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Network	diffusion	under	homophily	and	consolidation	as	a	mechanism	for	social	inequality	

	

Abstract	

	

DiMaggio	and	Garip	(2011)	define	network	externalities	(where	the	value	of	a	practice	is	a	

function	of	network	alters	that	have	already	adopted	the	practice)	as	a	mechanism	

exacerbating	social	inequality	under	the	condition	of	homophily	(where	advantaged	individuals	

poised	to	be	primary	adopters	are	socially	connected	to	other	advantaged	individuals).	The	

authors	use	an	agent-based	model	of	diffusion	on	a	real-life	population	for	empirical	

illustration,	and	thus,	do	not	consider	consolidation	(correlation	between	traits),	a	population	

parameter	that	shapes	network	structure	and	diffusion	(Blau	and	Schwartz	1984,	Centola	

2015).	Using	an	agent-based	model,	this	paper	shows	that	prior	findings	linking	homophily	to	

segregated	social	ties	and	to	differential	diffusion	outcomes	are	contingent	on	high	levels	of	

consolidation.	Homophily,	under	low	consolidation,	is	not	sufficient	to	exacerbate	existing	

differences	in	adoption	probabilities	across	groups,	and	can	even	end	up	alleviating	inter-group	

inequality	by	facilitating	diffusion.	
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Sociologists	are	interested	in	how	social	networks	shape	the	distribution	of	resources	(Lin	1993;	

Portes	1998),	attitudes	(Small,	Lamont	and	Harding	2010),	and	behaviors	(Boyd	1989,	Marsden	

and	Gorman	2001,	Smith	and	Christakis	2010)	in	society.	One	line	of	inquiry	focuses	on	relating	

network	formation	processes	to	social	stratification	outcomes.	This	work	suggests	that	

homophily	–	the	tendency	for	actors	to	associate	with	similar	others	–	leads	to	segregated	

social	networks,	and	accordingly,	to	inter-group	inequality	in	outcomes	for	which	network	

peers	offer	a	positive	influence	(DiMaggio	and	Garip	2011,	Manzo	2013,	Montgomery	1991).	

This	idea	has	a	strong	basis	in	empirical	findings	that	show	the	ubiquity	of	homophily	in	

social	networks	(McPherson,	Smith-Lovin	and	Cook	2001),	and	the	prevalence	of	positive	

network	effects	in	diffusion	of	various	practices.1	But,	the	idea	is	not	tested	as	a	unified	causal	

chain,	first,	because	it	is	difficult	to	find	data	that	simultaneously	captures	how	individuals	form	

networks	and	how	they	adopt	different	practices,	and	second,	because	it	is	often	hard	to	tell	

apart	network	selection	from	network	diffusion	even	when	data	are	available	(Manski	1993).	

These	difficulties	have	led	researchers	to	turn	to	formal	analysis	or	agent-based	models	

to	demonstrate	network-induced	unequal	distributions	in	particular	domains.	Montgomery	

(1991),	for	example,	has	developed	a	mathematical	model	to	connect	job	referral	networks	to	

wage	inequality.	Manzo	(2013)	has	proposed	a	computational	model	to	link	network-based	

educational	choice	to	educational	disparities	in	France.	In	both	examples,	the	authors	argued	

that	higher	degrees	of	homophily	in	social	ties	(by	ability	in	the	former	study,	and	by	socio-

economic	status	in	the	latter)	lead	to	higher	degrees	of	inequality	(in	wages	in	the	former,	and	

in	educational	attainment	in	the	latter).	
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In	a	recent	article,	DiMaggio	and	Garip	(2011)	–	DG	hereafter	–	generalized	this	

argument	to	any	good	or	practice	that	displays	network	externalities,	that	is,	becomes	more	

valuable	(or	less	risky)	to	a	person	as	more	network	peers	adopt	that	good	or	practice.	Network	

externalities,	the	authors	argued,	exacerbate	inter-group	inequality	under	the	condition	of	

homophily,	that	is,	if	advantaged	individuals	who	are	the	likely	primary	adopters	of	a	good	or	

practice	are	socially	linked	to	other	advantaged	individuals	in	the	population.	The	authors	

illustrated	this	process	with	an	agent-based	model	of	Internet	adoption	in	the	United	States,	

sampling	the	agents	from	the	2002	General	Social	Survey	(GSS)	to	produce	realistic	distributions	

of	income,	educational	attainment,	and	race.		Similar	to	earlier	work,	the	authors	found,	higher	

degrees	of	homophily	(by	income,	education,	and	race)	generate	higher	degrees	of	inequality	in	

adoption.	

By	using	real-life	data,	DG’s	empirical	illustration	presumed	a	particular	state	of	the	

world	as	given,	and	did	not	fully	take	into	account	the	context	for	homophilous	tie	formation.	

The	fact	that	income,	education,	and	race	are	highly	correlated	in	the	U.S.	setting,	for	example,	

likely	produced	highly	clustered	and	segregated	networks	even	under	low	levels	of	homophily.	

In	this	paper,	we	argue	that	prior	results	linking	homophily	to	network-based	inequality	

depend	on	presumed	correlations	between	different	characteristics	in	a	population.	We	are	

inspired	by	Blau	and	Schwartz’s	(1984)	seminal	work	which	suggested	consolidation	–	the	

correlation	between	traits	in	a	population	–	as	a	key	population	parameter	shaping	social	

interactions.	Centola	(2015)	recently	used	an	agent-based	model	to	investigate	how	homophily	

and	consolidation	jointly	alter	network	structure	and	diffusion	outcomes.	
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We	follow	a	similar	strategy,	but	modify	Centola’s	model	in	two	ways.	Like	DG,	we	first	

introduce	status	differences	among	individuals	which	affect	adoption	probability,	and	second	

compare	group-specific	adoption	rates	and	equilibrium	levels	under	different	conditions	of	

homophily	and	consolidation.	We	find	that	whether	(and	how	much)	homophily	exacerbates	

inter-group	inequality	is	contingent	on	the	level	of	consolidation	in	the	population.	In	what	

follows,	we	first	situate	our	approach	in	the	existing	literature,	then	describe	the	novelty	of	our	

model,	and	finally	discuss	the	implications	of	our	results.	

SOCIAL	NETWORKS	AS	A	MECHANISM	FOR	INEQUALITY	

Cumulative	advantage	from	social	networks?	

Sociologists	have	long	regarded	‘cumulative	advantage’	as	a	general	mechanism	for	inequality	

that	accrues	greater	increments	of	benefits	to	individuals	that	possess	an	initial	advantage	

(Merton	1968;	DiPrete	and	Eirich	2006).	Empirical	evidence	has	consistently	found	success	

leading	to	further	success	across	a	range	of	reward	systems,	most	notably,	in	scholarly	

publications	(Allison,	Long	and	Krauze	1982)	and	recognition	(Cole	1970,	Reskin	1977),	although	

the	extent	of	support	has	varied	by	definition	and	method	(van	de	Rijt	et	al.	2014,	Salganik,	

Dodds	and	Watts	2006).	

A	large	sociological	literature	has	also	shown	that	social	networks	provide	access	to	

various	resources	–	such	as	information	on	jobs	(Granovetter	1974)	or	migration	opportunities	

(Massey	and	Espinosa	1997),	normative	pressures	to	assume	healthy	behaviors	(Smith	and	

Christakis	2008)	or	to	improve	school	performance	(Burke	and	Sass	2008,	Sacerdote	2011)	–	

that	help	individuals	get	ahead.	Research	has	suggested	that	social	networks	can	perpetuate	
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inequality	to	the	extent	that	such	network-based	resources	are	uneven	in	their	distribution	or	

benefits	across	groups	(e.g.,	Garip	2008,	Lin	2002,	Smith	2005).	

Scholars	have	only	recently	begun	to	connect	these	two	lines	of	research,	and	consider	

social	networks	as	a	path	toward	cumulative	advantage.	In	the	area	of	labor	markets,	for	

example,	scholars	have	argued	that	job	referrals	will	increase	wage	inequality	to	the	extent	that	

workers	of	similar	productivity	are	socially	connected	(Montgomery	1991,	Arrow	and	

Borzekowski	2004).	In	health	research,	studies	have	suggested	that	network	effects	in	healthy	

behaviors	will	compound	initial	differences	if	high	socio-economic	status	individuals	associate	

with	one	another	(Pampel	et	al.	2010).	In	the	field	of	education,	researchers	have	attributed	a	

wider	gap	in	academic	achievement	to	tracking,	which	puts	students	of	similar	academic	

standing	together	(Gamoran	2011).		

There	are	two	common	elements	to	these	arguments.	First,	social	networks	are	

presumed	to	provide	a	positive	influence	in	adopting	a	practice	(in	finding	a	job,	taking	up	a	

healthy	habit,	or	aiming	for	academic	success).	Second,	social	networks	are	assumed	to	be	

homophilous,	that	is,	stratified	by	traits	that	are	related	to	adoption	probability	(productivity,	

financial	resources,	or	academic	ability).		

There	is	vast	evidence	for	each	of	these	assumptions.	Reviews	of	research	on	labor	

markets	(Marsden	and	Gorman	2001),	health	(Smith	and	Christakis	2008),	and	education	(Epple	

and	Romano	2011)	all	suggest	strong	positive	network	effects	in	various	outcomes.	And	studies	

of	social	network	composition	reveal	a	strong	tendency	towards	homophily	in	many	settings	

(Kandel	1978;	McPherson	et	al.	2001;	Rivera	et	al.	2010).	But	there	is	only	limited	evidence	for	
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how	network	effects	and	homophily	in	social	ties,	in	combination,	compound	initial	advantages	

and	widen	existing	disparities	in	the	adoption	of	a	practice.		

Challenges	in	linking	social	networks	to	inequality	

It	is	difficult	to	establish	a	unified	causal	chain	from	network	formation	to	network	diffusion	

and	inequality.	The	first	obstacle	is	the	lack	of	data.	Longitudinal	data	sets	that	simultaneously	

track	individuals’	network	ties	and	behavior	are	rare,	and	when	available,	typically	restricted	to	

an	institutional	setting	(e.g.,	schools	in	the	AddHealth	data).	Such	incomplete	data,	although	

useful	for	some	questions,	do	not	offer	reliable	measures	of	homophily	or	adoption	levels	in	

individuals’	social	networks.	

The	second	obstacle	is	the	notorious	difficulties	in	the	identification	of	network	effects	

(also	referred	to	as	network	diffusion,	peer	effects,	or	endogenous	interactions).	Individuals	

might	adopt	a	practice	because	prior	adopters	in	their	network	offer	information,	help,	or	

influence	that	makes	that	practice	less	risky	or	more	beneficial.	Or,	individuals	might	adopt	a	

practice	simply	because	they	are	subject	to	similar	unobserved	contextual	factors	as	the	prior	

adopters.	To	discard	the	latter	possibility,	researchers	search	for	instances	where	individuals	in	

the	same	environment	vary	in	their	exposure	to	network	effects	(e.g.,	Liu	et	al.	2010).	But,	even	

then,	it	is	hard	to	address	the	so-called	‘reflection	problem’,	that	is,	to	establish	that	each	

individual	is	truly	responding	to	the	group-level	behavior	(rather	than	the	group-level	behavior	

simply	reflecting	the	sum	of	individual	choices)	(Manski	1993).		

The	third,	and	perhaps	the	thorniest,	obstacle	is	the	potential	confounding	of	network	

formation	and	network	diffusion.	Individuals	might	self-select	into	a	network	in	anticipation	of	

engaging	in	a	practice	(for	example,	a	student	looking	to	improve	academic	performance	might	
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join	a	study	group,	and	start	working	harder)	(Elwert	and	Winship	2014).	To	address	this	issue	

of	endogenous	selection,	researchers	typically	seek	natural	experiments	assigning	individuals	to	

particular	networks	(e.g.,	Sacerdote	2001),	or	test	the	sensitivity	of	results	to	varying	degrees	of	

confounding	(e.g.,	VanderWeele	2011).	

Needless	to	say,	these	issues	become	even	more	intractable	in	combination,	making	it	

very	difficult	to	provide	evidence	to	existing	claims	in	the	literature	that	positive	network	

effects	in	adoption	and	homophilous	tie	formation	together	increase	inequality.	A	number	of	

researchers,	as	a	result,	have	turned	to	formal	analysis	and	computational	models	to	

investigate	the	network	dynamics	underlying	cumulative	advantage.	

Formal	and	computational	models	of	social	networks	and	inequality	

Montgomery	(1991)	has	proposed	a	social-learning	model	of	a	labor	market,	where	employers	

can	hire	through	referrals,	and	if	so,	pay	higher	wages.	A	mathematical	model	illustrated	that,	if	

workers	are	matched	to	their	contacts	in	productivity,	then	the	wage	differences	between	high-	

and	low-productivity	workers	will	increase	over	time.	Interestingly,	if	workers	are	matched	to	

their	contacts	on	characteristics	unrelated	to	productivity	(e.g.,	gender),	and	if	there	are	initial	

differences	in	employment	based	on	those	characteristics	(e.g.,	lower	employment	among	

women),	wage	inequality	along	those	characteristics	will	also	expand	over	time.		

More	recent	models	have	built	on	this	set-up,	and	reached	similar	conclusions	on	the	

role	of	networks	on	labor	market	inequality	(Arrow	and	Borzekowski	2004,	Calvó-Armengol	and	

Jackson	2004).	But,	these	formal	analyses	relied	on	simple	models	to	remain	tractable.	For	

example,	Calvó-Armengol	and	Jackson’s	(2004)	work	specified	job	search	as	a	finite	state	

Markov	process,	where	transition	in	an	agent’s	employment	state	is	dependent	on	the	states	of	
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its	network	ties.	The	authors	took	network	configuration	as	given,	not	emergent,	although	they	

did	consider	potential	drop-outs	from	the	network.	Unlike	Montgomery	(1991),	the	authors	

also	did	not	take	into	account	homophily,	that	is,	the	tendency	for	high-ability	workers	to	be	

connected	to	high-ability	job	candidates.	

Researchers	have	turned	to	agent-based	models	for	more	flexible	specifications	of	

network	formation	and	diffusion.	Agent-based	models	are	synthetic	worlds	with	computer-

generated	agents	that	follow	rules	for	interacting	with	other	agents	and	with	their	

environment.	The	models	simulate	agents	in	interaction,	and	typically	produce	emergent	

macro-levels	patterns	that	cannot	be	deduced	from	a	simple	aggregation	of	micro-level	rules.	

Consequently,	the	models	provide	a	critical	tool	for	linking	micro	and	macro	level	analysis,	and	

for	developing	new	theory	(Bruch	and	Atwell	2015).	Agent-based	models	do	not	solve	the	

identification	problems	stated	above,	but	they	do	allow	researchers	to	create	a	complete	

(albeit	synthetic)	data	set	with	no	unobserved	heterogeneity	or	endogenous	selection,	where	

the	pure	network	effects	can	be	isolated	with	counterfactual	manipulations.	

These	advantages	led	Manzo	(2013)	to	employ	an	agent-based	model	to	investigate	the	

sources	of	educational	inequality	in	France.	In	his	model,	agents	of	different	socio-economic	

groups	make	educational	choices	based	on	their	ability,	perceived	pay-offs,	and	(in	some	cases)	

choices	of	other	agents	in	their	own	group.	The	results	showed	that	the	empirical	stratification	

in	the	French	data	can	only	be	generated	in	silico	if	the	model	incorporates	network	influences	

from	within	one’s	own	socio-economic	group.	In	other	words,	network	effects	in	educational	

choice,	and	homophily	in	social	ties,	together,	provide	a	plausible	explanation	for	the	observed	

inequality	in	educational	attainment	in	France.	
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DiMaggio	and	Garip	(2011)	–	DG	hereafter	–	followed	a	similar	strategy,	and	used	an	

agent-based	model	to	understand	the	racial	disparities	in	Internet	adoption	in	the	United	

States.	The	authors	argued	that	initial	differences	in	income	and	education	between	whites	and	

African-Americans	would	translate	into	an	enduring	gap	in	adoption	rates	if	one	presumes	(in	

line	with	the	empirical	evidence)	that	prior	adopters	in	an	ego’s	network	encourage	adoption,	

and	that	network	alters	are	likely	to	resemble	the	ego	in	terms	of	income	and	education.		

To	fully	grasp	this	idea,	consider	the	first	subscribers	to	home	Internet	service.	These	

early	adopters	are	likely	to	have	sufficient	financial	and	cultural	resources	(i.e.,	high	income	and	

education)	to	afford	the	new	technology,	and	such	individuals	are	disproportionately	white	in	

the	U.S.	context.	Now	consider	the	next	round	of	subscribers.	These	individuals	still	need	to	

have	the	requisite	financial	and	cultural	resources,	but	some	also	enjoy	network	externalities,	

that	is,	higher	returns	to	the	Internet	as	they	can	use	the	service	to	communicate	with	the	

earlier	adopters.	Now,	if	social	ties	were	established	at	random,	such	externalities	would	be	

uniformly	distributed	in	the	population,	and	not	change	existing	levels	of	inequality	in	adoption.	

But,	as	research	shows,	there	is	a	high	degree	of	homophily	by	education	in	personal	networks	

in	the	United	States,	and	even	a	higher	degree	of	homophily	by	race	(Marsden	1987,	1988).	

Introducing	this	pattern	into	the	example,	then,	one	can	see	that	network	externalities	are	

bigger	for	the	rich,	better-educated	and	white	individuals	who	are	more	likely	to	be	connected	

to	earlier	adopters	(who	are	also	rich,	better-educated	and	white).	In	this	case,	network	

externalities	do	not	just	perpetuate	initial	differences	between	the	rich	and	the	poor	(or	whites	

and	African	Americans),	but	externalities	also	make	such	differences	larger	than	would	be	

expected	based	on	income	or	education	differences	alone.	
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Driven	to	explain	a	real-life	puzzle,	DG	struck	a	fine	balance	between	using	an	agent-

based	model	to	push	theory	on	the	one	hand,	and	calibrating	that	model	to	fit	the	empirical	

case,	on	the	other.	Crucially,	the	authors	did	not	create	synthetic	agents,	but	used	the	sample	

from	the	network	module	of	the	2002	GSS	to	replicate	the	observed	marginal	and	joint	

distributions	of	income,	education,	race,	and	network	size	in	the	United	States.		

Their	algorithm	first	generates	a	network	of	connections	among	agents	with	a	given	

degree	of	homophily.2	Each	agent	has	a	reservation	price	–	a	price	at	which	it	will	subscribe	to	

Internet	service.	The	reservation	price	is	an	increasing	function	income,	education,	and	the	

share	of	network	alters	who	have	already	adopted.3	The	price	of	Internet	service	is	a	declining	

function	of	overall	adoption	level	to	reflect	economies	of	scale.	This	set-up	implies	that	an	

agent	can	adopt	because	its	reservation	price	has	increased	due	to	prior	adopters	in	its	

network,	or	because	the	price	of	the	service	has	dropped	below	its	reservation	price	due	to	

adoption	in	the	population.		At	each	time	period,	the	algorithm	computes	each	agent’s	

adoption	outcome	by	comparing	its	reservation	price	to	the	price	of	the	Internet,	updates	

reservation	prices	and	the	price	of	the	service,	and	runs	until	adoption	reaches	an	equilibrium	

level	in	the	population.		

The	results	showed	that,	as	homophily	increases	in	the	network,	the	slope	of	the	

diffusion	curve	(which	plots	the	cumulative	proportion	of	adopters	across	time)	becomes	

steeper.	This	is	because	individuals	with	an	initial	advantage	(i.e.,	high	income	and	education)	

become	more	likely	to	be	connected	to	other	advantaged	individuals,	compounding	the	

network	effects	within	this	select	group.	But,	this	speed	in	adoption	comes	at	a	cost.	As	
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homophily	rises	in	the	network,	the	equilibrium	adoption	level	in	the	population	declines.	While	

the	practice	diffuses	quickly	among	the	advantaged,	it	fails	to	spread	to	less	advantaged	groups.	

Considering	the	context	for	homophily	

Prior	empirical,	formal	and	computational	analyses	discussed	above	(and	more	

comprehensively	in	DiMaggio	and	Garip’s	(2012)	review)	put	forth	a	common	argument:	Social	

networks	exacerbate	inequality	if	social	ties	facilitate	the	adoption	of	beneficial	practices,	and	if	

those	ties	exhibit	homophily,	that	is,	similarity	in	individual	traits	related	to	adoption.		

But,	interestingly,	in	both	Montgomery	(1991)	and	DG,	one	observes	significant	

disparities	in	adoption	by	a	trait	when	social	ties	display	homophily	in	that	trait	–	even	when	

the	trait	itself	is	unrelated	to	adoption	advantage.	Montgomery’s	model	implies	surplus	wage	

inequality	by	gender	(which	cannot	be	attributed	to	ability	differences	alone)	if	social	networks	

exhibit	homophily	by	gender	(which	itself	does	not	affect	employment	outcomes,	but	only	the	

size	of	the	initial	employed	pool).	Similarly,	DG	find	inequality	in	Internet	adoption	by	race	

(above	and	beyond	what	would	be	expected	based	on	income	and	education	differences)	when	

social	ties	are	homophilous	with	respect	to	race	(a	characteristic	unrelated	to	individuals’	

adoption	propensity).		

These	patterns	should	not	surprise	us	given	that	homophily	in	a	trait	changes	the	

network	structure,	and	thus	network	diffusion,	even	if	that	trait	does	not	directly	affect	

individuals’	adoption	probability.	Then,	any	structural	factor	that	relates	to	homophily	should	

also	have	implications	for	inequality.	



	 12	

One	structural	factor	that	moderates	the	implications	of	homophily	is	consolidation	–	

the	correlation	among	different	traits	in	a	society.	Indeed,	in	their	influential	work,	Blau	and	

Schwartz	(1984)	declared	homophily	and	consolidation	as	key	parameters	shaping	social	

interactions.	Low	levels	of	homophily	and	consolidation,	the	authors	predicted,	ensure	cross-

cutting	social	ties,	and	as	a	result,	social	cohesion	in	a	community.4		

Centola	(2015)	tested	this	idea	with	an	agent-based	model,	and	reached	unexpected	

conclusions.	Low	levels	of	homophily	and	consolidation	lead	to	a	random	network	structure,	

and	fail	to	support	the	diffusion	of	a	common	norm	(a	proxy	for	social	cohesion).	Middle	levels	

of	homophily	and	consolidation,	however,	induce	overlapping	patterns	of	connections	(or	‘wide	

bridges’)	that	are	optimal	for	complex	contagion	–	the	process	by	which	norms	diffuse	via	

reinforcement	from	multiple	network	alters	(Centola	and	Macy	2007).	

Centola	also	showed	that	homophily	and	consolidation	interact	in	their	effect	on	

diffusion.	When	consolidation	is	relatively	high,	for	example,	only	low	levels	of	homophily	can	

create	the	social	structure	necessary	to	support	successful	diffusion.	Because	various	traits	are	

highly	correlated,	even	slight	increases	in	homophily	lead	to	a	highly-balkanized	network,	and	

stop	diffusion	in	its	tracks.	When	consolidation	is	at	middle	levels,	however,	middle	and	high	

levels	homophily	can	also	support	effective	diffusion.	Because	the	traits	are	not	as	correlated	in	

this	case,	increases	in	homophily	do	not	immediately	translate	into	a	segregated	network.		

Implications	of	homophily	and	consolidation	for	inequality	

Centola’s	model	is	concerned	only	with	network	formation	and	diffusion,	but	his	results	

could	be	used	to	understand	how	homophily	and	consolidation,	in	concert,	can	contribute	to	

inter-group	inequality.	In	this	paper,	we	use	Centola’s	model,	but	modify	it	to	resemble	the	DG	
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set-up,	where	there	is	status	differentiation	in	adoption	probability.	In	effect,	then,	we	replicate	

DG’s	analysis	with	synthetic	(rather	than	real-life)	agents	and	generic	(rather	than	calibrated)	

parameters,	which	allows	us	to	vary	not	just	homophily,	but	also	consolidation	(a	factor	the	

authors	could	not	consider	as	they	relied	on	the	GSS	sample	with	a	fixed	covariance	structure).	

We	argue	that	the	effect	of	homophily	on	inter-group	inequality	depends	on	the	level	of	

consolidation	in	a	society.	Consider	the	extreme	case	of	full	consolidation,	where	traits	in	a	

population	are	perfectly	correlated.	If	we	know	a	person’s	income,	for	example,	we	can	

perfectly	predict	his	or	her	education,	residential	neighborhood,	and	so	on.	There	is,	effectively,	

a	single	axis	of	differentiation.	Now	consider	the	other	extreme	of	no	consolidation,	where	

individuals	are	randomly	scattered	in	the	multi-dimensional	trait	space.	If	we	know	a	person’s	

income,	in	this	case,	we	still	have	no	idea	what	their	education	or	neighborhood	is.	There	are	

multiple	axes	of	differentiation.	

We	expect	that	the	contribution	of	homophily	to	inter-group	differences	in	diffusion	will	

vary	greatly	across	these	two	cases.	In	the	full	consolidation	case,	even	low	levels	of	homophily	

will	be	sufficient	to	concentrate	advantage,	and	generate	differential	diffusion	across	groups.	

Let’s	presume	(like	DG)	that	there	exists	a	status	dimension,	defined	to	be	positively	related	to	

adoption	probability,	for	instance,	income.	In	a	full	consolidation	setting,	if	individuals	have	a	

slight	preference	for	similar	alters	(in	terms	of	multiple	characteristics,	say	income	and	

education),	then	high	income	individuals	will	be	more	exclusively	connected	because	they	are	

also	highly	educated.	Due	to	consolidation	(even	with	dimensions	that	are	not	status	related),	

an	individual’s	advantage	in	the	status	dimension	will	also	be	reflected	in	network	alters,	

further	compounding	the	differences	in	adoption	between	high-	and	low-income	groups.	
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In	the	no	consolidation	case,	by	contrast,	the	power	of	homophily	in	connecting	high-

status	individuals,	and	in	concentrating	advantage,	will	be	diluted	by	the	lack	of	relational	

concentration	in	the	status	characteristic.	Even	under	high	homophily,	since	high	earners	could	

have	any	level	of	education,	the	preference	for	similar	alters	will	not	generate	well-defined	and	

exclusively	high-earning	groups.	The	advantage	in	adoption	that	comes	from	the	status	

attribute	of	income,	in	other	words,	will	not	be	consolidated.	

This	logic	leads	us	to	qualify	DG’s	findings.	We	argue	that	the	high	levels	of	inter-group	

inequality	the	authors	observed,	and	connected	to	homophily,	are	in	part	due	to	the	high	level	

of	consolidation	in	the	sample	from	which	the	agents	are	drawn.	Specifically,	in	the	GSS	sample,	

income,	education	and	race	are	strongly	correlated.	Therefore,	even	a	small	degree	of	

homophily	(based	on	all	three	characteristics)	is	likely	to	generate	a	highly-	balkanized	network	

structure,	and	lead	to	inter-group	differences	in	adoption.	We	hypothesize	that	homophily	bias	

alone	will	not	be	sufficient	to	generate	inter-group	inequality	under	low	levels	of	consolidation.	

Below,	we	describe	our	modeling	strategy	to	test	this	hypothesis.	

METHODS	

We	use	an	agent-based	model	to	create	artificial	worlds	of	individuals	with	social	identities	and	

social	ties.	Similar	to	Centola’s	(2015)	model,	individuals	are	first	assigned	social	identities,	or	

sets	of	characteristics.	An	individual’s	identity	defines	his	or	her	social	distance	to	the	other	

members	of	the	population.	Individuals	then	form	connections	based	on	social	distance.	Once	

ties	are	established,	individuals	have	the	opportunity	to	influence	behaviors	of	their	network	

alters.	This	set-up	closely	resembles	DG’s	model,	but	differs	in	using	synthetic	(rather	than	real)	

identities	for	individuals.	
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Generating	the	population	

To	formalize,	we	assign	individuals	to	a	set	of	positions	that	can	take	on	H	possible	values	

(heterogeneity)	within	D	social	dimensions	(complexity).	There	are	G	individuals	with	each	

social	position,	and	hence,	N	(=	H	x	G)	individuals	in	the	population.	DG	consider	a	fixed	number	

of	social	dimensions	(income,	education,	and	race)	with	a	fixed	degree	of	heterogeneity.	There	

are	three	equal-sized	groups	based	on	income	(high,	medium,	and	low),	three	groups	based	on	

educational	degree	(bachelor’s,	high	school,	middle	school	or	less),	and	two	groups	based	on	

race	(white	and	black).	In	our	model,	we	make	the	number	of	dimensions	(D),	the	number	of	

social	positions	in	each	dimension	(H),	and	the	number	of	individuals	in	each	position	(G)	

flexible	to	be	able	to	vary	the	extent	of	social	differentiation.	

Establishing	network	ties	

DG	compute	the	social	distance	between	all	pairs	of	individuals	(defined	as	the	Euclidean	

distance	based	on	standardized	values	of	income,	education,	and	race),	and	then	establish	ties	

between	individuals	such	that	homophily	bias	occurs	with	a	given	probability.	We	follow	a	

similar	logic,	but	create	a	more	complex	architecture.	In	a	nutshell,	this	architecture	allows	us	

not	only	to	define	the	distance	between	individuals	according	to	their	social	positions	to	control	

homophily	,but	also	to	define	the	distance	between	positions	across	those	dimensions,	in	order	

to	control	consolidation	in	a	similar	way.	

	

[FIGURE	1	HERE]	
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Figure	1	illustrates	the	set-up	that	is	developed	originally	by	Watts,	Dodds	and	Newman	

(2002),	and	refined	subsequently	by	Centola	(2015).	The	figure	shows	a	branching	tree	of	L	=	4	

levels	with	a	branching	ratio	of	B	=	2.	This	tree	offers	a	visual	representation	of	a	population	

with	a	single	social	dimension	(D	=	1),	and	a	hierarchical	structure	of	H	=	8	social	positions	

(circles)	that	include	a	group	of	G	=	6	individuals	(black	dots)	each.	Social	distance	between	

individuals	in	the	same	group	is	defined	as	x	=	1.	Social	distance	between	individuals	in	different	

groups	equals	one	plus	the	number	of	steps	it	takes	to	reach	the	fork	in	the	tree	where	the	

individuals	share	the	closest	common	branch.	(e.g.,	distance	between	individuals	i	and	j	in	the	

figure	is	xij	=	3).	To	see	how	this	construction	defines	a	hierarchy,	imagine	that	the	social	

dimension	in	the	figure	is	occupation,	where	the	left	four	positions	(circles)	represent	

management,	and	the	right	four	positions	represent	workers.	The	first	branching	point	in	the	

tree,	then,	captures	the	social	difference	between	management	and	workers	–	two	classes	of	

positions	that	are	maximally	distant	(x	=	4).	The	second	branching	point	within	management	

allows	for	finer-grained	social	distances,	for	instance,	between	executives	and	middle	

management.	

Occupation	is	a	single	dimension	of	social	life,	and	one	can	think	of	many	other	

dimensions,	such	as	education,	income,	or	residential	neighborhood.	Similar	to	Centola	(2015),	

we	introduce	multiple	dimensions	in	our	model	by	replicating	the	tree-like	structure	in	Figure	1	

for	each	dimension.	We	then	apply	the	same	scale	used	to	measure	social	distance	between	

individuals	within	a	given	dimension	to	capture	the	distance	between	a	single	individual’s	social	

positions	across	different	dimensions.	This,	latter,	distance	equals	the	number	of	steps	up	the	

branching	tree	to	find	a	common	ancestor	if	the	two	trees	were	to	be	super-imposed	on	one	
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another.	For	example,	when	an	individual	is	located	in	the	same	position	(e.g.,	the	left-most	

circle)	across	two	social	dimensions	(e.g.,	income	and	education),	the	distance	between	

positions	is	1.	When	an	individual	is	located	in	positions	that	are	at	the	opposite	ends	of	the	

spectrum	for	the	two	dimensions	(e.g.,	the	left-most	circle	for	income,	and	the	right-most	circle	

for	education),	the	distance	between	positions	is	4.	

Using	the	distance	between	positions	within	a	single	dimension,	and	the	distance	

between	positions	across	dimensions,	we	control	degrees	of	homophily	and	consolidation,	

respectively,	as	follows.	For	each	of	the	N	individuals,	we	start	with	a	dimension,	d1,	and	place	

individuals	in	a	position	randomly.	To	determine	positions	in	the	other	dimensions,	we	rely	on	

the	consolidation	parameter	(b).	That	is,	for	each	subsequent	dimension,	d,	we	draw	a	random	

social	distance	(y)	among	positions	for	each	individual	with	probability		

	

P(y)	=	c	.	e-by		 	 	 	 	 	 (1)	

	

where	b	is	the	consolidation	parameter	and	c	is	a	normalizing	constant.	We	assign	social	

position	at	random	among	all	positions	in	dimension	d	less	than	or	equal	to	social	distance	y	

from	the	individual’s	position	in	d1.	For	intuition,	note	that	when	consolidation	is	at	its	

minimum	(bmin	=	-1),	the	probability	for	the	maximum	social	distance	y	is	the	highest.	This	can	

be	interpreted	as	lack	of	consolidation	as	an	individual	is	assigned	a	position	at	random,	

regardless	of	position	in	d1.	As	consolidation	increases,	individual’s	positions	become	more	

correlated	across	dimensions	(bmax	=	3).	
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Similar	to	Watts	et	al.	(2002)	and	Centola	(2015),	we	set	homophily	based	on	the	

shortest	social	distance	(i.e.,	one	plus	the	number	of	steps	up	the	tree	to	reach	a	common	root)	

between	a	pair	of	individuals	across	all	social	dimensions.	This	captures	the	intuitive	notion	that	

closeness	in	one	dimension	(e.g.,	education)	is	sufficient	to	connote	affiliation,	for	example,	

when	geographically	and	ethnically	distinct	researchers	collaborate	on	the	same	project	given	

the	same	social	position	in	the	occupational	dimension.	A	useful	property	of	this	metric	is	that	it	

violates	the	triangle	inequality,	which	states	that	if	individuals	i	and	j	share	a	group	in	one	

dimension	such	that	xij	=	1,	and	similarly,	if	individuals	j	and	k	share	a	group	in	another	

dimension	such	that	xjk	=	1,	it	is	perfectly	feasible	to	have	person	i	and	person	k	be	socially	

distant	such	that	xik	>	xjk	+	xij.	

After	defining	social	distance	between	all	individuals	in	the	population,	we	introduce	the	

homophily	parameter	(a)	and	start	building	social	ties	among	individuals.	Individuals	start	with	

no	ties.	We	select	an	individual	i	randomly	from	among	all	individuals	with	available	ties	(that	is,	

remaining	individuals	whose	existing	ties	<	degree	size,	Z).	For	each	individual,	we	draw	a	

random	social	distance	x	with	probability		

	

P(x)	=	c	.	e-ax		 	 	 	 	 	 (2)	

	

where	a	is	the	homophily	parameter	and	c	is	a	normalizing	constant.	We	then	choose	a	random	

individual	j	to	establish	a	social	tie	from	among	all	individuals	at	distance	x	or	less	from	the	

individual	i.	Note	that	homophily	parameter	defines	the	maximum	social	distance	an	individual	

is	able	to	tolerate	when	making	a	tie,	and	thus	effectively	sets	an	individual’s	“search	radius”	in	
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selecting	network	alters.	High	values	of	the	homophily	parameter	imply	a	small	search	radius,	

and	a	strong	preference	for	similar	others.	For	intuition,	consider	that	under	the	maximum	level	

of	homophily	(amax	=	3),	individuals	can	only	make	social	contacts	with	other	individuals	at	a	

social	distance	of	1	(with	constant	c	set	accordingly).	Decreasing	the	homophily	parameter	

increases	the	search	radius.		

We	continue	the	tie	formation	process	until	individuals	in	the	population,	on	average,	

have	the	same	pre-set	degree	size,	Z.	An	important	simplification	(similar	to	DG)	is	to	assume	

ties	to	be	symmetrical.	That	is,	if	individual	i	establishes	a	tie	with	individual	j,	individual	j	is	also	

considered	to	have	established	a	tie	to	individual	i.		

Modeling	diffusion	and	inequality	

We	use	Centola’s	(2015)	architecture	outlined	above	to	generate	a	population	of	particular	

characteristics,	to	establish	network	ties	among	individuals,	and	to	model	the	diffusion	of	a	

beneficial	practice.	Similar	to	DG,	however,	our	goal	is	to	observe	group-specific	diffusion	rates,	

and	consider	their	implications	for	social	inequality.	This	goal	requires	a	modification	in	

Centola’s	set-up,	which	assigns	all	individuals	the	same	adoption	threshold,	defined	as	the	

number	of	adopters	in	ego’s	network	necessary	to	induce	the	ego	to	adopt	a	practice.	Centola’s	

model	considers	practices	that	diffuse	through	complex	contagion,	that	is,	those	with	an	

adoption	threshold	of	2	or	higher.		DG’s	analysis	also	focuses	on	complex	contagion,	but	allows	

the	adoption	threshold	to	vary	in	the	population.	Indeed,	a	particular	feature	of	their	model	is	

to	make	the	adoption	threshold	an	inverse	function	of	an	individual’s	economic	and	cultural	

resources.	In	this	model,	each	individual	has	a	reservation	price	–	a	price	at	which	he	or	she	is	

willing	to	adopt	the	practice.	This	price	is	an	increasing	function	of	one’s	income,	education,	
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and	the	number	of	network	alters	who	have	already	adopted.	Then,	all	else	equal,	high	income	

and	high	education	individuals	have	the	highest	reservation	prices	(and	hence	the	lower	implied	

thresholds	for	adoption).	

We	introduce	this	important	feature	into	Centola’s	set-up	as	follows.	First,	we	let	an	

arbitrarily	chosen	social	dimension,	d,	indicate	status	for	all	individuals	(similar	to	income	or	

education	in	the	DG	model).	We	designate	a	given	proportion	(P)	of	the	population	as	high	

status,	an	identical	proportion	as	low	status,	and	the	remainder	as	medium	status.	Similar	to	

Gondal	(2014),	we	vary	the	proportion	of	high	status	individuals	in	order	to	test	the	sensitivity	

of	our	results	to	the	size	of	the	elite.		

Second,	we	make	the	adoption	threshold	an	inverse	function	of	status.	Specifically,	we	

assign	high	status	individuals	an	adoption	threshold	of	1,	medium-status	individuals	a	threshold	

of	2,	and	low-status	individuals	a	threshold	of	3.	Note	that	an	adoption	threshold	of	1	implies	a	

simple	contagion	process	among	the	elite	(to	use	Centola	and	Macy’s	(2007)	terminology),	

while	thresholds	of	2	and	higher	bring	about	a	complex	contagion	process	among	the	rest	of	

the	population.	Because	we	set	the	proportion	of	high-status	and	low-status	individuals	to	be	

equal,	the	average	adoption	process	still	resembles	a	complex	rather	than	simple	contagion,	

and	hence,	our	results	at	the	population	level	closely	follow	those	of	Centola	(see	Figure	2).	

To	initiate	the	diffusion	process,	like	Centola	(2015),	we	randomly	seed	one	high-status	

individual	and	their	network	(that	is,	individual’s	first-order	ties)	as	the	first	adopters.	This	

approach	follows	from	DG,	where	the	reservation	prices	are	highest	for,	and	hence	the	initial	

adoption	is	most	likely	among,	high-income	and	high-education	individuals.	We	also	randomly	

seed	one	low-status	individual	(but	not	their	network)	in	order	to	avoid	undefined	odds	ratios	
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in	subsequent	analysis	of	inter-group	inequality.	This	deliberate	seeding	of	a	low-status	

individual	–	absent	in	DG	–	renders	our	estimates	of	inequality	relatively	conservative.		

Following	the	initial	seeding,	at	each	time	period,	all	individuals	who	have	not	adopted	

the	practice	simultaneously	make	decisions	on	whether	or	not	to	adopt,	and	the	algorithm	

outputs	the	cumulative	and	group-specific	percentages	of	adopters	by	status.	The	process	ends	

after	T	=	50	time	periods,	which,	as	the	results	indicate,	provides	ample	time	to	reach	

equilibrium	diffusion	levels.	

Parameters	and	robustness	checks	

In	this	study,	we	focus	on	the	effects	of	homophily	(a)	and	consolidation	(b)	on	network	

diffusion	and	inequality;	therefore,	we	keep	the	remaining	parameters	fixed.	Below,	we	list	all	

the	parameters	used	in	generating	our	results.	Centola	(2015)	has	investigated	the	robustness	

of	the	results	to	variations	of	all	parameters,	but	one.	Therefore,	here,	we	report	the	sensitivity	

of	our	findings	to	P	(the	proportion	of	high-status	individuals	in	the	population),	which	is	the	

only	parameter	not	included	in	Centola’s	analysis,	and	refer	the	reader	to	the	original	paper	for	

all	other	checks.	We	have	run	our	models	with	P	ranging	from	1/16	to	5/16.	We	have	not	

considered	higher	values	as	they	are	not	meaningful	substantively.	We	found	qualitatively	

similar	results	(available	upon	request)	for	P	between	2/16	and	5/16.	We	observed	slightly	

different	results	for	the	case	of	P	=	1/16	where	the	difference	in	adoption	inequality	for	low	and	

moderate	levels	of	homophily	is	not	statistically	significant	under	high	consolidation	(whereas	it	

consistently	is	for	higher	values	of	P),	and	where	high	levels	of	homophily	impede	diffusion	

under	low	consolidation	(whereas	it	actually	helps	it	for	higher	values	P).	Therefore,	our	results	
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are	consistent	for	cases	where	high-status	adopters	with	an	initial	adoption	advantage	make	at	

least	1/8th	of	the	population.		

Population	parameters	

• D	=	complexity	(number	of	dimensions)	=	10	

• H	=	heterogeneity	(number	of	social	positions)	in	a	dimension	=	16	

• G	=	group	size	(number	of	people	in	each	position)	=	50	

• N	=	population	size	=	H	x	G	=	800	

• P	=	proportion	of	high	status	individuals	=	2/16	

Network	parameters	

• a	=	level	of	homophily,	ranging	from	-1	to	3	

• b	=	level	of	consolidation,	ranging	from	-1	to	3	

• Z	=	average	degree	(number	of	ties	for	each	person)	=	5	

Adoption	parameters	

• T	=	time	intervals	=	50	

We	code	our	algorithm	in	R	(version	3.3.1).	To	account	for	the	randomness	in	initial	seeding,	

and	in	the	social	positions	of	individuals	by	status,	we	run	the	simulations	100	times	for	each	

set	of	parameters,	repeating	the	entire	process	of	population	construction,	network	formation,	

and	diffusion.	These	repeat	runs	give	us	means	and	standard	deviations	across	all	realizations	of	

specific	sets	of	social	conditions.	In	what	follows,	we	report	not	just	the	average	diffusion	

outcomes	(as	both	Centola	(2015)	and	DG	do),	but	also	the	distribution	of	diffusion	outcomes	

across	repetitions.	As	a	methodological	point,	we	note	that	conclusions	based	on	average	
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observations	might	be	misleading	for	particular	parameter	combinations,	and	at	particular	

time-points.	

RESULTS	

Overall	diffusion	under	homophily	and	consolidation	

Before	considering	group-specific	diffusion	rates,	we	investigate	overall	diffusion	patterns,	and	

confirm	that	our	results	are	similar	to	Centola’s	(2015)	findings.	This	is	important	because	our	

model	has	implemented	adoption	thresholds	that	vary	inversely	with	individuals’	status,	which	

might	disrupt	the	diffusion	dynamics	in	the	original	model	based	on	fixed	adoption	thresholds.	

While	we	keep	the	average	adoption	threshold	equal	to	that	in	Centola,	it	is	still	not	obvious	

that	diffusion	patterns	will	remain	similar	with	a	given	proportion	(P	=	2/16)	of	high-	and	low-

status	individuals	(who	require	less	and	more	social	reinforcement	to	adopt,	respectively).	In	

Figure	2,	we	plot	overall	equilibrium	cumulative	adoption	rates	(z-axis)	under	status-based	

thresholds	while	varying	consolidation	(y-axis)	and	homophily	(x-axis),	keeping	all	other	

parameters	at	values	listed	in	the	preceding	section.	

	

[FIGURE	2	HERE]	

	

Introducing	status-based	thresholds	as	in	DG	does	not	change	the	relationship	between	

homophily,	consolidation,	and	diffusion	at	the	population	level.	Similar	to	Centola	(2015),	we	

observe	that	(i)	homophily	and	consolidation	interact	in	their	effect	on	diffusion,	and	(ii)	

moderate	levels	of	homophily	and	consolidation	best	support	diffusion.		
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We	now	turn	to	the	implications	of	our	model	for	DG’s	conclusions	on	how	homophily	

affects	diffusion	and	inter-group	inequality.	While	DG	treat	consolidation	as	fixed,	our	model	

allows	us	to	vary	it.	For	the	sake	of	simplicity,	in	the	remainder	of	this	paper,	instead	of	showing	

the	full	range	of	values	for	homophily	and	consolidation	(as	in	Figure	2),	we	display	results	for	

(i)	four	levels	of	homophily,	including	random	mixing	(a	=	-1),	low	(a	=	0),	medium	(a	=	1),	and	

high	homophily	(a	=	2),	and	(ii)	two	levels	of	consolidation,	low	(b	=	0)	and	high	(b	=	2).	This	

exposition	allows	us	to	observe	adoption	rates	under	varying	degrees	of	homophily	and	

consolidation,	and	also	over	time,	similar	to	DG.	

We	present	not	just	average	diffusion	patterns,	but	also	the	95	percent	confidence	

bands	around	the	average	across	multiple	realizations.	To	clarify,	the	variance	in	simulations	is	

not	generated	by	different	parameter	values,	but	by	randomly	occurring	differences	in	the	

social	positions	or	networks	of	initial	seeds	under	a	given	set	of	parameter	values.	It	is	

important	to	consider	the	full	distribution	of	simulations	to	ensure	that	our	results	are	stable	

(and	not	driven	by	volatile	realizations	of	the	model),	and	that	the	differences	we	point	to	

across	multiple	scenarios	are	statistically	significant.		

Panel	B	in	Figure	3	shows	the	cumulative	adoption	(y-axis)	over	time	(x-axis)	by	

homophily	in	a	high-consolidation	world.	Note	that	Figure	3	can	be	understood	as	a	cross-

section	of	Figure	2,	but	with	the	added	dimension	of	time,	and	confidence	bands	(gray	regions)	

around	the	average	diffusion	curve	across	100	realizations	per	a	given	set	of	parameters.		

We	observe	several	patterns.	First,	low	homophily	(a	=	0)	leads	to	the	highest	diffusion	

level	in	equilibrium,	where	the	practice	consistently	reaches	full	saturation	in	the	population.	

Medium	(a	=	1)	and	high	(a	=	2)	levels	of	homophily	lead	to	much	lower	–	and	statistically	
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indistinguishable	–	adoption	levels	in	equilibrium.	Second,	low	homophily	(a	=	0)	leads	to	the	

slowest	rate	of	diffusion	initially,	surpassed	by	the	equally	fast	medium	and	high	levels	of	

homophily.	In	line	with	DG’s	observations,	then,	while	homophily	boosts	adoption	speed	

initially	(as	the	practice	can	spread	quickly	among	the	advantaged	individuals	socially	connected	

to	one	another),	it	hurts	the	equilibrium	adoption	level	(as	the	practice	fails	to	reach	the	less	

advantaged	individuals).	

	

[FIGURE	3	HERE]	

	

Another	pattern	in	the	figure	seems	to	defy	DG’s	expectations.	The	no	homophily	case	(a	=	-1)	

leads	not	only	to	the	slowest	diffusion	rate,	but	also	to	low	(and	highly	variable)	overall	

adoption	levels	in	equilibrium.	Centola	(2015)	explains	this	finding	with	reference	to	complex	

contagion.	When	a	practice	requires	reinforcement	from	multiple	social	ties	to	be	adopted,	

networks	need	to	have	‘wide	bridges’,	that	is,	overlapping	social	ties,	to	effectively	spread	that	

practice.	Such	wide	bridges	are	only	possible	with	some	degree	of	homophily	and	

consolidation.	Under	no	homophily,	even	high	levels	of	consolidation	are	not	sufficient	to	

produce	the	social	structure	needed	to	sustain	diffusion.	(Note	that,	in	Figure	2,	when	

homophily	is	less	than	-0.5,	diffusion	is	flat	at	zero,	regardless	of	the	level	of	consolidation.)	

Why	then,	one	can	ask,	did	DG	not	observe	this	pattern	in	their	analysis?	

The	answer,	we	believe,	is	simple.	Because	DG	relied	on	the	GSS	data,	and	a	fixed	

number	of	individuals	(N=2,257)	to	establish	a	large	number	of	social	ties	(an	average	of	28	ties	

per	person,	as	given	by	the	actual	degree	sizes	reported	by	each	individual),	the	resulting	
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networks	ended	up	with	some	degree	of	(incidental)	homophily	even	when	homophily	bias	was	

set	to	zero.	After	all,	even	random	mixing	can	still	bring	about	homophilous	tie	formation	

(especially	if	there	are	few	network	alters	to	choose	from).	(By	comparison,	in	our	model,	there	

are	800	individuals	to	establish	an	average	of	5	ties	per	person.)	Then,	DG’s	no	homophily	case	

is	likely	to	resemble	our	low	homophily	condition,	and	there	is	no	contradiction	in	the	findings.	

This	significant	overlap	between	DG	and	our	results,	however,	disappears	under	low	

consolidation,	as	shown	in	panel	A	in	Figure	3.	In	this	case,	medium	(a	=	1)	and	high	(a	=	2)	

levels	of	homophily,	although	not	statistically	distinguishable	from	one	another,	lead	to	much	

higher	adoption	rates	and	equilibrium	levels	compared	to	low	(a	=	0)	and	no	homophily	(a	=	-1)	

conditions.	Under	low	consolidation,	then,	homophily	actually	helps	both	the	speed	and	level	of	

diffusion,	directly	opposing	DG’s	conclusions	based	on	a	high-consolidation	setting.	

The	explanation	for	this	pattern,	again,	comes	from	the	conditions	for	complex	

contagion.	Under	low	consolidation,	only	higher	degrees	of	homophily	can	create	overlapping	

social	ties	that	are	key	to	successful	diffusion.	When	consolidation	and	homophily	are	both	low,	

the	diffusion	fails	the	take	off	(as	in	the	inner-left	corner	of	Figure	3).		

Comparing	panels	A	and	B	reveals	another	insight	that	is	not	obvious	from	Figure	2	(and,	

thus,	Centola’s	original	analysis).	The	low-consolidation	condition	(panel	A)	creates	a	lot	more	

variance	in	diffusion	than	its	high-consolidation	counterpart	(panel	B).	Because	Figure	2	only	

displays	the	average	outcome,	it	is	hard	to	know	whether,	say,	a	diffusion	level	of	0.5	indicates	

that	diffusion	consistently	reaches	half	the	population,	or	that	diffusion	is	at	full	saturation	

(100%)	half	the	time,	and	fails	completely	in	the	other	half.	In	Figure	3,	we	see	that	the	former	

interpretation	(of	stable	results)	is	reasonable	for	high-consolidation	worlds,	where	the	
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confidence	bands	around	the	outcome	are	rather	tight.	But,	the	latter	interpretation	(of	highly	

volatile	realizations)	is	more	accurate	for	low-consolidation	worlds,	where	the	confidence	

bands	cover	a	broad	range	of	outcomes.	For	example,	for	medium	homophily	(a	=	1),	diffusion	

reaches	75%	at	equilibrium	as	many	times	as	it	lingers	at	25%.	The	average	diffusion	curve	

settles	at	50%,	and	hides	this	large	variation.	This	observation	is	important	for	empirical	work.	

Because	in	real-life	many	characteristics	are	clustered	(e.g.,	income	is	highly	correlated	with	

education,	neighborhood,	wealth,	and	so	on),	low	consolidation	worlds	are	rare.	Researchers	

not	only	get	few	chances	to	observe	such	worlds,	but,	given	the	inherent	volatility	of	diffusion	

outcomes,	they	also	are	more	likely	to	reach	faulty	conclusions	based	on	their	observations	

(compared	to	high-consolidation	settings).	

Group-specific	diffusion	under	homophily	and	consolidation	

We	now	turn	to	diffusion	outcomes	for	different	status	groups,	and	inequality	in	those	

outcomes	across	groups.	Figure	4	shows	the	log	odds	ratios	of	adoption	rates	between	high-

status	and	low-status	adopters	(1/8th	of	the	population	each)	under	varying	levels	of	

homophily,	contrasting	low	consolidation	(panel	A)	and	high	consolidation	(panel	B)	worlds.	5	

Lower	log	odds	ratios	indicate	lower	inequality.	

	

	[FIGURE	4	HERE]	

	

First,	it	is	important	to	note	that	the	95%	confidence	bands	(gray	region)	around	the	

inequality	curves	are	much	wider	when	consolidation	is	low.	This	is	consistent	with	the	earlier	
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observation	that	low	consolidation	condition	generates	a	lot	more	variance	in	diffusion	

outcomes	(figure	3,	panel	A)	compared	to	its	high	consolidation	counterpart.	

Second,	we	observe	that,	when	homophily	is	at	moderate	to	high	levels,	log	odds	ratios	

are	larger	when	consolidation	is	high.	For	example,	log	odds	ratios	are	greater	than	4.5	for	high	

(a	=	2)	and	medium	(a	=	1)	homophily	cases	when	consolidation	is	high,	but	they	linger	around	

1	when	consolidation	is	low.	This	observation	is	perhaps	not	surprising.	When	individuals	

strongly	prefer	to	associate	with	similar	others,	less	correlation	between	different	dimensions	

of	social	life	generates	less	social	reinforcement	for	exclusive	groups	based	on	status	

dimension.	Thus,	one	finds	less	difference	between	high-	and	low-status	individuals’	outcomes	

when	different	dimensions	of	social	life	are	not	strongly	correlated	(i.e.,	under	low	

consolidation).		

Third,	and	conversely,	when	homophily	is	low	(a	=	0),	log	odds	ratios	are	smaller	(0	vs.	

2)	at	equilibrium	when	consolidation	is	high	(b	=	2)	rather	than	low	(b	=	0).	And	the	reason	is	

simple.	Under	low	homophily,	a	practice	reaches	full	saturation	(and	hence,	zero	inequality)	

only	under	high	consolidation	(see	a	=	0	condition	in	Figure	3,	panel	B).	The	practice	remains	

moderately	diffused	(<10%)	under	low	consolidation	(see	the	same	condition	in	panel	A),	and	

presents	some	inequality	by	status.		

Fourth,	when	individuals	establish	ties	randomly	(a	=	-1),	there	is	no	difference	between	

high-	and	low-consolidation	worlds	in	terms	of	equilibrium	inequality.	The	practice	remains	

minimally	diffused	in	both	cases:	only	slightly	above	0%	under	low	consolidation	(Figure	3,	

panel	A),	and	around	20%	but	with	a	large	variance	under	high	consolidation	(panel	B).	In	both	
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cases,	the	differences	are	likely	driven	by	the	status	imbalance	in	initial	seeding,	that	is,	by	the	

fact	that	there	are	more	initial	adopters	that	are	high	rather	than	low	status.	

Another	way	of	thinking	about	these	results	is	that,	save	for	the	a	=	-1	case,	the	relative	

implications	of	homophily	levels	on	inequality	in	diffusion	are	flipped	for	high	and	low	

consolidation	worlds.	The	conditions	that	generate	the	most	to	least	inequality	are	a	=	0,	1,	2	

versus	a	=	2,	1,	0	for	low	and	high	consolidation	worlds,	respectively.	The	reasons	why	

homophily	exacerbates	inequality	in	the	high	consolidation	world	is	intuitive	and	consistent	

with	DG.		The	counterintuitive	finding	in	low	consolidation	worlds	can	be	explained	by	the	

following	intuition.	In	low	consolidation	worlds,	homophily	helps	reduce	inequality	by	

supporting	diffusion.	High	homophily	creates	the	bridge	width	that	is	necessary	for	successful	

diffusion.	And	inequality	is	always	the	lowest	when	diffusion	reaches	the	whole	network.	Thus,	

in	low	consolidation	worlds,	high	homophily	decreases	inequality	by	supporting	overall	

diffusion.	Although	there	is	an	initial	exacerbating	effect	of	homophily	on	inequality,	the	benefit	

to	diffusion	of	high	homophily	for	high	status	adopters	is	eventually	tempered	by	its	later	

support	for	overall	diffusion	(this	starts	to	occur	at	T	=	15).	By	contrast	in	the	low	consolidation	

world	where	homophily	is	also	low,	diffusion	is	incomplete,	so	inequality	stays	at	the	same	

moderate	initial	level.	

DISCUSSION	

DG’s	work	unequivocally	argues	that	homophily	exacerbates	inequality	in	adoption	if	a	practice	

is	subject	to	network	externalities,	and	if	the	practice	is	initially	more	likely	to	be	adopted	by	

high-status	individuals.	Our	findings	confirm	some	of	their	findings,	while	qualifying	or	

extending	others.		
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Confirming	DG,	we	find	that	homophily	exacerbates	adoption	inequality	if	consolidation	

is	moderate	to	high.	When	social	dimensions	are	strongly	correlated,	increasing	homophily	

makes	networks	more	segregated	by	status,	and	locks	the	practice	into	network	regions	where	

high-status	actors	cluster.	

Qualifying	DG,	we	show	that	homophily	reduces	adoption	inequality	if	consolidation	is	

low.	When	social	dimensions	are	largely	independent,	increasing	homophily	is	not	sufficient	to	

segregate	social	networks,	but	it	is	helpful	to	create	overlapping	social	ties,	or	‘wide	bridges’,	

across	which	behaviors	can	spread.	Regardless	of	level	of	consolidation,	homophily	creates	an	

advantage	for	high	status	initial	adopters	because	it	makes	it	more	likely	for	other	high-status	

adopters	to	be	closely	connected	to	the	initial	adopters.	When	consolidation	is	low,	this	

advantage	disappears	if	homophily	is	high	enough	to	generate	the	overlapping	social	ties	for	

diffusion	to	reach	lower	status	individuals	who	require	more	social	reinforcement	for	adoption.	

In	this	case,	eventual	successful	diffusion	by	low	status	individuals	overcomes	inequality.	

Extending	DG,	we	observe	that	some	homophily	is	needed	for	effective	diffusion.	Under	

no	homophily	(a	case	DG	could	not	test	effectively	due	to	the	constraints	of	their	data),	a	

network	does	not	have	the	sufficient	structure	to	coordinate	behavior,	regardless	of	the	level	of	

consolidation	in	the	population.	

We	also	make	a	few	finer	points.	First,	low	consolidation	worlds,	all	else	equal,	create	

more	variance	in	diffusion	and	inequality	outcomes	compared	to	high	consolidation	cases.	

Second,	the	diffusion	and	inequality	trajectories	shift	over	time.	For	example,	while	diffusion	is	

quite	fast	in	a	high	homophily	condition,	its	equilibrium	level	is	low	compared	to	a	low	

homophily	condition.	Or,	while	inequality	increases	steeply	at	first	in	a	high	homophily	setting,	
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it	can	end	up	at	a	lower	equilibrium	compared	to	that	in	a	low	homophily	case.	Put	differently,	

one	can	settle	on	the	wrong	conclusions	if	one	observes	only	average	values,	or	collects	data	

mid-process	(that	is,	prior	to	equilibrium).	

CONCLUSION	

A	major	insight	in	sociology	suggests	that	social	networks	can	provide	access	to	useful	

resources	or	positive	influences	that	help	individuals	succeed	(Portes	1998).	Another	key	insight	

indicates	that	early	advantages	can	lead	to	benefits	that	pre-dispose	individuals	to	obtain	more	

advantages	over	time	(Merton	1986,	DiPrete	and	Eirich	2006).	These	two	ideas	go	well	together	

in	that	social	networks	can	be	a	mechanism	for	generating	cumulative	advantage.	

Recent	formal	and	computational	analyses	have	made	this	connection	explicit	by	

studying	homophily.	Studies	have	linked,	for	example,	network	effects	in	job	search	to	wage	

inequality	(Montgomery	1991,	Calvó-Armengol	and	Jackson	2004)	or	the	peer	effects	in	

educational	choice	to	disparities	in	educational	attainment	between	groups	(Manzo	2013).	

DiMaggio	and	Garip	(2011)	have	offered	arguably	the	most	general	theoretical	statement,	and	

identified	three	necessary	conditions	for	network	effects	to	exacerbate	inequality	in	the	

adoption	of	a	beneficial	practice.	First,	the	authors	have	argued,	adoption	should	be	more	likely	

among	the	more	advantaged	individuals	(for	example,	high	earners	or	highly	educated).	

Second,	adoption	should	be	more	likely	if	one’s	peers	have	adopted.	That	is,	network	effects	

should	be	positive.	And,	third,	and	most	importantly,	networks	should	exhibit	homophily	

(tendency	for	ties	among	similar	individuals)	with	respect	to	traits	related	to	adoption.	

In	this	paper,	we	extend	DiMaggio	and	Garip’s	(2011)	analysis,	and	discover	a	fourth,	

and	crucial,	condition	neglected	in	prior	work.	For	social	networks	to	exacerbate	inequality,	we	
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argue,	characteristics	in	a	population	need	to	consolidated	(that	is,	highly	correlated).	Without	

consolidation,	homophily	in	any	given	characteristic	is	not	be	sufficient	to	segregate	social	

networks,	and	isolate	adoption	to	particular	segments	of	the	population.	

Earlier	work	has	not	considered	consolidation	as	a	factor	in	network	formation	either	

because	it	has	relied	on	formal	analysis	where	networks	were	considered	given	(e.g.,	Calvó-

Armengol	and	Jackson	2004)	or	because	it	has	used	computational	models	calibrated	to	a	

particular	real-life	setting	(e.g.,	DiMaggio	and	Garip	2011,	Manzo	2013).	

We	draw	inspiration	from	Blau	and	Schwartz’s	work	(1984,	p.12),	which	declared	

consolidation	to	be	of	“prime	significance	for	intergroup	relations.”	Recently,	Centola	(2015)	

confirmed	this	insight	with	an	agent-based	model,	and	demonstrated	that	homophily	and	

consolidation	together	shape	network	structure	and	diffusion	outcomes.		

In	this	paper,	we	start	with	Centola’s	generic	model,	and	use	it	to	first	replicate,	and	

then	to	extend,	DiMaggio	and	Garip’s	findings.	We	generate	a	sample	of	synthetic	agents,	and	

introduce	status	differences	between	them.	We	then	give	high-status	individuals	a	small	

advantage	in	adoption.	We	vary	levels	of	homophily	and	consolidation,	and	observe	whether	

initial	advantages	by	status	are	compounded	via	network	effects.	

We	report	several	findings.	First,	similar	to	DiMaggio	and	Garip,	we	find	that	homophily	

exacerbates	adoption	inequality,	but	only	if	consolidation	is	relatively	high.	Second,	different	

from	DiMaggio	and	Garip,	we	show	that	homophily	actually	alleviates	adoption	inequality	if	

consolidation	is	low.		
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These	patterns	all	owe	to	an	important	insight	gained	from	Centola’s	(2015)	analysis:	

Low	to	moderate	levels	of	homophily	and	consolidation	generate	social	networks	with	

overlapping	ties,	or	‘wide	bridges’,	that	can	support	the	diffusion	of	a	practice	through	

reinforcement	from	multiple	network	alters	(or,	what	Centola	and	Macy	(2007)	call	‘complex	

contagion’).	Higher	levels	of	homophily	or	consolidation,	however,	lead	to	segregated	or	

balkanized	social	ties,	and	can	stop	diffusion	in	its	tracks.	

In	a	high	consolidation	world,	increasing	homophily	brings	about	the	latter,	detrimental,	

structure	for	diffusion,	and	also	makes	the	status-based	divide	in	adoption	deeper.	But,	in	a	low	

consolidation	world,	rising	homophily	leads	to	the	former,	favorable,	structure	for	contagion,	

and	alleviates	status-based	differences	in	adoption.	

Our	analysis	allows	us	to	make	a	number	of	methodological	points.	First,	prior	work	

using	agent-based	models	routinely	presents	the	average	diffusion	curve	(computed	over	

multiple	simulation	runs),	but	not	the	confidence	bands	around	the	average.	We	call	future	

research	to	be	more	attentive	to,	and	report,	the	variation	across	multiple	realizations.	In	our	

case,	the	interpretation	of	our	results	would	be	quite	different	had	we	just	relied	on	just	the	

average	patterns.	Second,	while	we	recognize	that	agent-based	models	can	be	a	useful	tool	

when	calibrated	to	real-life	cases	(as	in	DiMaggio	and	Garip’s	work),	we	also	argue	that	such	

applications	might	not	always	lead	to	fully	generalizable	conclusions.	Researchers	should	pay	

more	attention	to	how	much	of	their	results	are	driven	by	the	model	parameters,	and	how	

much	is	due	to	the	particular	setting	the	parameters	or	data	are	set	to	capture.		

We	believe	our	work	opens	to	doors	to	studying	many	other	factors	that	we	did	not	

consider	in	our	analysis.	For	example,	recent	work	considers	the	interactions	between	different	
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kinds	of	homophily	(e.g.,	that	based	on	individual	choice	and	that	induced	by	population	

compositions	in	institutional	settings)	in	producing	particular	network	structure	and	diffusion	

patterns	(Kossinets	and	Watts	2006).	Recent	work	also	shows	how	adoption	of	a	practice	can	

pave	the	way	to	establishing	new	dimensions	for	status	differentiation,	and	deepen	inequality	

(Gondal	2014).	Future	work,	therefore,	can	incorporate	patterns	of	induced	homophily	or	path-

dependent	diffusion	trajectories	for	multiple	practices	into	our	set-up.		

Recent	work	also	considers	how	population	processes	(such	as	in-	and	out-migration)	

can	affect	population	composition,	network	structures,	as	well	as	diffusion	outcomes	(Garip	

and	Zhao,	forthcoming),	suggesting	another	possible	direction	of	extension.	Finally,	qualitative	

work	finds	that	individuals’	perceptions	of	social	norms	(and	their	respective	adherence	to	

them)	may	depend	not	just	on	their	position	in	the	network,	but	on	the	particular	patterns	of	

social	interactions,	and	in	particular,	to	degrees	of	exposure	to	network	peers	(Shepherd	2017).	

Therefore,	future	attention	could	also	be	given	to	incorporating	social	interaction	and	exposure	

into	modeling	frameworks	with	differential	impacts	on	contagion.		
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ENDNOTES	

1	Network	effects	are	present	when	the	probability	that	an	actor	will	adopt	a	practice	is	an	

increasing	function	of	the	network	alters	who	have	already	adopted	that	practice.	There	are	

useful	reviews	of	networks	effects	on	several	outcomes	including	migration	(Boyd	1989),	

education	(Sacerdote	2011,	Epple	and	Romano	2011,	Marsden	and	Gorman	2001),	and	on	

health	(Pampel,	Krueger	and	Denney	2010,	Smith	and	Christakis	2008).	

	

2	The	authors	used	Skvoretz’s	(1990)	definition	of	homophily	(or	‘tau	bias’)	which	is	the	

probability	that	an	ego	will	select	a	similar	alter	above	and	beyond	the	probability	of	such	a	

pairing	under	random	choice.	

	

3	DG	defined	network	externalities	broadly	as	applicable	to	any	practice	whose	value	to	an	

individual	is	an	increasing	function	of	the	prior	adopters	in	that	individual’s	network.	The	

authors	operationalized	this	mechanism	with	a	‘network	term’	included	in	the	reservation	

price.	This	term	implied	that	an	individual’s	willingness	to	adopt	a	practice	(i.e.,	the	price	he	or	

she	is	accepting	to	pay	for	it)	increases	linearly	with	the	share	of	adopters	in	his	or	her	network.	

In	a	subsequent	review	article,	DiMaggio	and	Garip	(2012)	offered	a	more	specific	definition	for	

network	externalities,	and	differentiated	it	from	other	mechanisms	for	network	effects	such	as	

social	facilitation	or	normative	influence.	(See	Rossman,	Chiu	and	Mol	(2008)	for	a	similar	

analytic	framework.)	According	to	the	updated	definition,	the	authors	argued,	network	

externalities	need	to	be	operationalized	as	a	function	of	the	number	(not	share)	of	adopters	in	

an	individual’s	network.	In	this	paper,	we	use	the	updated	definition,	and	operationalize	
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network	externalities	with	an	adoption	threshold	that	depends	on	the	number	of	adopters.	This	

choice	carries	an	implicit	assumption	that	an	individual	only	cares	about	the	adopters	in	his	or	

her	network	and	is	indifferent	to	the	non-adopters	(Granovetter	1978,	Centola	and	Macy	2007).	

See	the	methods	section	for	details.	

	

4	Another	structural	factor	shaping	homophily	is	the	institutional	setting.	McPherson	et	al.	

(2001)	distinguish	homophily	based	on	individual	choice	from	homophily	induced	by	institutions	

such	as	schools	(Fischer	1977),	voluntary	associations	(McPherson	and	Smith-Lovin	1987),	or	

work	environments	(Reskin	et	al.	1999).	Such	institutions	might	include	particular	group	

compositions,	and	thus,	exhibit	induced	homophily	in	ties	even	when	individuals	are	selecting	

alters	randomly.	Induced	homophily	is	a	crucial	concept,	but	it	is	hard	to	incorporate	into	a	

formal	or	computational	modeling	framework	in	abstract	form	(that	is,	without	first	defining	

relevant	institutions	and	deciding	on	their	recruitment	criteria).	Thus,	we	do	not	focus	on	it	in	

this	paper.	

	

5	The	log	odds	ratios	between	high-status	and	medium-status	adopters	are	not	reported	

because	they	are	qualitatively	similar	to	the	log	odds	ratios	between	high-status	and	low-status	

adopters.	The	only	difference	is	that	they	are,	unsurprisingly,	slightly	smaller.  
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