline model �nds a good tradeo� between

�tting the small-sample data and smoothing the schedule.

2.3.2 An alternative: D-spline penalties on the �tted schedule

The P-spline approach to function smoothing and regularization has proven to be very valu-

able, but it is not speci�cally designed �tting demographic rate schedules. In particular, it

implicitly relies on polynomial functions as a kind of gold standard for functional shapes.

That reliance makes good sense for a generic curve-�tting tool, but it may not be optimal

for �tting speci�c types of demographic curves (e.g. mortality or fertility age schedules) for

which demographers already have specialized models and considerable prior knowledge.

In this paper I investigate an alternative approach that I call D-splines. D-splines also

use penalized, high-dimensional spline functions, but penalties are based on deviations from

demographic, rather than arithmetic, standards. The essential idea is to penalize features of

the �tted schedule g = Sθ directly, using demographic prior knowledge. I propose several

alternative penalties in Section 3, all constructed as follows

• de�ne a residual vector ε ∈ RG that should be close to zero for �good� schedules g

• calculate empirical residuals ε1 . . . ε487 across a set of 487 1x10 (single-year age by

ten-year period) observed life tables in the Human Mortality Database (HMD) [10]

3With this dataset, the Mort1Dsmooth function does not converge when using the default 2nd-order
penalties. Non-convergence was also major issue in many of the HMD experiments reported below.
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Figure 2: 36-dimensional P-Spline �t to São Borja female data
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• use the G × G empirical covariance matrix V̂ HMD = 1
487

∑
i (εiε

′
i) as an estimate for

the expected covariance of residuals

• replace the P-spline penalty on parameters θ with a �D-spline� penalty based on the

residuals for �tted functions Sθ

The result is a penalized likelihood function

f(θ) = L(θ)− 1

2
ε′(θ)

[
V̂
−1
HMD

]
ε(θ)

for which the maximization tradeo� is ��t versus �delity to patterns in demographic sched-

ules�, rather than ��t versus local smoothness�.4 The absence of the unknown smoothing

constant λ is an additional bene�t: in the D-spline approach λ does not have to be esti-

mated. Instead the penalty term/tolerance for deviations is calibrated empirically to mimic

4The 1
2 constant in the penalized log likelihood arises from an assumption that residuals would be approx-

imately normally distributed over demographic schedules. I have not (yet) formally tested the normality
of HMD residuals, but informal examination suggests that normality is quite reasonable: most residual
distributions are close to symmetric, with thin tails.
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residual patterns found in high-quality demographic data.5

3 Four experimental D-spline penalties for mortality sched-

ules

3.1 Slope penalties

Log mortality schedules for human populations have characteristic shapes that can be de-

scribed in terms of slopes (or equivalently, �rst-di�erences over single years of age). One

possible approach to characterizing �good� spline schedules is therefore to measure the dif-

ference between the slopes in a proposed spline function Sθ and the average slopes in HMD

schedules at the same ages.

For example, the average value of (lnµ1 − lnµ0) across 487 1x10 HMD schedules is -2.005,

with a standard deviation of 0.61. This suggests that steep negative slopes are likely between

age 0 and age 1 in �good� schedules, but that we should be fairly tolerant about the exact

slope value because of the large standard deviation. In contrast, between integer ages 75

and 76 the average value and standard deviation of (lnµ76 − lnµ75) across HMD schedules

are +0.109 and 0.056, respectively, which suggests that between these ages almost all �good�

schedules have slopes within a narrow range of small positive values.

Applying this approach simultaneously to all 99 �rst-di�erences for intervals starting with

ages 0...98, the HMD slopes have mean vector m1 and covariance matrix V 1. De�ning D1

as the standard 99 × 100 �rst-di�erencing matrix, this produces a penalized log likelihood

for the spline schedule Sθ:

f1(θ) = L(θ)− 1

2
(D1Sθ −m1)

′V−11 (D1Sθ −m1)

The value θ∗1 that maximizes this function produces a �tted �D-spline� schedule Sθ∗1 for

mortality.

3.2 Curvature penalties

A slightly less demanding criterion than that in Section 3.1 might penalize curvature (second-

di�erences) in the �tted spline schedule that failed to match HMD empirical patterns. De�n-

ing D2 as the standard 98×100 second-di�erencing matrix and de�ning m2 and V 2 as above

5The calibrated spline method for �tting fertility schedules that I developed in an earlier paper [8] uses
the same fundamental logic.
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(except for the 98 second-di�erences in HMD schedules) yields an analogous penalized log

likelihood with di�erent constants:

f2(θ) = L(θ)− 1

2
(D2Sθ −m2)

′ V −12 (D2Sθ −m2)

a di�erent optimal value θ∗2 , and a di�erent D-spline �t Sθ∗2.

3.3 Lee-Carter penalties

One can also de�ne �good� spline schedules according to their �delity to existing models. In

this approach residuals might represent features of a schedule that cannot be represented

within a speci�ed model family. For example, in the most commonly used mortality mod-

elling framework, Lee-Carter [7], schedules are modeled as

lnµx = ax + k · bx

where {ax} and {bx} are A × 1 vectors of pre-determined constants from that represent a

baseline schedule and typical deviations from that schedule, estimated from a singular value

decomposition on an empirical database.

In the Lee-Carter model the scalar parameter k determines the level of deviation from

the baseline, so that (with A = 100 ages) the vector
lnµ0 − a0
lnµ1 − a1

...

lnµ99 − a99

 = k ·


b0

b1
...

b99


must lie in the column space of vector b ∈ R100. This suggest another way to de�ne D-spline

penalties using the HMD. Speci�cally, we can estimate the Lee-Carter a and b vectors from

the HMD and then de�ne the residuals for any schedule {lnµ} ∈ R100 as the part of {lnµ}−a
that lies outside of the column space of b. In matrix notation this vector of residuals is

ε =
[
I − b(b′b)−1b′

]
[{lnµ} − a]

= M b [{lnµ} − a]

The mean of these residuals in the HMD equals zero by construction. After calculating the

Lee-Carter residuals' covariance (V LC) across HMD schedules, the corresponding penalized

log likelihood for D-spline estimation is

7



fLC(θ) = L(θ)− 1

2
(M b (Sθ − a))′ V −1LC (M b (Sθ − a))

3.4 TOPALS penalties

TOPALS models [3, 6] are much less familiar than Lee-Carter, but share some properties

that make them potentially useful for D-spline penalties. TOPALS is a relational approach,

in which a demographic rate schedule is modeled as the sum of a �xed standard function

and a variable o�set function. In the case of mortality schedules a TOPALS model has the

form

{lnµ} = {lnµ∗}+Bα

where B is a 100×K matrix of linear B-spline functions over 0 . . . 99 constructed from knots

at speci�ed ages (here I will use K = 7 and linear spline knots at ages 0,1,10,20,40,70, and

100). Details about this model are in [6, 9]. The structure of a TOPALS mortality model is

very similar to Lee-Carter: (�xed schedule) + (parameterized o�set function). The principle

di�erence is that the TOPALS o�set function is a �exible linear spline rather than a scalar

multiple of a �xed one-dimensional vector. The extra �exibility in the TOPALS approach

relative to Lee-Carter brings the usual bene�ts and costs: lower bias with potentially higher

variance in small samples.

For a D-spline approach based on TOPALS modeling, a schedule's residuals are the

portion of ({lnµ} − {lnµ∗}) ∈ R100 that lies outside of the column space of B. In matrix

notation the vector of residuals is

ε =
[
I −B(B′B)−1B′

]
[{lnµ} − {lnµ∗}]

= MB [{lnµ} − {lnµ∗}]

I use the mean HMD log mortality rate at each age as the standard {lnµ∗} ∈ R100, so that

the average HMD residual is zero by construction.6 After calculating the TOPALS residuals'

covariance (V TO) across HMD schedules, the corresponding penalized log likelihood for D-

spline estimation is

fTO(θ) = L(θ)− 1

2
(MB (Sθ − {lnµ∗}))′ V −1TO (M b (Sθ − {lnµ∗}))

Figure 3 shows the spline functions that maximize the four alternative D-spline criteria

when using the São Borja data used earlier in Figures 1 and 2. For this particular data set,

6This de�nition of the standard means that in all of the examples here, the TOPALS standard schedule
{lnµ∗} and the Lee-Carter a vector are identical.
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Figure 3: Alternative D-spline �ts to São Borja 2009-2011 female mortality data
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all four D-spline methods produce extremely similar and extremely plausible �ts.7

7The scale of the plots makes �ne details di�cult to see. The main di�erences between the four �tted
schedules in Figure 3 are (1) slightly higher infant and child mortality with di�1 and di�2 penalties; (2)
slightly higher mortality above age 80 with LC penalties; (3) slightly lower mortality above age 80 with
TOPALS penalties.
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4 Estimator comparison: preliminary results

4.1 Test data

I use 487 single-year age by ten-year period female mortality schedules in the HMD as the

foundation for small-sample experiments. These schedules come from 49 di�erent countries,

over decades spanning the 1750s (for Sweden) to the 2010s.

For each of the four proposed D-spline criteria, I calculated the 100 × 1 mean residual

vector over the 487 schedules (equal to zero by construction for the Lee-Carter and TOPALS

variants) and the 100 × 100 covariance matrix V of the residuals across the 487 schedules.

These calculations provide the constants necessary for estimating the D-spline objective

functions.

I then used the HMD 1x10 exposure data associated with each mortality schedule to

create simulated (deaths,exposure) samples, as follows. For each schedule s = 1 . . . 487

I rescaled observed age-speci�c exposures (Nsx) to represent a small population with the

same age structure: N∗sx = P ∗ · Nsx∑
x Nsx

, where the small population P ∗ is either 1000,

10000, or 100000. For each of the 487x3=1461 small populations, I drew 100 independent

samples of simulated deaths at ages x = 0 . . . 99 using the true log mortality rates from the

corresponding HMD schedule:

Dsim
sx ∼ Poisson(N∗sx · µsx) [repeated 100 times]

Figure 4 illustrates the procedure, showing four simulated (death,exposure) samples for

population size P ∗ = 10000 drawn from the 1950-1959 schedule for the USA. The true HFD

mortality schedule is indicated with a grey line, and ages with zero simulated deaths are

indicated with an extra tickmark along the horizontal axis.
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Figure 4: Simulated Small-Population Data (P ∗ = 10000, USA 1950-1959 data) and true
rate schedule
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4.2 Experimental Design

For each of the 487x3x100=146,100 (HMD schedule, population size, simulation) combi-

nations, I estimated the optimal schedule Sθ separately for each the four D-spline models

penalty functions, where S is the 100× 36 cubic B-spline matrix described earlier. D-spline

calculations used a standard Newton-Raphson algorithm [1, p 137-139]. For each (HMD

schedule, population size, simulation) combination I also estimated a P-spline function Sθ

with the same basis S, using the Mort1Dsmooth function from the MortalitySmooth package

in R [2], with all settings other than the interior knots set at default values.

Of the 146,100x5=730,500 spline �tting problems to be solved in this design, algorithms
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Table 1: Number of Convergence Failures for Spline Fits
(48,700 death and exposure samples in each cell)

P ∗ =1000 10,000 100,000

D-spline 1st-Di� 27 0 0
2nd-Di� 34 0 0

Lee-Carter 0 0 0
TOPALS 34 0 0

P-spline 7832 1388 20660

failed to converge to a solution in nearly 30 thousand cases, the vast majority of which were

P-spline �ts. Table 4.2 summarizes these problems.8

After removing non-convergent results, there were 700,525 estimated mortality schedules,

each with a known true value. For each of the valid schedule estimates I produced three

error measures:

1. mean absolute error 1
100

∑
x {| lnµ∗x − true lnµx |}.

2. e∗0 − true e0

3. e∗60 − true e60

The next section reports graphical summaries of these error measures over �tting methods

and sample sizes.

4.3 Evaluation of Fitting Errors

4.3.1 Overall shape: mean absolute error

Figure 5 reports the mean absolute errors in log mortality rates for all estimated schedules, by

simulated population size and spline �tting method. The information in the �gure provides

a measure of how well the alternative methods �t the overall shape of the corresponding true

mortality schedules, with low values representing more accurate �ts.

There is a clear ranking of estimators on this metric, with Lee-Carter D-splines performing

best and standard P-splines worst. All methods produce good �ts in larger populations

with more deaths and exposure, but the P-spline approach does not do very well in small

samples. This occurs because with sparse sample information the P-spline algorithm tends

to oversimplify schedules and often produces nearly linear �ts that increase monotonically

8Small changes to the Mort1Dsmooth default �tting parameters, for example from pord=2 to pord=3,
had virtually no e�ect on convergence problems.
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over the entire age range. In contrast, Lee-Carter D-splines do quite well at �tting small-

sample schedules, probably because of the more rigid shape implied by low-ε schedules in

the Lee-Carter version.

Figure 5: Mean Absolute Error by Population Size and Spline Method
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4.3.2 Overall level: e(0)

Perhaps the most important metric for success of a small-population method is accuracy in

estimating life expectancy at birth. This is the most commonly reported mortality summary,

so a good method should have low errors for e0. Figure 6 reports summary measure of

bias, standard deviation, and root mean squared error (RMSE) for all �ve spline estimation

methods over the estimated schedules. An ideal method would have values of zero for all

three measures at all population sizes.

Figure 6 displays information about the performance of the alternative estimators in

terms of e0. Note that the vertical scales di�er in the three panels. Biases are comparatively

small, and the main source of error at all three population sizes is sampling variance. Lee-

Carter D-splines, which did best on overall shape in the previous section, once again appear

to perform (slightly) better in terms of e0. Although the bias of the Lee-Carter D-splines is
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slightly higher than the other methods (Lee-Carter D-splines tend to overestimate mortality

levels and thus underestimate life expectancy), their greater rigidity once again appears to

be a net virtue.

Figure 6: Estimation Errors for e0
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4.3.3 Level at older ages: e(60)

Finally, I summarize the performance of the estimators for estimating old-age mortality,

using e60 as the predictand. Figure 7 shows errors for remaining life expectancy at age 60, in

the same format as Figure 6. Again Lee-Carter D-splines perform best, with lower average

errors (RMSE panel) at all sample sizes. It is also notable that for old-age mortality it seems

that all four of the proposed D-spline methods outperform P-splines, with both lower bias

and lower variance for e60.
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Figure 7: Estimation Errors for e60
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5 Further Work

This Extended Abstract reports on preliminary work and early results. The D-spline ap-

proach to penalized log likelihood appears to have promise, and by the time of PAA I expect

to have a much more thorough analysis of the strengths and weaknesses of this framework.

Objectives for research between now and the PAA meeting in Austin include

• considering other D-spline residual de�nitions

• investigating the sensitivity of the experimental results to the choice of the schedules

comprising the test bed. In the preliminary experiments here, I used the same set of

schedules for (1) calibrating D-spline constants, and (2) testing �ts. �Out-of-sample�

performance could be di�erent; that requires some kind of cross-validation approach.

• investigating more thoroughly the reasons for the good performance of the Lee-Carter

D-spline method (what characteristics make it both low bias and low variance?)

• investigating the e�ective number of parameters for the various penalized models

• improving the convergence and performance of the P-spline estimators for better com-

parisons (although I suspect that eliminating the non-convergent cases probably im-

proved, rather than worsened, the results for P-splines reported here)
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