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Abstract 

High levels of obesity in the United States and rising trends worldwide call for attention to 

the role of life course patterns of body mass index (BMI) in pre-disease pathways. Using 

recently collected mRNA abundance data in Wave 5 of the National Longitudinal Study of 

Adolescent to Adult Health (Add Health), this study examines how life course patterns of 

BMI are related to gene expression markers of important health outcomes in later life, 

including cardiac infarction, type 2 diabetes, and immune/inflammatory functioning as 

indicated by the conserved transcriptional response to adversity signature (CTRA). We test 

hypotheses using a Bayesian approach concerning different life course models: accumulation, 

critical, and sensitive periods. Preliminary results show a strong association between Wave V 

BMI and gene expression scores related to infarction and type 2 diabetes among people who 

have not had an infarction and do not have diabetes type 2, respectively.  

 

Introduction 

The integration of the social sciences and molecular genetics has proceeded at rapid pace, 

propelled largely by the development of appropriate statistical tools and the collection of 

DNA in representative samples such as the Health and Retirement Study, Add Health, 

Whitehall, and Framingham (Domingue et al. 2016). These advances have relied on Genome 

Wide Association Studies (GWAS), according to which, variation in base pairs (called single 

nucleotide polymorphisms, or SNPs) predict behavior and health outcomes. The GWAS 

approach has been profitably applied to the study of many classic concerns of the social 

sciences, including assortative mating (Conley et al. 2016), peer homophily (Domingue et al. 

2018), social class (Belsky et al. 2018), reproductive behaviors (Beauchamp 2016; Mills et al. 

2018), and longevity and mortality (Pilling et al. 2017; Yashin et al. 2016). 

 

Recent advances in technology also allow for the collection of gene expression data in 

population-based studies, data that allow for a new perspective on the interplay between the 

genome and social forces. In contrast to GWAS, which focus on the invariant structure of the 

SNPs, gene expression data indicate how “active” genes are in synthesizing their products. 

Genes may be more or less active depending on, for example, regulatory elements that are 

upstream from the actual protein-coding region. Second, gene expression data shift the focus 

from how structural variation in SNPs predict outcomes to how social and physical 

circumstances ultimately impact these regulatory regions, turning specific gene sets “on” or 

“off” (upward and downward regulation). The social and physical environment cause changes 

in gene expression that, in turn, foster physiological adjustments to a person’s surroundings 

but may also initiate and maintain disease processes. Moreover, the fundamental insight of 

GWAS is also retained: variation in expression patterns can then predict behaviors and health 

outcomes. 

 

Although the expression of the genome is regulated by many mechanisms, early studies 

identified genetic transcription—the rate at which messenger RNA is “written out” from the 

DNA—as highly responsive to “signals” originating in social settings (Cole 2014). That is, 

social experiences “get under the skin” and influence the rate at which coding regions of the 

DNA are transcribed to mRNA, which in turn begins biological cascades regulating virtually 



2 

every biological process in the cell (Irwin & Cole, 2011). Research in 

psychoneuroimmunology points to diverse social experiences capable of triggering gene 

expression: social status, stressors, social isolation, social supports, geographic location, and 

stigma (Shanahan 2013). Genes associated with the immune system in monocytes in 

peripheral blood mononuclear cells appear to be quite responsive to these social factors, and 

these same genes can alter the probability of inflammatory and immune-related morbidities, 

including major causes of death in the West (e.g., hypertension, type 2 diabetes, some 

cancers, depression, and auto-immune disorders) (Franceschi and Campisi 2014) The study 

of gene transcription thus offers a strategic, mechanistic approach to how the organization of 

societies and systems biology combine to influence major forms of morbidity and mortality 

in populations. 

 

In this paper, we explore the use of gene expression data (mRNA abundance) as indicators of 

pre-disease pathways, a concept proposed by Ryff and Singer (2001) to encompass the many 

contingencies that give rise to disease states before the appearance of clinically significant 

symptoms. The concept highlights the life course dimension of disease, with the probability 

of specific disease states already changing before birth and often continuing to change over 

many decades of life. The concept also recognizes that such pathways are highly 

multidimensional, encompassing social, psychological, cultural, economic, and biological 

levels of analysis.  

 

We draw on mRNA abundance data collected as part of the ongoing Wave V of the National 

Longitudinal Study of Adolescent to Adult Health (Add Health) and interrelate these data to 

life-time patterns of body mass index (BMI), and anthropometric measures (such as waist 

circumference). BMI is a well-established, strong predictor of many disease states, including 

inflammatory morbidities, and emerging evidence shows that adipocytes are key players in 

inflammatory pathways (Smorlesi et al. 2012). We focus on mRNA signatures associated 

with infarction, type 2 diabetes, and immune/inflammatory patterns (CTRA) that may result 

in diseases. Very few Add Health respondents who are now in their late 30s have experienced 

an infarction, thus allowing us to examine associations between BMI and the activation of 

genes associated with the risk for infarctions before infarctions are experienced. We can 

similarly focus on mRNA diabetes 2 signature among those without clinical symptoms of that 

disease. To what extent does current BMI predict mRNA signatures of these disease states 

before they actually manifest in clinical symptoms? And to what extent do life-time patterns 

of BMI predict these signatures? 

 

The concept of the pre-disease pathway is especially salient in the context of the Add Health 

cohort, which is among the first American youth cohorts to come of age during the obesity 

epidemic, yet have not yet reached the older adult ages at which diseases manifest widely in 

the population (Harris 2010). The cohort reflects trends in obesity, which have been 

increasing in prevalence and incidence for more than 20 years, calling for increased attention 

to the consequences for population health (Ogden et al. 2006; Yang and Colditz 2015). This 

is especially alarming for young people who have higher BMI compared to the previous 

cohorts, leading to higher prevalence of obesity in adulthood (Lee et al. 2011). Obesity is 

associated with many health issues as well as increased mortality rates (Dixon 2010; Flegal et 

al. 2013; Zajacova and Burgard 2010). Among the diseases related to higher BMI, previous 

research has highlighted especially the elevated risk of type 2 diabetes (Boone-Heinonen et 

al. 2018), cardiovascular diseases (Nordestgaard et al. 2012; Owen et al. 2009; Tirosh et al. 

2011), cancer (Renehan et al. 2008) and systemic inflammation (Ellulu et al. 2017). The 
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increasing prevalence of overweight and obesity motivates the analysis of the gene 

expression associated with BMI at different points of the life course. 

 

BMI changes greatly during the life-course showing a curvilinear relationship with age. 

Trajectories, timing, and changes in BMI over the life-course have been analyzed with 

reference to many different outcomes (Attard et al. 2013; Burdette and Needham 2012; The 

et al. 2013; Wickrama et al. 2014). However, the role of BMI at different points in the life 

course for the development of chronic diseases remains poorly understood (McCarron et al. 

2000; Rademacher et al. 2009; Sakurai et al. 1999; Shihab et al. 2012). In order to examine 

the long-term effects of BMI during different periods, we use a typology of life course 

models suggested by Ben-Shlomo and Kuh (2004): accumulation, critical, and sensitive 

period models. The accumulation model posits that BMI in each life course phase contributes 

equally to health outcomes later in life. The critical and sensitive period models posit 

increased importance of BMI at specific points in the life, the former positing only one 

significant age period in the life course and the latter hypothesizing that some age periods 

have heightened salience. Variants of this models will also be examined.  

 

Data and Method 

 

Data for the preliminary analyses come from Wave V of Add Health, a nationally 

representative sample of adults aged 32 to 42 years. At Wave V, mRNA data were collected 

and analyzed from a random subsample of Add Health respondents (n=1132). Comparisons 

suggest that the mRNA subsample is similar to the overall sample in terms of BMI. There are 

no significant differences in BMI at Wave V between the mRNA subsample and the overall 

sample according to a Two-Samples Welch t-test.  

 

Height and weight are either self-reported or measured by respondents at each wave. In 

particular, field examiners at waves II, III, IV, and V measured and collected height and 

weight for each respondent. Currently only self-reported BMI is available for Wave V, but 

physical exam data will become available by the time of PAA including waist circumference. 

Reliability of anthropometric measures collected in Add Health is high (Hussey et al. 2015). 

Moreover, we include measures of age, biological sex, race/ethnicity, and educational 

attainment collected at Wave 5. We include a sample-specific quality control measure for 

mRNA and indicators for assay batch (since observations collected in the same plate are 

expected to be highly correlated due to the lab methodology). 

 

Three main gene expression signatures were constructed and analyzed: infarction, type 2 

diabetes and conserved transcriptional response to adversity (CTRA). CTRA includes 

proinflammatory genes as well as genes involved in innate antiviral responses and antibody 

synthesis. The scores are constructed using an arithmetic mean of the expression scores for 

the genes that have been previously found to be associated with the different outcomes. The 

list of genes for infarction is derived from Poledne and Hubacek (2011), for diabetes from 

Xue et al. (2018), and for CTRA from Cole (2014). CTRA includes proinflammatory genes 

as well as genes involved in innate antiviral responses and antibody synthesis. The scores are 

constructed using an arithmetic mean of the expression scores for the genes that have been 

previously found to be associated with the different outcomes. We exclude from the analysis 

individuals who have experienced infarction or are diagnosed with type 2 diabetes at Wave 

V. In future analyses, these signatures will be examined using several methodologies, 

including a compositional approach (Erb and Notredame 2016).  
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In order to investigate which life course models best represent the data, we use a Bayesian 

approach for continuous exposure to different patterns of BMI (Madathil et al. 2018). Several 

models have been proposed in order to identify the best-fitting life course hypothesis (Ben-

Shlomo et al. 2016; Mishra et al. 2009; Murray et al. 2016). The Bayesian approach proposed 

by Madathil et al. (2018) has many advantages compared to previous applications, such as 

direct estimation of the posterior probability for different hypotheses and no model selection. 

The preliminary results below are obtained from linear regression models. However, at PAA 

the results from the Bayesian approach will be presented. 

 

Preliminary results 

 

Tables 1 to 6 present the results using a linear regression model in order to test the 

association between BMI at Wave V and genetic expression scores related to infarction, 

diabetes, and CTRA. Results show that BMI at Wave V is strongly associated with the 

infarction (Table 1) and the diabetes mRNA risk signature (Table 2). The magnitude of the 

coefficient is small but highly significant. However, the size of the coefficient is not directly 

interpretable. CTRA and BMI at Wave V are unrelated (Table 3). Once the different 

components of CTRA are analyzed separately, BMI appears to be related to increasing 

expression of inflammatory genes (Table 4) but not the antibody and antiviral ones (Tables 5 

and 6).  
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Table 1 – BMI and Infarction Gene Expression at Wave V (ages 32-42) 

  Infarction Signature Infarction Signature 

Predictors Estimates p Estimates p 

Intercept 0.06 0.891 0.09 0.846 

BMI Wave V 0.00 <0.001 0.00 <0.001 

Male -0.01 0.411 -0.01 0.354 

Black (ref. White) 0.02 0.283 0.02 0.318 

Native 0.03 0.438 0.03 0.378 

Asian -0.02 0.751 -0.02 0.791 

Other Race 0.01 0.547 0.01 0.684 

Current Smoker 0.06 <0.001 0.05 0.006 

Drinks everyday -0.01 0.610 -0.01 0.772 

Plate2 -0.06 0.116 -0.06 0.106 

Plate3 -0.05 0.222 -0.05 0.199 

Plate4 -0.05 0.212 -0.05 0.210 

Plate5 0.08 0.042 0.08 0.045 

Plate6 0.05 0.185 0.05 0.176 

Plate7 0.00 0.915 0.00 0.997 

Plate8 0.04 0.284 0.04 0.305 

Plate9 -0.08 0.036 -0.08 0.043 

Plate10 -0.12 0.003 -0.12 0.003 

Plate11 0.07 0.063 0.07 0.069 

Plate12 -0.02 0.576 -0.02 0.539 

Quality 3.29 <0.001 3.26 <0.001 

Age -0.00 0.386 -0.00 0.377 

HS   0.03 0.067 

Less-than-HS   0.01 0.763 

Observations 916 916 

R2 / adjusted R2 0.164 / 0.144 0.167 / 0.146 
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Table 2 – BMI and Diabetes’ Gene Expression at Wave V (ages 32-42) 

  Diabetes’ Signature Diabetes’ Signature 

Predictors Estimates p Estimates p 

Intercept -0.63 0.229 -0.60 0.249 

BMI Wave V 0.01 <0.001 0.01 <0.001 

Male 0.00 0.975 -0.00 0.964 

Black (ref. White) 0.08 <0.001 0.08 <0.001 

Native 0.01 0.786 0.01 0.719 

Asian 0.06 0.502 0.06 0.476 

Other Race 0.03 0.240 0.03 0.294 

Current Smoker 0.07 0.001 0.06 0.004 

Drinks everyday 0.02 0.433 0.02 0.351 

Plate2 0.00 0.978 0.00 0.998 

Plate3 0.04 0.419 0.03 0.452 

Plate4 -0.02 0.555 -0.02 0.556 

Plate5 -0.02 0.567 -0.03 0.546 

Plate6 0.03 0.487 0.03 0.481 

Plate7 0.08 0.057 0.08 0.068 

Plate8 0.08 0.090 0.08 0.094 

Plate9 -0.38 <0.001 -0.38 <0.001 

Plate10 -0.42 <0.001 -0.42 <0.001 

Plate11 -0.09 0.025 -0.10 0.025 

Plate12 -0.23 <0.001 -0.23 <0.001 

Quality 6.74 <0.001 6.71 <0.001 

Age -0.01 0.223 -0.01 0.218 

HS   0.02 0.192 

Less-than-HS   -0.00 0.998 

Observations 876 876 

R2 / adjusted R2 0.293 / 0.275 0.294 / 0.275 
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Table 3 – BMI and CTRA Gene Expression at Wave V (ages 32-42) 

  M1 M2 

Predictors Estimates p Estimates p 

Intercept -4.18 0.002 -4.16 0.002 

BMI Wave V -0.00 0.612 -0.00 0.492 

Male 0.22 <0.001 0.21 <0.001 

Black (ref. White) -0.07 0.273 -0.07 0.248 

Native -0.25 0.019 -0.24 0.023 

Asian -0.26 0.202 -0.25 0.217 

Other Race -0.04 0.546 -0.05 0.466 

Current Smoker 0.02 0.717 -0.00 0.985 

Drinks everyday -0.17 0.004 -0.16 0.006 

Plate2 0.04 0.694 0.04 0.713 

Plate3 0.00 0.977 0.00 0.988 

Plate4 0.13 0.242 0.13 0.244 

Plate5 -0.06 0.585 -0.06 0.581 

Plate6 0.13 0.251 0.13 0.246 

Plate7 0.02 0.890 0.01 0.928 

Plate8 0.17 0.147 0.17 0.150 

Plate9 -0.32 0.004 -0.32 0.005 

Plate10 -0.18 0.121 -0.18 0.124 

Plate11 -0.26 0.018 -0.27 0.017 

Plate12 -0.11 0.323 -0.11 0.301 

Quality 4.31 0.002 4.30 0.002 

Age -0.01 0.578 -0.01 0.563 

HS   0.05 0.293 

Less-than-HS   0.08 0.574 

Observations 927 927 

R2 / adjusted R2 0.071 / 0.049 0.072 / 0.049 
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Table 4 – BMI and Inflammatory Gene Expression (CTRA’s component 1) at Wave V (ages 

32-42) 

  M1 M2 

Predictors Estimates p Estimates p 

Intercept 0.81 0.059 0.82 0.055 

BMI Wave V 0.00 <0.001 0.00 <0.001 

Male -0.04 0.003 -0.04 0.003 

Black (ref. White) 0.09 <0.001 0.09 <0.001 

Native 0.07 0.027 0.07 0.026 

Asian 0.04 0.551 0.04 0.558 

Other Race 0.04 0.073 0.04 0.076 

Current Smoker 0.04 0.027 0.04 0.042 

Drinks everyday -0.02 0.274 -0.02 0.289 

Plate2 -0.02 0.648 -0.02 0.646 

Plate3 0.06 0.096 0.06 0.107 

Plate4 -0.03 0.330 -0.03 0.332 

Plate5 -0.03 0.351 -0.03 0.337 

Plate6 0.04 0.202 0.05 0.200 

Plate7 0.08 0.026 0.08 0.028 

Plate8 0.09 0.020 0.09 0.022 

Plate9 -0.37 <0.001 -0.37 <0.001 

Plate10 -0.36 <0.001 -0.36 <0.001 

Plate11 -0.06 0.065 -0.06 0.076 

Plate12 -0.14 <0.001 -0.14 <0.001 

Quality 4.94 <0.001 4.92 <0.001 

Age -0.00 0.655 -0.00 0.676 

HS   0.01 0.614 

Less-than-HS   -0.04 0.377 

Observations 927 927 

R2 / adjusted R2 0.288 / 0.271 0.289 / 0.271 
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Table 5 – BMI and Antibody Gene Expression (CTRA’s component 2) at Wave V (ages 32-

42) 

  M1 M2 

Predictors Estimates p Estimates p 

Intercept 1.66 0.083 1.65 0.085 

BMI Wave V 0.00 0.284 0.00 0.219 

Male -0.04 0.212 -0.04 0.240 

Black (ref. White) 0.06 0.178 0.06 0.160 

Native 0.02 0.813 0.01 0.865 

Asian 0.22 0.125 0.21 0.135 

Other Race 0.07 0.184 0.07 0.150 

Current Smoker -0.01 0.715 -0.00 0.993 

Drinks everyday 0.08 0.062 0.07 0.084 

Plate2 -0.00 0.978 -0.00 0.997 

Plate3 0.05 0.574 0.05 0.568 

Plate4 -0.06 0.415 -0.06 0.417 

Plate5 0.06 0.425 0.06 0.422 

Plate6 -0.00 0.951 -0.01 0.942 

Plate7 0.04 0.618 0.04 0.589 

Plate8 0.03 0.760 0.03 0.756 

Plate9 0.16 0.054 0.15 0.057 

Plate10 0.02 0.834 0.02 0.840 

Plate11 -0.03 0.748 -0.02 0.782 

Plate12 -0.01 0.868 -0.01 0.906 

Quality -1.55 0.110 -1.55 0.111 

Age -0.01 0.530 -0.01 0.547 

HS   -0.03 0.341 

Less-than-HS   -0.06 0.556 

Observations 927 927 

R2 / adjusted R2 0.027 / 0.004 0.028 / 0.003 

 

Table 6 – BMI and Interferon Type I Gene Expression (CTRA’s component 3) at Wave V 

(ages 32-42) 

  M1 M2 

Predictors Estimates p Estimates p 

Intercept 3.33 0.001 3.33 0.001 

BMI Wave V 0.00 0.224 0.00 0.203 

Male -0.22 <0.001 -0.22 <0.001 

Black (ref. White) 0.10 0.035 0.10 0.032 

Native 0.30 <0.001 0.30 <0.001 

Asian 0.08 0.609 0.07 0.625 
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Other Race 0.02 0.758 0.02 0.716 

Current Smoker 0.03 0.423 0.04 0.369 

Drinks everyday 0.07 0.096 0.07 0.111 

Plate2 -0.06 0.486 -0.06 0.493 

Plate3 0.01 0.895 0.01 0.905 

Plate4 -0.10 0.226 -0.10 0.227 

Plate5 -0.04 0.673 -0.04 0.668 

Plate6 -0.08 0.345 -0.08 0.343 

Plate7 0.02 0.774 0.02 0.768 

Plate8 -0.11 0.208 -0.11 0.206 

Plate9 -0.20 0.018 -0.20 0.019 

Plate10 -0.19 0.024 -0.19 0.025 

Plate11 0.22 0.007 0.23 0.006 

Plate12 -0.02 0.783 -0.02 0.812 

Quality 2.19 0.032 2.17 0.033 

Age 0.01 0.248 0.01 0.240 

HS   -0.01 0.769 

Less-than-HS   -0.06 0.568 

Observations 927 927 

R2 / adjusted R2 0.098 / 0.078 0.099 / 0.076 

 

Preliminary Conclusions 

 

The aim of this analysis is to understand how life course patterns of BMI are related to 

mRNA risk signatures of important health outcomes in later life. Preliminary results suggest 

that contemporaneous BMI at ages 32-42 is especially related to enhanced expression for 

genes associated with infarction, type 2 diabetes, and inflammation. Further analysis will 

apply a Bayesian approach to test three hypotheses related to the relevance of BMI life course 

pattern for pre-disease markers. In which part of the life course will BMI matter the most for 

the expression of genes related to these different diseases? Understanding when in pre-

disease pathways BMI matters the most can be helpful for designing effective policy 

interventions to reduce the impact of obesity on public health outcomes. 

 

This work is not free from limitations. First, the design does not allow us to make causal 

statements about BMI. Second, the gene expression scores are markers of pre-disease, but 

they are probabilistic and the degree of their specificity and sensitivity is presently unknown. 

Finally, a more extensive characterization of BMI, including birthweight, would be ideal.  

Nevertheless, the present is the first to examine associations between BMI and mRNA risk 

signatures for major forms of mortality in a population-based study, and the results suggest a 

social and biologically plausible pathway by which gene expression can identify people at 

risk for later disease.  
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