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Abstract. 

No observational study can collect all of the data necessary to fully model a given pathological process in a 
diverse population. This leads to the existence of complementary datasets varying in size and level of detail 
that are not directly linkable (e.g. survey data, genetic data, administrative databases, disease registries) but 
represent important aspects of the same pathological process. In this paper we develop an approach for joint 
analyses of such data. We relate genetic markers to stage-specific survival after breast cancer diagnoses 
using i) HRS-Medicare data with hundreds of cases, extensive genetic measurements, but without stage or 
other cancer characteristics, and ii) SEER-Medicare with millions of cases, detailed cancer characteristics, but 
without genetic measurements. Since the same underlying model generates both datasets, the likelihood 
function is expressed using the same set of model parameters for both datasets. The approach is illustrated by 
simulation studies and application to real data. 

Introduction 

Important Information which represents different aspects of a process under study is often available in different 
independent and not directly linkable datasets. Typically methods of statistical matching1,2––a series of 
statistical methods whose objective is the integration of two (or more) data sources (usually samples) referred 
to the same target population––are used in such situations. The objective of these approaches is to study 
relationship among variables not jointly observed in a single data source1. As a result the variables measured 
in only one dataset (and therefore needing to be filled in the other one) are completely explained by variable(s) 
commonly measured in both datasets. In this paper we analyze the effect of genetics on stage-specific survival 
from a cancer diagnosis. In this setting, the outcome variable (time to death) is the only variable common to 
both datasets and there are no other common variables that would essentially define dynamics of the process. 
Specifically we use two datasets that are not directly linkable in any way: i) SEER-Medicare data and ii) HRS-
Medicare data. Genetic factors are measured in HRS-Medicare only, while stage, tumor size, and other cancer 
diagnosis characteristics are only measured in the SEER-Medicare. There are no essential predictors 
commonly measured in both datasets. Therefore standard methods of statistical matching are not applicable 
and we need a new approach to solve this task.  

The idea of the approach is as follows. If variable(s) is not measured in a specific dataset, but is measured in 
another dataset, and the distribution of the variable(s) is known or assumed, then the likelihood function can be 
written as the product of two dataset-specific likelihoods in which the model of missing data is created by 
analytic averaging using the known (or assumed) distribution. Dataset-specific likelihoods are different but 
expressed by the same set of parameters. The likelihood function of both datasets is the product of two terms 
that although different (because of different averaging for each dataset) are still expressed using the same set 
of model parameters (because of the same true model) that are subject to estimation through maximum 
likelihood. The methodological challenge is to perform analytical averaging over these missing data for the 
respective parts of the likelihood function. Such averaging can be performed without the additional 
assumptions that are necessary for the current approaches of statistical matching and allow for the analyses of 
outcomes not currently possible due to lack of simultaneously measured key variables.  

Model description.  

Consider a normally distributed time-invariant predictor ig  (e.g., polygenetic risk score based on biomarker 

information) and stage at initial breast cancer (BC) diagnosis. The polygenetic risk score is known in HRS but 
not in SEER-Medicare and conversely for stage. We assume that survival time has a Weibull distribution. This 
is empirically justified (Figure 1) and used in analyses of cancer survival in the literature 4-7. If all data on both 
stage and genetic risk score were measured, the likelihood in standard survival analysis would be:  

 ( ) ( ), ( , )
ij

i

i j j N i j i i j i ip f g t tL g S g


, 



where i  runs over individuals, j  runs over stages at initial 

diagnosis, 
it  denotes survival time, 

ig  a time-invariant covariate 

(e.g., polygenetic risk score), 
i  a censoring indicator, and ij  is 

the indicator that cancer was initially diagnosed at stage j . The 

terms jp  and ( )N if g  stand for the probability to have stage j  at 

diagnosis and the density of the normal distribution for the 
polygenetic risk score, respectively. Stage-specific hazards and 
survival functions in the Weibull model for survival time and 
quadratic hazard for the genetic score are  
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where   and 0j  are Weibull parameters (the parameter   could 

be considered stage-independent, this is empirically justified at 
least for local and regional stages (Figure 1); however this assumption is not critical and can be relaxed in 

model extensions), 
0g  is the norm with respect to the covariate, i.e., the value of the covariate when survival is 

highest, and   is the effect of a deviation of the genetic risk score from the norm. In the simplest formulation, 

0g  and   are stage-independent.  

In HRS, stage is unknown. Thus, the survival function is averaged over all stages and the hazard function is 
then calculated through the derivative of averaged survival:  
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The likelihood for the HRS data is  

( ) ) ( ), ( ,i
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The likelihood for the SEER-Medicare data is obtained by averaging over ig  (through integration of the survival 

function ,( )j i iS gt  with respect to 
ig  with the density of normal distribution):  
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with 
2 1

0(1 )2j j id t    . Here mg  and 2  are the mean and variance of the normal distribution of ig  in the 

population. Model parameters are estimated from a pooled dataset using the likelihood  

SEER HRSL L L  . 

Simulation Studies 

We first apply the most straightforward approach to parameter estimation, maximizing the likelihood 

SEER HRSL L L   while evaluating all parameters. Since this main approach can have deficiencies, several 

alternative approaches can be defined. For example, the second term in 
2 1

0(1 )2j j id t     could be small 

(i.e., 
2

02 1j it
  ), resulting in the identifiability of only the parameters 0j  and   for each stage-specific 

subsample. Furthermore, the number of individuals in SEER-Medicare is much larger than that in the HRS, so 

uncertainty in estimates of log( )SEERL  could be comparable with log( )HRSL  that worsen the estimates of 

Figure 1. Stage and race-specific survival 

functions (in the   vs.  

format) for individuals diagnosed in 1995-2007 



parameters contributed only in log( )HRSL . Since different parts of the likelihood could depend only on a part of 

parameters (
HRSL  and stage-specific parts of 

SEERL ), we have opportunities to define and test alternative 

(potentially more effective) approaches to maximize the joint likelihood. We expect that the final approach 

should include all or several of the following components: i) estimation of 
mg  and 2  from the empirical 

distribution in HRS, ii) estimation of stage-at-diagnosis frequencies jp  from the empiric distribution in SEER-

Medicare, iii) maximizing stage-specific parts of 
SEERL  to estimate 0j  and compare estimates of   among 

different stages, iv) estimate   and 
0g  from 

HRSL . If estimates of   are significantly different we will extent the 

model with stage-specific  .  

We evaluate the methodological framework developed above by a series of simulation studies. In the 
simulation studies we assume the correctness of the model within a range of parameters and then reconstruct 

their true values using the model estimation procedures based on the likelihood function 
SEER HRSL L L  . We 

assessed the accuracy of these parameter estimates using the t-test to compare the estimated parameter 
means over 100 simulations with the true parameter values based on the data. The simulation studies allow us 
to identify areas in the parameter space with good and bad identifiability. If areas with bad identifiability are 
found, we repeat simulation studies replacing certain parameters by their estimates obtained based on clinical 
expertise. We also evaluated the sensitivity of estimated parameters for alternative assumptions for the 
construction of our model.  

Technically, we simulate a dataset setting the true parameters as shown in the first line of Table 1. Then the 

data are simulated in five steps. First, the polygenic risk score ig  is simulated normally with mean mg  and 

variance 2 . Second, stage at diagnosis ( 1,2,3s  ) is simulated using an uniformly distributed random number 

1r , i.e., 1,2,3s   if 2 3 1 1pp r  , 3 1 2 3p r p p   , and 1 30 r p   respectively; sI  is the indicator of simulated 

stage. Third, time to death i  is calculated as  
1/
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   , where 2r  is uniformly 

distributed random number. Fourth, death indicator id  is 1 if 30i   and 0 if 30i  ; min( ,30)i i  . We 

simulated 100K patients. We additionally assume that gN =1%, 10% and 30% of patients do not have stage 

data, but have ig . In this case we denote 0 1I   and 0sI  . The log likelihood in this notation is: 
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where 2 1/2

0(1 2 )is s if b      , 1 2 31 pp p   , and 2( ; , )N if g m   is the density of the normal distribution with 

mean m  and variance 2  taken for ig . 

We also consider estimate the models based on only HRS or SEER-Medicare data. In the case SEER-

Medicare data respective likelihood SEERL  is the product of stage-specific likelihoods. In the model for one 

stage only four parameters can be identified: 0s ,  , 
2 , and 2

0( )mg g  . There is no any reduction in the 

number of model parameters in the model of HRS data.  

Table 2 represents the results of simulation studies. We notice that the combined model reproduces the initial 
parameter values more faithfully than either the stage-only model or the genetic-only model.  When we use 
only genetic data, the optimization routine is unable to settle upon consistent boundaries for the stages.  Thus 
we see that parameter estimates for each stage vary wildly from simulation to simulation.  On the other hand, 
when we use only the data that contains information on the stage of BC but not genetic information, the model 

cannot determine the effect of the genetic data on time to survival. The term 2

0)(m g   becomes inflated, and 

as a result the estimates for the stage parameters are depressed.  Only when using enough data from both 
sources are the parameters estimated accurately. 

Analysis of real data.  
This task is designed to estimate polygenic influence on BC survival using SEER-Medicare and HRS data. 
Four genetic risk scores were constructed and used in the analysis based on subsets of SNPs in candidate 



genes: i) whose association with breast cancer survival was shown in earlier GWAS (Specific SNPs will be 
extracted from NHGRI-EBI Catalog of published GWAS, https://www.ebi.ac.uk/gwas), ii) found in our 
preliminary GWAS of all stages BC survival, (top genes that have been associated with breast cancer survival 
in our preliminary GWAS belong to pathways regulating TP53 and TP63 mediated apoptosis, RB1-related 
senescence and ERBB2 dependent metastasis); iii) from key pathways involved in cancer invasion and 
metastasis (such as epithelial to mesenchymal transition, adherence junctions and matrix metalloproteinases 
pathways8-11, and iv) involved in response to cancer treatment (e.g., cytochromes, ERBB and AKT pathway 
genes12-14. The scores are evaluated as linear predictors of related SNPs on BC survival in the Cox model. 
Then we will estimate the joint model to evaluate the effect of the genetic risk score on stage specific survival. 
The results of application of the method to analysis of real data will be shown at PAA 2019. 

Discussion 
The approach for analyzing disparate and non-mergeable data sets and the substantive results on breast 
cancer survival disparities improve knowledge on the breast cancer disparities and will provide other 
researchers new opportunities for joint analyses of data drawn from different non-linkable sources. 

The methodology developed in this paper enable pooled analysis of disparate (in terms of design and content) 
but complementary (measuring factors relevant to the same process) datasets. Previously, analysis of 
information collected in different datasets (and often with different designs) was not possible. Using the tools 
generated by this study, researchers will be able to improve the body of knowledge on effects of risk factors 
and/or chosen treatment strategies given the presence of multiple inter-related confounders using available 
observational data drawn from different non-linkable sources. In addition, to the mathematical aspects, a 
practical application of the new methodologies to the case of BC will be provided to document sources of 
disparities in BC survival due to genetic and social factors. Estimates of the effects on BC outcomes (in the 
proposed study BC survival) and their racial disparities are new and were not possible beyond the 
methodology to be developed in our study.  
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Table 1. Results of simulation studies. The “model” =0-4 corresponds to the cases when only genetic (0), 
stage-specific (1-3), all (4) data are available for model estimation 

gN  model 
 10  

20  
30    

0g    
2p   

3p  mg   2   * 
2   

%  Units [ ]t 

  
[ ]t 

 
[ ]t 

 

2[ ]g 

  
[ ]g

 
1 1 1 [ ]g  [ ]g  1 1 

  True 0.10 0.12
 

0.14
 

0.10
 

3.00 1.10 0.35 0.10 3.00 0.09 0 0.009 

1 0 Mean 0.065 0.107 0.386 0.167 3.164 1.196 0.457 0.094 3.001 0.091   
1 0 StdErr 0.003 0.005 0.018 0.014 0.127 0.009 0.022 0.006 0.001 0.000   
1 0 Ratio 12.544 2.823 -13.940 -4.857 -1.295 -10.704 -4.773 1.125 -0.737 -2.568   

10 0 Mean 0.075 0.114 0.311 0.112 3.040 1.127 0.562 0.078 3.000 0.090   
10 0 StdErr 0.003 0.003 0.017 0.008 0.040 0.003 0.027 0.006 0.000 0.000   
10 0 Ratio 8.074 2.282 -10.117 -1.655 -1.018 -9.627 -7.741 3.375 -0.465 -0.665   

30 0 Mean 0.074 0.110 0.265 0.100 2.982 1.114 0.582 0.095 3.000 0.090   
30 0 StdErr 0.003 0.001 0.016 0.005 0.019 0.002 0.028 0.007 0.000 0.000   
30 0 Ratio 7.861 7.889 -7.678 0.020 0.990 -7.906 -8.412 0.643 -0.545 0.022   

1 1 Mean 0.066 
    

1.103 
    

0.595 0.007 
1 1 StdErr 0.001 

    
0.001 

    
0.044 0.001 

1 1 Ratio 24.702 
    

-6.271 
    

-13.506 2.271 

10 1 Mean 0.077 
    

1.103 
    

0.806 0.013 
10 1 StdErr 0.003 

    
0.001 

    
0.129 0.001 

10 1 Ratio 7.433 
    

-5.429 
    

-6.256 -2.675 

30 1 Mean 0.077 
    

1.103 
    

0.832 0.012 
30 1 StdErr 0.003 

    
0.001 

    
0.130 0.001 

30 1 Ratio 7.368 
    

-4.700 
    

-6.390 -2.526 

1 2 Mean 
 

0.087 
   

1.102 
    

0.424 0.007 
1 2 StdErr 

 
0.002 

   
0.001 

    
0.025 0.001 

1 2 Ratio 
 

21.163 
   

-3.428 
    

-16.820 2.146 

10 2 Mean 
 

0.103 
   

1.101 
    

0.492 0.012 
10 2 StdErr 

 
0.003 

   
0.001 

    
0.108 0.001 

10 2 Ratio 
 

5.162 
   

-2.158 
    

-4.561 -1.941 
30 2 Mean 

 
0.105 

   
1.102 

    
0.399 0.012 

30 2 StdErr 
 

0.003 
   

0.001 
    

0.094 0.001 
30 2 Ratio 

 
5.227 

   
-2.858 

    
-4.222 -2.215 

1 3 Mean 
  

0.100 
  

1.107 
    

0.561 0.011 
1 3 StdErr 

  
0.003 

  
0.001 

    
0.060 0.001 

1 3 Ratio 
  

14.029 
  

-6.224 
    

-9.287 -1.503 

10 3 Mean 
  

0.106 
  

1.107 
    

0.792 0.014 
10 3 StdErr 

  
0.004 

  
0.001 

    
0.120 0.001 

10 3 Ratio 
  

7.812 
  

-6.157 
    

-6.612 -3.712 

30 3 Mean 
  

0.104 
  

1.106 
    

0.873 0.014 
30 3 StdErr 

  
0.005 

  
0.001 

    
0.126 0.001 

30 3 Ratio 
  

7.952 
  

-5.635 
    

-6.908 -3.676 

1 4 Mean 0.095 0.114 0.134 0.159 3.147 1.101 0.350 0.100 3.001 0.091   
1 4 StdErr 0.001 0.001 0.001 0.013 0.114 0.000 0.000 0.000 0.001 0.000   
1 4 Ratio 5.494 5.569 5.429 -4.622 -1.294 -2.778 -0.523 1.257 -0.754 -2.588   

10 4 Mean 0.099 0.119 0.139 0.110 3.039 1.100 0.350 0.100 3.000 0.090   
10 4 StdErr 0.000 0.000 0.000 0.007 0.038 0.000 0.000 0.000 0.000 0.000   
10 4 Ratio 4.300 5.092 3.205 -1.332 -1.022 -0.159 -0.562 1.230 -0.487 -0.656   

30 4 Mean 0.100 0.120 0.140 0.099 2.982 1.100 0.350 0.100 3.000 0.090   
30 4 StdErr 0.000 0.000 0.000 0.005 0.019 0.000 0.000 0.000 0.000 0.000   
30 4 Ratio 1.011 1.830 0.475 0.256 0.969 0.135 0.202 1.101 -0.548 0.032   

* 2

0( )mg g    


