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Abstract	
Prior	research	identifies	several	linkages	through	which	environmental	factors	–	both	gradual	
changes	and	sudden-onset	events	–	might	shape	internal	and	international	migration	flows.	
These	linkages	point	to	various	explanatory	variables,	and	complex	interactions	among	them.	
Empirical	work	tests	some	of	these	linkages	in	isolation,	but	reports	results	that	vary	
considerably	depending	on	the	particular	variables	or	models	used.	To	address	this	issue,	we	
propose	to	use	machine	learning	(ML)	tools	that	allow	us	to	include	all	potential	indicators	(and	
all	possible	interactions)	to	predict	U.S.-bound	migration	outcomes	among	120,000+	individuals	
in	1980-2017	in	the	Mexican	Migration	Project	data.	These	tools	rely	on	data-driven	model	
selection,	optimize	predictive	performance,	but	often	produce	‘black-box’	results.	To	overcome	
this	shortcoming,	we	propose	to	use	the	predictions	as	a	starting	point,	and	analyze	discrepant	
communities	for	which	our	model	offers	poor	predictions.	
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Migration	as	a	result	of	environment	and	climate	stressors	has	recently	gained	widespread	
interest,	and	dominates	the	political	discourse	in	many	countries.	Climate	change	is	projected	
to	accelerate	human	displacement	in	the	future	by	increasing	the	frequency	and	severity	of	
extreme	environmental	events,	such	as	droughts,	sea	level	rise,	floods,	and	hurricanes	(Homer-
Dixon	2010;	Gray	2013).	The	extent	to	which	we	can	respond	to	these	challenges	effectively,	as	
a	global	community,	relies	in	part	on	our	ability	to	predict	future	patterns	of	mobility.	
	
Researchers	have	recently	started	to	link	weather	variation	(shorter-run	changes	in	
temperature	or	precipitation)	to	internal	and	international	migration	patterns.1	But	empirical	
results	have	remained	mixed.	Studies	have	relied	on	varying	specifications	of	weather	events	
(e.g.,	using	different	lags,	linear	or	non-linear	functions,	interactions	with	other	indicators),	
making	it	hard	to	generalize	from	the	observed	patterns.	Studies	have	also	considered	various	
mechanisms	underlying	weather-migration	linkages,	and	in	some	cases,	singled	out	one	
mechanism	to	establish	a	causal	relationship	(Feng	et	al.	2010).	
	
This	study	takes	an	alternative	approach.	Rather	than	providing	yet	another	description	of	
weather-migration	relationship,	we	seek	to	test	the	predictive	power	of	weather	indicators	
(along	with	other	potential	factors)	for	migration	outcomes.	Inspired	by	the	budding	machine-
learning	applications	in	the	social	sciences	(Molina	and	Garip	2019),	we	use	random-forest	
models	to	predict	migration	decisions.	Unlike	traditional	regression	approaches,	these	models	
do	not	yield	interpretable	parameter	estimates,	but	instead	optimize	predictive	performance.	
	
We	focus	on	the	historical	migration	flows	from	Mexico	the	United	States,	and	use		
the	largest	existing	survey	(Mexican	Migration	Project	data)	that	captures	150,000+	individuals’	
movements	within	Mexico	and	to	the	United	States	from	1980	to	2017.	We	combine	the	
surveys	with	fine-grained	gridded	temperature	and	precipitation	data,	and	build	a	predictive	
model	of	individuals’	first-migration	decision.	In	addition	to	weather	indicators,	our	model	
contains	demographic,	economic,	and	social	indicators	at	the	individual,	household,	and	
community	levels.	The	predictive	modeling	framework	allows	us	to	include	varying	
specifications	of	these	indicators	(for	example,	time-lagged	versions,	non-linear	terms,	
interactions),	and	let	the	data	guide	the	model	selection	process.	
	
While	we	care	about	predictive	performance,	we	do	not	see	it	as	an	end	goal,	but	rather	a	
starting	point.	That	is,	once	we	choose	the	optimal	model,	we	go	back	to	our	data,	and	try	to	
identify	patterns	in	what	we	can	(and	cannot)	predict	with	our	model.	We	inquire,	for	example,	
whether	our	model	performs	better	in	rural	or	urban	communities,	or	across	earlier	or	later	
time	periods,	or	for	different	population	groups.	By	doing	so,	we	aim	to	understand	the	ability	
of	our	current	survey	measurement	efforts	to	capture	the	factors	relevant	to	migration	
decisions	for	different	groups	or	in	different	contexts.	Our	goal	is	to	inform	future	data	
collection	efforts.	
	

																																																								
1	‘Climate’	refers	to	distribution	of	outcomes	over	a	longer	time	span.	‘Weather’	can	be	thought	of	as	a	particular	
empirical	realization	from	that	distribution.	
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Linkages	between	migration	and	the	environment	
Social	scientists	are	increasingly	interested	in	how	weather	fluctuations	shape	various	
outcomes,	including	agriculture,	labor	productivity,	health,	political	stability,	and	conflict.	
Empirical	findings	to	date	suggest	that	temperature,	precipitation,	and	extreme	weather	events	
have	statistically	significant	effects	on	a	variety	of	economic	and	political	outcomes	(Dell	et	al.	
2013).		
	
Until	recently,	migration	scholars	have	not	considered	weather	variation	as	a	potential	
determinant	of	rural-to-urban	or	international	moves.	Instead,	our	current	understanding	of	
migration	highlights	individual-level	motivations	and	community-	or	country-level	economic,	
social,	and	political	drivers.	As	a	result,	we	still	know	relatively	little	about	the	influence	of	the	
environmental	factors	on	migration	decisions.		
	
Some	researchers	view	environment	as	the	primary	factor	in	migration,	and	study	the	so-called	
‘environmental	refugees’	who	flee	droughts	(El-Hinnawi	1985),	land	de-gradation	(Kavanagh	
and	Lonergan	1992),	or	sea	level	rises	(Myers	1993).	Other	researchers	critique	the	implied	
separation	of	environmentally-forced	migrants	from	those	responding	to	economic	or	political	
factors	(Castles	2002),	or	point	to	missing	evidence	on	the	linkages	between	environmental	
indicators	and	migration	(Baldwin	2017;	Black	2001).		
	
Figure	1	offers	a	synthesis	of	various	mechanisms	that	researchers	posit	for	linking	
environmental	factors	to	migration	decisions.	It	reflects	the	pre-dominant	thinking	in	the	
literature	that	environmental	factors	interact	with	economic,	social,	and	political	processes	to	
shape	migration	patterns	(Black	et	al.	2011;	Hunter	et	al.	2015;	McLeman	and	Smit	2006).	Two	
concepts	–	vulnerability	and	adaptive	capacity	–	capture	this	general	idea.		For	example,	a	
community	that	relies	on	rainfall	for	agricultural	production	is	more	‘vulnerable’	to	drought-
related	economic	stress,	and	hence,	more	prone	to	sending	migrants	in	response.	Similarly,	a	
community	with	social	connections	to	a	particular	destination	is	more	likely	to	turn	to	migration	
as	an	adaptation	strategy	in	the	face	of	climate	stress	compared	to	a	community	with	few	
connections.	
	
It	is	difficult	to	empirically	identify	these	linkages	altogether.	As	a	result,	empirical	work	has	
focused	on	reduced-form	results,	or	considered	particular	mechanisms	in	isolation.	Munshi	
(2003),	for	example,	connects	low	rainfall	in	Mexican	communities	to	higher	out-migration	
rates	to	the	United	States.	Feng	et	al.	(2010),	for	example,	focus	on	crop	yields,	and	show	
precipitation-related	crop	declines	to	be	associated	with	U.S.-bound	migration	in	Mexico.	They	
do	not	consider	any	other	potential	mechanism.		
	
More	generally,	empirical	results	on	environment-migration	link	tend	to	be	varied,	and	often	
hard	to	reconcile.	For	example,	Riosmena	et	al.	(2018)	report	two	conflicting	findings	using	
Mexican	census	data.	First,	lower	rainfall	increases	out-migration	in	communities	of	low	
vulnerability	(that	is,	those	that	are	rich).	Second,	higher-than-average	temperature	increases	
out-migration	in	communities	of	high	vulnerability	(that	is,	those	that	are	poor).		Two	similar	
weather	stressors	generate	two	different	responses	to	vulnerability.		
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Figure	1	Theoretical	framework	for	environment-migration	linkages	

	
Another	mixed	result	is	related	to	the	moderating	effect	of	migrant	networks	(that	is,	social	
connections	to	prior	migrants	to	a	given	destination).	While	networks	in	a	community	increase	
the	migration	response	to	climate	events	according	to	Hunter	et	al.’s	(2013)	analysis	of	the	
MMP	data,	they	decrease	the	migration	propensity	to	climate	events	in	Riosmena	et	al.’s	(2018)	
census-based	computations.		
	
The	literature,	in	other	words,	is	full	of	mixed	results,	even	though	the	studies	often	share	the	
authors,	and	rely	on	similar	data	sets	(e.g.,	Nawrotzki	et	al.	2015;	Riosmena	et	al.	2018;	Hunter	
et	al.	2013).	This	pattern	might	signal	potential	model	misspecification.	That	is,	small	
perturbations	on	the	variable	definitions	(e.g.,	maximum	5-day	precipitation	versus	number	of	
days	with	heavy	precipitation)	seems	to	alter	the	results	considerably.	Similarly,	small	changes	
in	the	sample	used	(e.g.,	rural	communities	versus	all	communities	in	the	MMP)	seems	to	
change	the	observed	associations.	
	
This	is	a	major	obstacle	to	cumulative	knowledge,	but	it	is	not	one	that	is	easy	to	resolve.	Many	
weather-related	indicators	are	highly	correlated;	various	definitions	of	measures	are	equally	
reasonable	(e.g.,	coldest	day	temperature	versus	%	of	cool	days)	at	the	outset;	and	it	is	hard	to	
determine	which	measures	are	the	right	ones	a-priori.		
	
One	particular	issue,	then,	is	to	account	for	many	potential	indicators	of	weather	variations.	
Another	one,	noted	in	the	literature,	is	to	flexibility	consider	nonlinearities	in	the	weather-
migration	relationship.	Basically,	we	do	not	know	if	there	are	particular	‘thresholds’	over	which	
weather	variation	exerts	an	effect	on	migration,	and	how	these	different	thresholds	might	vary	
across	different	settings	or	different	groups	of	individuals.	A	third	–related-	issue	is	the	
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potential	‘adaptation’	or	‘intensification’	effects.	That	is,	communities/individuals	can	adapt	to	
weather	changes	(e.g.,	by	switching	to	different	crops	in	rural	settings),	or	the	effects	of	
weather	changes	can	be	felt	more	over	time	(e.g.,	once	the	reservoir	runs	dry	in	irrigated	
regions).	
	
These	issues	all	point	to	the	uncertainty	(i)	what	the	best	measures	to	capture	weather	
variation	are,	(ii)	what	time-lags	are	appropriate	to	include	in	our	models	to	detect	potential	
adaptive	behaviors,	and	(iii)	what	particular	specifications	(linear,	quadratic,	step-function,	and	
so	on)	would	capture	possible	intensification	effects.	
	
To	address	these	issues	that	relate	to	parameterization	as	well	as	heterogeneity	in	potential	
effects,	we	suggest	changing	the	goal	of	our	analysis	from	the	identification	of	‘effects’	of	
particular	indicators,	to	the	prediction	of	migration	outcome	where	many	indicators	(as	well	as	
their	time-lags,	and	alternative	specifications)	are	flexibly	included	in	the	model.	Below	we	
describe	this	approach	in	greater	detail.	But	first	we	briefly	describe	the	Mexican	setting.	
	
Mexican	setting	

	
			

Mexico	has	been	the	origin	country	for	the	largest	international	migration	in	the	world.	
Between	1960	and	2010,	an	estimated	12	million	Mexicans	have	migrated	to	the	United	States	
(Garip	2016).	The	country	has	experienced	numerous	environmental	events	including	storms,	
floods,	extreme	temperatures,	droughts	and	wildfires	leading	to	an	estimated	4,864	fatalities	
between	1980	and	2017	alone	(Muenchen	RE	2017).		Yet,	only	few	studies	have	linked	the	
patterns	of	human	mobility	to	environmental	events	(Gray	2013;	Hunter,	Murray	and	Riosmena	
2013).	Figure	2	illustrates	the	states	with	the	highest	numbers	of	U.S.-bound	migrants,	and	
Figure	3	highlights	the	regional	distribution	of	select	extreme-weather	events.		
	

Figure	2.	Map	of	Mexico	with	24	states	categorized	
into	three	groups	based	on	the	number	of	U.S.-
bound	migrants	in	1990-2013	per	1000	residents	
(Source:	Authors’	calculations	from	the	MMP	data)		

Figure	3.	Map	of	Mexico	with	select	environmental	
events	1980-2017.	Size	of	the	circle	indicates	the	
number	of	events.	(Source:	NatCatSERVICE	[2])		
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Prior	work	has	attempted	to	dissect	the	environment-migration	link	in	the	Mexican	setting	with	
descriptive	regression	models	(Hunter	et	al.	2013),	and	in	some	cases,	with	further	attempts	at	
causal	identification	(Feng	et	al.	2010).	In	what	follows,	we	propose	an	empirical	strategy	that	
instead	focuses	on	prediction	of	international	moves	from	Mexico,	using	slow-onset	weather	
events	(extreme	temperatures	and	rainfalls)	as	predictors.	
	
Machine-learning	approach	–	a	brief	review	
Machine	learning	is	a	field	at	the	intersection	of	statistics	and	computer	science	that	uses	
algorithms	to	extract	information	and	knowledge	from	data.	Its	applications	increasingly	find	
their	way	into	economics,	political	science,	and	sociology.	For	a	recent	review	of	this	vast	
toolbox,	see	Molina	and	Garip	(2019).	
	
Supervised	machine	learning	(SML)	involves	searching	for	functions,	f(X),	that	predict	an	output	
(Y)	given	an	input	(X).	One	can	consider	different	classes	of	functions,	such	as	linear	models,	
decision	trees,	or	neural	networks.		
	
Let’s	take	the	linear	model	as	a	tool	for	prediction.2	We	have	an	input	vector,	X,	and	want	to	
make	a	prediction	on	the	output,	Y,	denoted	as	Ŷ	(‘y-hat’)	with	the	model	
	
Ŷ = f(X) = XTβ  
	
where	XT	is	the	vector	transpose	and β	(‘beta’)	is	the	vector	of	coefficients.		
	
Suppose	we	use	ordinary	least	squares	(OLS)	–	the	most	commonly	used	method	in	sociology	–	
to	estimate	the	function,	f(X),	from	data.	We	pick	the	coefficients,	β,	that	minimize	the	sum	of	
squared	residuals		
	

𝑦" − 𝑓(𝑥") (
)

"*+

	

	
	
This	strategy	ensures	estimates	of	β	that	give	the	best	fit	in	sample,	but	not	necessarily	the	best	
predictions	out	of	sample	(i.e.,	on	new	data)	(see	sidebar	titled	Classical	Statistics	versus	
Machine	Learning).	
	
To	see	that,	consider	the	generalization	error	of	the	OLS	model,	that	is,	the	expected	prediction	
error	on	new	data.	This	error	comprises	of	two	components:	bias	and	variance	(Hastie	et	al.	
2009).	A	model	has	bias	if	it	produces	estimates	of	the	outcome	that	are	consistently	wrong	in	a	
particular	direction	(e.g.,	a	clock	that	is	always	an	hour	late).	A	model	has	variance	if	its	
estimates	deviate	from	the	expected	values	across	samples	(e.g.,	a	clock	that	alternates	

																																																								
2	Uppercase	letters,	such	as	X	or	Y,	denote	variable	vectors,	and	lowercase	letters	refer	to	
observed	values	(e.g.,	xi	is	the	i-th	value	of	X).	

(1)	
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between	fast	and	slow)	(Domingos	2015).	OLS	minimizes	in-sample	error	(equation	1),	but	it	
can	still	have	high	generalization	error	if	it	yields	high-variance	estimates	(Kleinberg	et	al.	2015).	
	 	
To	minimize	generalization	error,	SML	makes	a	trade-off	between	bias	and	variance.	That	is,	
unlike	OLS,	the	methods	allow	for	bias	in	order	to	reduce	variance	(Athey	and	Imbens	2017).	
For	example,	an	SML	technique	is	to	minimize		
	

𝑦" − 𝑓(𝑥") (
)

"*+

+ 𝜆𝑅(𝑓)	

	
that	is,	in-sample	error	plus	a	regularizer,	R(f),	that	penalizes	functions	that	create	variance	
(Kleinberg	et	al.	2015;	Mullainathan	and	Speiss	2017).	An	important	decision	is	to	select	λ	
(‘lambda’),	which	sets	the	relative	‘price’	for	variance	(Kleinberg	et	al.	2015).	In	OLS,	that	price	
is	set	to	zero.	In	SML	methods,	the	price	is	determined	using	the	data	(more	on	that	later).	
	
SML	techniques	seek	to	achieve	an	ideal	balance	between	reducing	the	in-sample	and	out-of-
sample	error	(aka	training	and	generalization	error,	respectively).	This	goal	helps	avoid	two	
pitfalls	of	data	analysis:	underfitting	and	overfitting.	Underfitting	occurs	when	a	model	fits	the	
data	at	hand	poorly.	Take	a	simple	example.	An	OLS	model	with	only	a	linear	term	linking	an	
input	(X)	to	output	(Y)	offers	a	poor	fit	if	the	true	relationship	is	quadratic.	Overfitting	occurs	
when	a	model	fits	the	data	at	hand	too	well,	and	fails	to	predict	the	output	for	new	inputs.	
Consider	an	extreme	case.	An	OLS	model	with	N	inputs	(plus	a	constant)	will	perfectly	fit	N	data	
points,	but	likely	not	generalize	well	to	new	observations	(Belloni	et	al.	2014).		
	
Underfitting	means	we	miss	part	of	the	signal	in	the	data;	we	remain	blind	to	some	of	its	
patterns.	Overfitting	means	we	capture	not	just	the	signal,	but	also	the	noise,	that	is,	the	
idiosyncratic	factors	that	vary	from	sample	to	sample.	We	hallucinate	patterns	that	are	not	
there	(Domingos	2015).	
	
Through	regularization,	SML	effectively	searches	for	functions	that	are	sufficiently	complex	to	
fit	the	underlying	signal	without	fitting	the	noise.	To	see	that,	note	that	a	complex	function	will	
typically	have	low	bias	but	high	variance	(Hastie	et	al.	2009).	And	recall	that	the	regularizer,	
R(f),	penalizes	functions	that	create	variance;	it	often	does	so	by	expressing	a	model’s	
complexity.		
	
Let	us	consider	regression	trees,	a	function	class	in	SML.	The	method	proceeds	by	partitioning	
the	inputs	(X)	into	separate	regions	in	a	tree-like	structure,	and	returning	a	separate	output	
estimate	(Ŷ)	for	each	region.	Say	we	want	to	predict	whether	someone	migrates	using	
individual	attributes	of	age	and	education.	A	tree	might	first	split	into	two	branches	by	age	
(young	and	old),	and	then	each	branch	might	split	into	two	by	education	(college	degree	or	
not).	Each	terminal	node	(‘leaf’)	corresponds	to	a	migration	prediction	(e.g.,	1	for	young	college	
graduates).	With	enough	splits	in	the	tree,	one	can	perfectly	predict	each	observation	within	
sample.	To	prevent	overfitting,	a	typical	regularizer	controls	the	tree	depth,	and	thus,	makes	us	

(2)	
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search	not	for	the	best	fitting	tree	overall,	but	the	best	fitting	tree	among	those	of	a	certain	
depth	(Mullainathan	and	Speiss	2017).	
	
What	sets	SML	apart	from	classical	statistical	estimation,	then,	are	two	essential	features:	
regularization,	and	the	data	driven-choice	of	regularization	parameters	(aka	empirical	tuning)	
(Mullainathan	and	Speiss	2017;	Athey	and	Imbens	2017;	Kleinberg	et	al.	2015).	These	features	
allow	researchers	to	consider	complex	functions	and	more	inputs	(polynomial	terms,	high-order	
interactions,	and,	in	some	cases,	more	variables	than	observations)	without	overfitting	the	
data.	This	flexibility	contrasts	sharply	with	classical	statistics,	where	one	typically	selects	a	small	
number	of	inputs	(X),	and	a	simple	functional	form	to	relate	the	inputs	to	the	output	(Y).	
	
One	way	SML	uses	data,	therefore,	is	for	model	selection,	that	is,	to	estimate	the	performance	
of	alternative	models	(functions,	regularization	parameters)	to	choose	the	best	one.	This	
process	requires	solving	an	optimization	problem.	Another	way	SML	uses	data	is	for	model	
assessment,	that	is,	having	settled	on	a	final	model,	to	estimate	its	generalization	(prediction)	
error	on	new	data	(Hastie	et	al.	2009).		
	
A	crucial	step	in	SML	is	to	separate	the	data	used	for	model	selection	from	the	data	used	for	
model	assessment.	In	fact,	in	an	idealized	set-up,	one	creates	three,	not	two,	separate	data	
sets.	Training	data	is	used	to	fit	the	model;	validation	data	is	put	aside	to	select	among	different	
models	(or	to	select	among	the	different	parameterizations	of	the	same	model),	and	finally,	test	
(or	hold-out)	data	is	kept	‘in	the	vault’	to	compute	the	generalization	error	of	the	selected	
model.	
	
Models	–	Random	Forests	
We	use	random	forests	as	an	ML	tool	which	average	over	multiple	‘decision	trees’	and	capture	
nonlinearities	and	interactions	in	inputs	(Breiman	2001a).	We	train	a	random	forest	to	obtain	
our	migration	predictions.	Random	forests	are	statistical	models	based	on	classification	and	
regression	trees	(CARTs)	that	capture	nonlinearities	and	interactions	between	covariates	
(Breiman	2001a).	CARTs	build	a	decision	tree	that	makes	partitions	of	the	covariate	space	based	
on	the	minimization	of	a	loss	function,	whose	goal	is	to	provide	information	on	partitions	that	
contain	elements	as	similar	as	possible.	Each	leave	is	constructed	so	that	observations	that	are	
more	similar	to	each	other	fall	within	the	same	leaf.	In	a	classification	task	–	i.e.	when	we	have	
a	binary	outcome	–,	the	ultimate	goal	of	the	tree-like	process	is	to	assign	a	probability	to	each	
observation	that	informs	about	its	class	membership	(e.g.	migrants	or	non-migrants).	
	
Random	forests	are	bootstrap	bags	of	k	trees.	Each	tree	is	obtained	using	a	random	sample	of	D	
covariates	(with	replacement).	We	set	k=100	and	sample	D	covariates.	Since	each	tree	
estimates	a	probability	using	a	subset	of	the	covariates,	estimates	are	slightly	biased	with	
respect	to	a	non-random	tree.	However,	random	forests	average	all	probabilities	obtained	from	
each	tree	and	therefore	provide	an	unbiased	estimate	for	the	membership	probability.	
	
We	start	our	analysis	by	splitting	our	data	into	training	(50%	of	individuals),	validation	(25%)	
and	test	(25%)	data.	We	use	the	training	data	to	fit	our	models,	validation	data	to	‘tune’	it	(that	
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is,	figure	out	which	model	parameters	give	the	best	predictive	accuracy),	and	finally	rely	on	the	
test	data	to	report	the	final	accuracy	of	our	predictions.	Because	migration	is	a	rare-event	in	the	
data,	the	average	prediction	accuracy	is	likely	to	overstate	our	actual	ability	to	predict	
migration.	(Say,	95	percent	of	individuals	are	non-migrants	in	the	data.	A	model	that	can	predict	
‘no	migration’	by	default	–	without	any	input	–		and	thus	seem	to	have	high	accuracy.)	
Therefore,	we	report	prediction	accuracy	separately	for	migrants	and	non-migrants.		
	
Data	
We	use	data	from	the	Mexican	Migration	Project	(MMP)	with	retrospective	life	histories	of	
120,000+	individuals	(20,000+	U.S.-bound	migrants)	between	1980	and	2017.	The	data	provide	
detailed	records	of	international	migration	trips	in	addition	to	information	on	individual	
characteristics,	household	demographic	and	economic	make-up,	and	community	institutions	
over	time.		
	
The	majority	of	quantitative	results	on	Mexico-U.S.	migration	are	based	on	data	from	two	
surveys:	the	Mexican	National	Survey	of	Population	Dynamics	(ENADID)	and	the	Mexican	
Migration	Project	(MMP).	The	former	is	a	representative	national	sample,	but	contains	
information	on	only	labor	migrants.	The	latter	is	from	specific	Mexican	communities,	but	covers	
all	migrants,	including	those	who	have	moved	to	the	United	States	to	join	family	members.	
	
The	inclusion	of	all	migrants,	not	just	labor-force	participants,	makes	the	MMP	data	more	
advantageous	to	fully	understand	the	Mexico-U.S.	stream.	These	data	are	not	strictly	
representative	of	the	Mexican	population.	Yet,	prior	work	found	that	the	MMP	data	yield	an	
accurate	profile	of	the	U.S.	migrants	in	Mexico,	and	this	profile	is	largely	consistent	with	that	
observed	in	the	ENADID	data	(Durand	et	al.	2001;	Zenteno	and	Massey	1998).	
	
The	MMP	data	come	from	161	communities	located	in	major	migrant-sending	areas	in	21	
Mexican	states.	Each	community	was	surveyed	once	between	1987	and	2017,	during	December	
and	January,	when	the	U.S.	migrants	are	mostly	likely	to	visit	their	families	in	Mexico.	In	each	
community,	individuals	(or	informants	for	absent	individuals)	from	about	200	randomly	
selected	households	were	asked	to	provide	demographic	and	economic	information	and	to	
state	the	timing	of	their	first	and	last	trip	to	the	United	States.	Household	heads	were	
additionally	asked	to	report	the	trips	in	between.	These	data	were	supplemented	with	
information	from	a	non-random	sample	of	migrants	identified	with	snowball	sampling	in	the	
United	States	(about	10%	of	the	sample).	
	
Because	more	detailed	information	is	available	for	household	heads,	most	studies	of	the	MMP	
have	restricted	attention	to	this	sub-population.	To	provide	a	more	representative	portrait	of	
migrants,	we	consider	all	household	members.	We	focus	on	the	first	trip	to	the	United	States.	
Subsequent	trips	are	not	considered	as	they	are	recorded	only	for	household	heads,	and	also	to	
avoid	a	complication	that	has	haunted	prior	work	on	migration.	This	complication	arises	from	
the	fact	that	many	attributes	related	to	migration	behavior	are	also	changed	by	it.	Over	
successive	trips,	migrants	gradually	gain	more	experience,	establish	stronger	ties	to	destination,	
and	become	wealthier.	Their	attributes	change,	not	as	a	result	of	the	changing	selectivity	of	the	



10	
	

stream,	but	due	to	the	changes	caused	by	prior	migration	trips.	Focusing	on	first-time	migrants	
allows	us	to	observe	migrants’	attributes	independently	from	this	reciprocal	relationship.	
	
A	concern	with	the	MMP	data	is	the	retrospective	nature	of	the	information	on	migrants.	Let's	
take	a	household	surveyed	in	1990,	where	the	daughter	has	migrated	to	the	United	States	for	
the	first	time	in	1980.	Her	attributes,	like	age	and	education,	were	recorded	in	1990,	but	could	
be	projected	linearly	to	1980.	The	economic	status	of	her	household	could	be	reconstructed	
using	the	data	on	the	timing	of	asset	purchases.	The	characteristics	of	her	community	could	be	
traced	back	using	the	retrospective	community	history.	All	these	plausible	steps	rely	on	one	
crucial	assumption:	that	the	daughter	in	question	was	living	in	the	same	household	and	
community	in	1980.	While	this	assumption	is	viable	for	most	cases,	the	study	cannot	account	
for	the	cases	for	which	it	is	not.	
	
We	combine	the	MMP	data	with	daily	gridded	weather	data	obtained	from	ORNL	DAAC	(Oak	
Ridge	National	Laboratory	Distributed	Active	Archive	Center),	one	of	the	NASA	Earth	Observing	
System	Data	and	Information	System	data	centers.	These	data	offer	fine-grained	information	
(and	more	complete	spatial	coverage)	by	interpolating	data	obtained	from	ground	stations	over	
a	‘grid’	(in	our	case,	each	grid	is	4km	x	4km).	Gridded	data	offer	a	balanced	panel	(rather	than	
scattered	data	based	on	the	locations	of	stations),	and	thus	are	commonly	preferred	by	social	
scientists.	Yet,	the	data	require	the	selection	of	a	particular	interpolation	scheme	(which	
typically	work	better	for	temperature	than	precipitation	measures)	(Dell	et	al.	2013).	
	
We	obtain	shape	files	for	the	161	communities	in	the	MMP	data,	and	then	overlay	the	weather	
grids	on	community	boundaries.	We	aggregate	the	weather	information	for	each	community	by	
taking	the	average	measure	across	the	grids	within	the	community	boundary.	
	
We	then	build	a	predictive	model	of	taking	a	first	U.S.-bound	trip,	and	include	demographic	
(age,	sex),	socio-economic	(household	wealth,	education),	social-network	(number	of	prior	
migrants	in	the	household	and	community)	and	community-level	(share	employed	in	
agriculture,	urban-rural	status,	population	density)	measures.	We	also	include	measures	of	
temperature	and	precipitation.	The	gridded	weather	data	are	available	starting	in	1980.		
	
We	use	different	measures	of	temperature	and	precipitation,	but	in	each	measure,	we	make	an	
attempt	to	account	for	differences	across	regions	in	what	weather	conditions	are	considered	
‘normal’.	Basically,	we	first	the	average	temperature	at	the	state-level	in	the	1960-1979	period.	
Then,	for	each	community-time	period,	we	compute	the	deviation	from	that	normal	(i.e.,	
difference	from	the	1960-1979	mean	divided	by	the	standard	deviation	in	1960-1979).	
	
Descriptive	information	
Table	1	shows	the	mean,	minimum,	and	maximum	values	for	the	key	indicators	in	the	MMP	
data.	Our	data	includes	nearly	2	million	person-years	that	come	from	129,968	unique	persons	
nested	in	26,907	households	in	161	communities.	Because	detailed	temperature	and	
precipitation	data	(at	the	grid	level)	are	available	from	1980	onwards,	we	restrict	the	survey	
data	to	the	1980-2016	period.	
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Table	1	Descriptive	statistics	for	indicators	from	the	MMP	data	

Variables	 Mean	 Min		 Max	
Age	 32.6	 15	 99	
Years	of	education	 7.2	 0	 28	
Value	of	land	owned	(in	2010	US$)	 3863	 0	 199754	
Number	of	rooms	in	properties	owned	 0.5	 0	 18	
Household	owns	a	business?	 0.2	 0	 1	
Share	of	men	in	agriculture	in	community	 0.5	 0	 1	
Share	of	households	earning	2	x	min	wage+	 0.3	 0	 0.8	
Share	of	ever-migrants	in	community	 0.1	 0	 0.6	
N	(years)		 37	 	  
N	(communities)	 161	 	  
N	(households)	 26,907	 	  
N	(persons)	 129,968	 	  
N	(person-years)	 1,983,249	 		 		
	
Figure	4	shows	the	variation	in	the	distribution	of	migration	prevalence	(defined	as	the	percent	
of	the	population	who	has	ever	migrated)	across	communities	in	5-year	periods	in	1980-2000.	
Note	that	the	median	values	in	the	box	plots	are	not	necessarily	increasing	in	time	as	different	
communities	enter	the	panel	data	in	different	years	(depending	on	the	time	the	survey	was	
conducted	in	each	community).	The	figure	shows	a	striking	variability	in	migration	outcomes	
across	communities,	with	some	communities	having	a	negligible	share	of	their	population	
migrate,	while	other	communities	sending	a	third	or	more	of	their	members	to	the	United	
States	at	least	once.		
	

	
	
	

Figure	4.	Box	plot	of	percent	of	community	population	who	
has	ever	migrated	to	the	United	States	across	161	
communities	
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We	also	observe	quite	a	bit	of	weather	variation	across	communities	and	over	time.	Figures	5	
and	6	respectively	show	the	monthly	maximum	temperature	and	average	precipitation	rates	
(shown	as	standardized	deviations	from	the	1960-1979	mean)	for	4	selected	communities	(out	
of	161	in	total).	In	each	figure,	the	long-dashed	line	corresponds	to	1	standard	deviation	bounds	
from	the	1960-1979	mean,	and	the	short-dashed	line	shows	the	2	standard	deviation	bounds.	
	

	
	
	
	
	
	
	

Let’s	take	community	#112	(lower-left	panel).	This	community	does	not	steer	far	off	from	its	
‘normal’	temperature	and	rainfall	experience	from	1980	to	2016,	as	almost	all	monthly	values	
in	this	period	fall	within	the	2-standard	deviation	bounds	of	the	1960-1979	values	in	its	state.	
Community	#46	experiences	slightly	higher	maximum	temperatures	in	2000s,	and	lower	ones	in	
2010s	compared	to	its	earlier	average;	and	it	receives	occasional	excessive	rains	over	the	entire	

Figure	5.	Maximum	temperature	in	each	month	(1980-2016)	for	selected	four	communities.	The	
results	are	presented	as	deviations	from	the	historical	mean	(1960-1979)	in	the	state	divided	by	the	
historical	standard	deviation.	The	red	lines	show	the	1	(long	dashes)	and	2	(short	dashes)	standard	
deviation	bounds	set	by	historical	observations.		
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period.	Community	#130	starts	to	consistently	exceed	the	bounds	on	maximum	temperature	
set	by	its	historical	average	from	2010	onwards,	and	it	simultaneously	receives	excessive	
rainfall	in	some	months	in	the	same	period.	
	

	
	
	
	
	
	
	

Results	
	
We	estimate	2	random	forest	models	to	predict	migration:	one	without	precipitation	variables	
and	another	one	with	only	2	precipitation	lags.	Since	our	weather	data	are	collected	from	1980	
onwards	and	we	want	to	explore	the	impact	of	weather	shocks	on	the	decision	to	migrate,	we	
drop	out	all	individuals	who	have	migrated	before	1985	and	include	precipitation	lags	before	
1985.	We	add	two	precipitation	lags,	one	in	1980	and	1983.		
	
Since	migration	is	a	rare	event	(i.e.	most	of	the	people	do	not	migrate),	the	overall	accuracy	for	
both	models	is	very	high	(0.92	and	0.93	for	each	model).	This	occurs	because	the	models	

Figure	6.	Average	rainfall	in	each	month	(1980-2016)	for	selected	four	communities.	The	results	are	
presented	as	deviations	from	the	historical	mean	(1960-1979)	in	the	state	divided	by	the	historical	
standard	deviation.	The	red	lines	show	the	1	(long	dashes)	and	2	(short	dashes)	standard	deviation	
bounds	set	by	historical	observations.		
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correctly	classified	people	who	decided	to	not	migrate.	In	fact,	the	false	positive	rate	in	both	
models	is	approximately	~0.02,	which	means	that	both	models	rarely	classified	as	non-migrant	
someone	who	has	actually	migrated.		

	
This	suggests	that	we	focus	instead	in	the	precision	and	recall	of	the	models.	The	precision	of	
the	model	is	given	by	the	proportion	of	values	correctly	classified	as	migrants	relative	to	the	
total	number	of	predicted	migrants	(which	can	be	either	correctly	or	correctly	classified).	This	
will	tell	us	how	much	of	our	predictions	are	actually	relevant.	The	recall	of	a	model	is	the	
proportion	of	values	correctly	classified	as	migrants	relative	to	total	number	of	actual	migrants	
(who	were	either	correctly	or	incorrectly	classified).	This	value	tells	us	how	good	our	predictions	
are	relative	to	the	ground	truth.	
	
Figure	7	shows	the	precision-recall	curve	for	both	random	forest	models,	with	and	without	
precipitation	lags.	This	curve	shows	the	trade-off	between	precision	and	recall,	and	reveals	that	
high	levels	of	precision	come	with	a	high	cost	of	not	correctly	identifying	the	actual	migrants.	
Both	models	seem	to	be	fairly	similar	in	terms	of	this	trade-off,	with	the	random	forest	with	
precipitation	being	slightly	better	for	lower	recall	levels.	In	general,	this	suggests	that	adding	
two	precipitation	lags	may	not	be	enough	information	to	correctly	classify	migrants.	In	fact,	the	
area	under	curve	(AUC)	for	both	models	are	0.32	and	0.33	for	models	without	and	with	
precipitation	lags.	The	AUC	ranges	between	0	and	1,	with	a	value	of	zero	meaning	that	our	
model	has	terrible	performance,	misclassifying	all	values.	These	AUCs	roughly	suggests	that	the	
performance	of	the	models	is	not	very	good.	
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When	we	estimate	our	random	forest	models,	it	is	also	interesting	to	see	how	much	each	
covariate	contributes	to	the	predictive	performance	of	the	models.	The	following	figures	show	
the	relative	importance	of	all	covariates	in	predicting	migration.	Blue	bars	represent	one	
standard	deviation	across	all	estimated	trees	(k=100).	We	observe	that	in	a	model	with	only	
individual	and	household	socio-demographics	and	community-level	covariates,	the	most	
important	features	are	age,	experience	(or	age	squared),	the	prevalence	of	people	in	the	
community	who	have	migrated,	the	value	of	the	land,	and	the	total	number	of	people	in	the	
household	who	have	migrated.	
	

Figure	7.	Precision	and	recall	of	random	forest,	with	and	without	precipitation	lags.	
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When	we	include	two	precipitation	lags,	we	observe	that	the	same	variables	mentioned	before	
remain	as	the	most	important	for	predicting	migration.	However,	our	precipitation	lags	are	not	
completely	irrelevant	and	contribute	roughly	4%	to	the	predictive	capacity	of	the	model.		
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Discussion		
	
Our	analysis	has	built	a	predictive	model	of	migration	behavior	in	the	Mexico-U.S.	setting,	and	
tested	the	accuracy	of	the	predictions	with	out-of-sample	data.	The	results	suggest	that	our	
model	cannot	predict	migration	outcomes	with	great	accuracy.	We	improve	a	slight	
improvement	in	our	model	performance	with	the	inclusion	of	weather	variations.	There	are	
several	potential	avenues	to	go	from	here,	the	most	straight-forward	being	to	include	more	
weather	information	that	can	help	us	improve	our	predictions	for	migration.	
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Concerns	on	future	climate	change,	and	its	potential	impact	on	human	mobility,	certainly	
provide	a	crucial	motive	for	this	‘predictive’	exercise.	But,	as	social	scientists,	our	interest	is	also	
to	use	these	predictions	to	improve	future	research.	To	that	end,	our	analysis	will	investigate	
the	variability	in	the	model’s	predictive	accuracy	across	rural-urban	communities,	over	time,	
and	by	age,	education,	and	gender	groups.	By	doing	so,	we	will	seek	to	understand	what	
(unmeasured)	factors	might	account	for	this	variation,	and	design	additional	analysis	(and	data	
collection)	to	probe	further.	
	
We	also	plan	to	use	simpler	decision	trees	(rather	than	random	forests	that	average	over	
multiple	trees)	to	increase	the	interpretability	of	our	findings.	These	methods	are	increasingly	
used	by	economists,	and	offer	a	bridge	to	causal-inference	approach	in	econometrics/statistics	
(Athey	and	Imbens	2017).	
	
And,	finally	we	are	collecting	additional	data	that	could	account	for	the	linkages	between	
weather	and	migration.	We	have	recently	secured	detailed	data	on	agricultural	productivity	in	
Mexico	(annual,	for	each	municipality).	These	data	will	allow	us	to	create	weather	measures	
that	are	specific	to	the	crops	grown	in	each	region.	We	are	looking	to	include	data	on	exports	
which	can	offer	an	intervening	mechanism	between	weather	and	migration	in	urban	regions	as	
suggested	in	prior	work	(Jones	and	Olken	2010).		
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