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Abstract

Sophisticated statistical models are used to produce estimates for demographic
and health indicators even when data are limited, very uncertain or lacking. We
aim to provide a standardized approach to answer the question: To what extent is
a model-based estimate of an indicator of interest informed by data for the relevant
population-period as opposed to information supplied by other periods and populations
and model assumptions? We propose a data weight measure to calculate the weight
associated with population-period data y relative to the model-based prior estimate
obtained by fitting the model to all data excluding y. In addition, we propose a data-
model accordance measure which quantifies how extreme the population-period data
are relative to the prior model-based prediction. We illustrate the insights obtained
from the combination of both measures in the estimation of modern contraceptive use.

∗This project is funded by the Bill and Melinda Gates Foundation
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1 Introduction

Sophisticated statistical models are used to produce estimates for demographic and
global health indicators to provide levels and trends even when data are limited, very
uncertain or lacking. Common model features include covariates, parametrization of
transitions, hierarchical models, temporal and/or spatial smoothing.

We aim to answer the following question: To what extent is a model-based esti-
mate of an indicator of interest informed by data for the relevant population-period
as opposed to information supplied by other periods and populations and model as-
sumptions? Answering this question is relevant to avoid misuse and misinterpretation;
a country case study would not be informative unless data are informative. Moreover,
answering this question allows for highlighting where more information is needed for
data-driven monitoring. Our goal is to provide a standardized approach to answering
this question, so that the approach can be used for a range of models and be included
in global health reporting guidelines.1

We propose a new measure, referred to as the data weight, that quantifies the
weight associated with country-period data y relative to the model-based prior estimate
obtained by fitting the model to all data excluding y. In addition, we propose a data-
model accordance measure which quantifies how extreme the population-period data
are relative to the prior model-based prediction. By combining both measures, we are
able to identify model-based estimates where data and model are in disagreement as
well as settings where more data are needed. We illustrate the insights obtained from
the combination of both measures in the estimation of modern contraceptive use.

2 Methods

2.1 Notation

Let µ denote the indicator of interest and y data for the relevant population-period.
Information on µ is summarized in terms of probability distributions. This arises
naturally when modeling is carried out using a Bayesian approach.

The information available on µ prior to observing y, based on the model and data
from other population-periods only, is summarized in distribution p(µ|z), with z being
data from other periods and populations. For ease of notation, we leave out the con-
ditioning on z and refer to p(µ) as the model-based prior distribution, summarizing
information “coming from the model”, which implicitly includes z. We aim to compare
p(µ) to the posterior distribution p(µ|y), which summarizes the information about µ
after updating the prior with information from the population-period of interest. The
posterior is proportional to prior times likelihood, p(µ|y) ∝ p(µ)p(y|µ). The normalized
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likelihood is defined as q(µ) = p(y|µ)/
∫
µ p(y|µ)dµ.

2.2 Computation and implication for proposed measures

We assume that for a given model and parameter of interest µ, we can obtain a finite
number of samples from model-based prior p(µ) and posterior p(µ|y) to calculate data
weight and data-model accordance measures. For example, samples from model-based
prior p(µ) can be obtained based on a model fit after leaving out y, and samples from
p(µ|y) can be obtained by fitting the model to the full data set.

For more complex models, the (normalized) likelihood function is generally not
available in closed form nor easy to sample from, hence we assume p(y|µ) to be un-
known. We approximate the likelihood by the ratio of the approximated posterior and
prior distribution, p̂(y|µ) ∝ p̂(µ|y)/p̂(µ), where p̂(µ|y) and p̂(µ) refer to the posterior
and prior density approximated using samples. The approximation p̂(y|µ) may be
inaccurate or infinite for µ with posterior support, p(µ|y) > 0, but with the sample-
based estimate for the prior density p̂(µ) ≈ 0. While it may be possible in theory to
obtain a more accurate approximation based on obtaining a larger sample from the
prior density with posterior support, we assume that this is not realistic in practice, as
it would require refitting of the model. Given this setting, we focus on measures that
can be calculated based on a limited sample from the model-based prior and posterior
distributions only. This restriction prevented us from using several more conventional
measures such as divergence or relative entropy methods. These measures proved too
sensitive to the tail behavior of the estimated densities.

Where possible, the calculation of the proposed measures takes into account that
p̂(y|µ) will be inaccurate or infinite for µ with p(µ|y) > 0 and p̂(µ) ≈ 0. In extreme
cases, calculation of the measures is not possible and upper/lower bounds of the mea-
sures are presented instead.

2.3 Data weight measure

We aim to define a data weight 0 < w < 1 that quantifies the weight given to informa-
tion from the data as opposed to prior when calculating posterior mean µ̂. We propose
the following measure:

w =
1/σ̂2L

1/σ̂2L + 1/σ̂20
,

where σ̂L refers to the uncertainty associated with the data (the standard deviation of
µ ∼ q(µ)) and σ̂0 refers to the uncertainty associated with the model-based prior (the
standard deviation of µ ∼ p(µ)). This measure is motivated by the setting where the
model-based prior and data are normally distributed. Specifically, when the model-
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based prior on µ is normally distributed:

µ ∼ N(µ0, σ
2
0),

with mean µ0 and variance σ20, and the data are normally distributed

y|µ, σL ∼ N(µ, σ2L),

with mean µ and variance σ2L, then the posterior mean µ̂ is given by the weighted
average of the data y and prior mean µ0:

µ̂ = E(µ|y, σ2L) = w · y + (1− w) · µ0,

with w as defined above. With this definition, the following holds true for the model-
based point estimate of µ:

• w = 0⇒ not informed by data y

• w = 1⇒ not informed by model-based prior p(µ)

• w ↑⇒ more weight given to data relative to model-based prior.

Figure 1 illustrates examples of model-based prior and posterior distributions with
– from left to right– increasing data weights.

Figure 1: Illustration of model-based prior and posterior distributions with, from left to
right, increasing data weights.

2.4 Data-model accordance measure

Let µ̃ denote the point estimate for µ as suggested by data y. We set a equal to twice
the one-sided prior probability tail area associated with µ̃ such that

• a = 0⇒ µ̃ is very extreme/not supported under the prior,
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• a = 1⇒ µ̃ is aligned with prior,

• a ↑ ⇒ µ̃ is increasingly likely under the prior.

Figure 2 illustrates examples of model-based prior and posterior distributions with –
from left to right– increasing data-model accordance.

Figure 2: Illustration of model-based prior and posterior distributions with, from left to
right, increasing data-model accordance.

2.5 Combining data weight and data-model accordance
measures

When combining the data weight measure with the data-model accordance measure,
model-based estimates can be divided into 4 categories (see Figure 3 (right)):

• Model-based estimates that are data driven (top row, large data weight) are
broken down into

– “interesting case study” findings (yellow) , when model-based prior and data
suggest different point estimates (low data-model accordance);

– “data driving the estimate; estimate is expected under the model” findings
(green) when model and data suggest similar point estimates (high data-
model accordance).

• Model-based estimates that are not data driven (bottom row, low data weight)
are broken down into

– “more data are needed” findings (red) when model and data suggest different
point estimates (low data-model accordance);

– “data are limited but there is no strong evidence that data and model are
in conflict” findings (white) when model and data suggest similar point esti-
mates (high data-model accordance).
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Figure 3: Left: Examples of model-based prior distributions, posteriors, and associated like-
lihood functions for different data weight and data-model accordance combinations. Right:
Definition of categories (quadrants) based on data weight and data-model accordance.

3 Case study: modern contraceptive use esti-

mates for 2017

We use the estimation of modern contraceptive use for 2017, as produced by the Family
Planning Estimation Model (FPEM), as a case study to illustrate the application of
the two measures.2;3 In summary, in FPEM total contraceptive use is modeled using
a logistic growth curve and ARIMA(1,1,0) time series process. Country-specific pa-
rameters of the logistic growth curves are estimated using hierarchical models, where
countries are organized into subregions, regions and the world. A similar approach is
used for estimating the ratio of modern to total use. The likelihood function accounts
for sampling and non-sampling errors (by source type), as well as biases associated
with a subset of observations. Estimates are illustrated in Figure 4 for Mauritania.

We assess the following question: What is the contribution of country-specific data
after 2012 to the model-based estimates of contraceptive use µ for 2017? The following
steps are taken to answer this question for each country:

(1) Construct p(µ) by fitting the model to a data set that excludes data past 2012
for the respective country.

(2) Compare p(µ) to posterior p(µ|y) and calculate w and a.

Preliminary results for all FP2020 countries are given in Figure 5. We selected
one country from each quadrant and illustrate the estimates from those countries in
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Figure 4: FPEM estimates for Mauritania

Figure 6. Mauritania shows up as an example country with limited data; the data after
2012 are subject to large non-sampling errors. Moreover, the estimates are suggested
by the model divert from those suggested by the data. The analysis highlights that
additional information is needed for Mauritania for improved monitoring. On the
contrary, Kenya is an example of a country where estimates are data-driven. The
model and data suggest different trends (the data suggest a greater increase than
indicated by the model alone), hence Kenya is flagged as a country that can be used
for a case study.
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Figure 5: Preliminary results for estimating modern contraceptive use for 2017 for all FP2020
countries, considering the contribution of data after 2012.
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Figure 6: Modern contraceptive use estimates for Kenya, Ethiopia, Mauritania and the
Philippines.
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