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Background: Reducing neonatal mortality is a key global health priority. Data on 
neonatal deaths in low- and middle-income countries (LMICs) come primarily from 
periodic household surveys. There are however no recent validation studies of such 
data. Our objective was to assess reporting errors in survey data on neonatal mortality, 
and to evaluate their effects on estimates of neonatal mortality rates (NMR). 
 
Methods and findings: We conducted a validation study of survey data on neonatal 
mortality in Guinea-Bissau. We used data from a large health and demographic 
surveillance system (HDSS) that monitors pregnancies and child outcomes prospectively 
as our reference dataset. Using HDSS records, we selected a stratified random sample 
of 599 women aged 15-49 years old, and collected their full birth history (FBH). We 
estimated the sensitivity and specificity of FBH in recording neonatal and post-neonatal 
deaths by cross-tabulating FBH and HDSS data. We attributed the errors we observed 
to date displacements, age errors, omissions or misclassifications. We used a 
mathematical model to draw the implications of reporting errors for the accuracy of NMR 
estimates. Through logistic regressions, we explored the association of reporting errors 
with maternal and child characteristics. Lastly, we evaluated the potential impact of 
reporting errors in FBH data on measures of socioeconomic inequalities in neonatal 
mortality.  
 
Our survey data collection achieved a 85.2%% participation rate. The sensitivity of FBH 
data in recording neonatal deaths was 79.1% (95% confidence interval (CI): 72.7-
85.5%), and the specificity was 99.3% (95% CI: 98.9-99.6%). Specificity was lower 
among respondents who had also experienced a stillbirth (86.6%, 95% CI: 74.8-93.4%) 
or a post-neonatal death (84.0%, 95% CI: 73.2-90.9%), than among respondents who 
had not experience such events. Omissions of births and misclassifications between 
stillbirths and neonatal deaths accounted for most errors in survey data on neonatal 
deaths. Age errors accounted for the majority of errors in the reporting of post-neonatal 
deaths. In populations with known distributions of stillbirths, neonatal deaths and post-
neonatal deaths, these reporting errors would lead to NMR estimates that are too high. 
Low educational levels of the mother were associated with lower sensitivity of FBH data 
in recording neonatal deaths (69.6% among mothers without schooling, vs. 87.0% 
among mothers with secondary schooling or higher). This might lead to under-estimating 
differentials in neonatal mortality associated with maternal education.  
 
Conclusions: Our validation study indicates that survey data on neonatal mortality might 
misrepresent progress towards global newborn survival targets, as well as 
socioeconomic inequalities in neonatal mortality. Methodological research is needed to 
a) improve survey instruments and b) account for reporting errors in estimates of the 
NMR.  
 
 
  



BACKGROUND 

 

A neonatal death is a death that occurs during the first 28 days of life. In 2017, the UN 

Inter-agency Group for Child Mortality Estimation (UN-IGME) estimated that 47% of all 

children who died before age 5 died in this age range (1). Reducing the neonatal 

mortality rate (NMR) is now a key target of the 3rd Sustainable Development Goal 

(SDG). That is by 2030, countries should strive to end preventable deaths of newborns, 

and to reduce neonatal mortality to at least as low as 12 deaths per 1,000 live births (2). 

To facilitate progress towards this target, accurate data on the levels and trends of 

neonatal mortality are needed (3-8). This will allow better targeting interventions to 

reduce neonatal mortality, and could allow monitoring the effects of changes in 

intervention coverage (9). 

 

In most high-income countries, such data come from civil registration and health 

information systems that operate continuously. In low- and middle-income countries 

(LMICs), these systems are often deficient (10-13). A large proportion of births and 

newborn deaths occur at home, and are not promptly registered by family members. 

Even when these events occur within health facilities, their recording might be 

incomplete, delayed or inaccurate (11). 

 

Instead, data on neonatal mortality are collected periodically in most LMICs during 

household surveys, such as the Demographic and Health Surveys (DHS), and the 

Multiple Indicator Cluster Surveys (MICS). These surveys frequently conduct full birth 

histories (FBH): women aged 15-49 years old are asked to report all of their live births, 

and to state the date of birth of each child, and whether he/she is still alive. For each 

deceased child, they are also asked to report at what age the child died. From these 



data, demographers can directly obtain NMR estimates for recent time periods (e.g., the 

past 3 or 5 years), by dividing the number of reported neonatal deaths by the number of 

births reported to have occurred over the same time frame (14). Such estimates form the 

cornerstone of global studies of the patterns of neonatal mortality (1, 15, 16). They also 

constitute the standard that new methods to interpret other data sources on child 

mortality (e.g., census data) are evaluated against (17, 18) or are trained to emulate 

(19).  

 

Estimates of the NMR obtained from FBH may however be affected by a number of 

issues. First, they may contain missing data, e.g., on the date of birth of a child, or on 

his/her age at death. These fields thus need to be imputed, often requiring strong 

assumptions about the underlying causes of missing data. The frequency of missing 

data on dates of birth and age at death in FBH has however declined over time in major 

surveys such as the DHS (20, 21). In most recent such surveys, less than 5% of the 

reported births have missing information on a component of their date of occurrence 

such as the month of birth (20). Second, FBH data may display “survivor bias” (22): 

since they are collected retrospectively, FBH only include data from women who have 

survived until the time of the survey. If the children of the mothers who died before the 

survey were also more likely to die than other children (23-26), then NMR estimates will 

be too low. Simulation studies however suggest that survivor bias might be corrected, 

even in contexts affected by epidemics of infectious diseases that may be transmitted 

from mother to child such as HIV and Ebola (27, 28). Finally, FBH data on neonatal 

mortality may be affected by limited sample size because even in high mortality settings, 

neonatal deaths remain a rare (statistical) event (22).  

 

In some instances, FBH data collected during a survey may also differ from the true birth 



history of a respondent (Figure 1). This may result from four types of reporting or 

respondent errors. First, date displacement occurs when a respondent’s answers to the 

FBH imply a date of birth/death of her child(ren) that differs from the true date(s). Date 

displacement affects estimates of the NMR when they shift a birth/death into or outside 

of the reference period for which estimates are sought (e.g., the past 3 or 5 years). 

Second, age errors occur when a respondent misstates the age at which their child died. 

This is often detected by measuring the extent of heaping in FBH data, i.e., a higher than 

expected number of events reported to have occurred at specific ages such as 7 days or 

12 months (22, 29). Age can be over-stated, for example when a child who died during 

the neonatal period is reported to have died at an age greater than 28 days. Age can 

also be under-stated, for example, when a child who died in the post-neonatal period is 

reported to have died as a newborn. Age errors can affect NMR estimates when deaths 

are erroneously shifted in and out of the neonatal period.  

 

[FIGURE 1 ABOUT HERE] 

 

Third, omissions occur when respondents do not list all of their live births during the 

FBH. This may happen because of recall issues (e.g., respondents not reporting births 

that have occurred in a more distant past), because a birth may evoke painful memories 

(e.g., the death of a child) or because a birth is associated with stigmatized behaviors 

(e.g., out-of-wedlock childbearing). Omissions might affect NMR estimates if they occur 

among neonatal deaths. Finally, misclassifications occur when respondents erroneously 

report stillbirths (i.e., a baby born with no signs of life at or after 28 weeks’ gestation) as 

neonatal deaths, or leave a neonatal death out of the FBH, because they considered 

that the child was not viable.   

 



There are several factors that explain the emergence of these reporting errors in FBH. 

Demographers have often argued that poor maternal recall of events that occurred 

several years ago, as well as limited numeracy among some population groups, might 

explain errors in FBH data. Adjustment procedures have been proposed to account for 

such recall patterns when analyzing survey data on mortality (30, 31). These methods 

however make strong assumptions. For example, they consider that respondents 

accurately report the most recent events, e.g., those that occurred in the past 0-3 years 

prior to the survey. In validation studies of survey data on mortality among adults, this 

assumption did not hold (32). They also consider that the proportion of events (i.e. 

deaths) that are recalled by a respondent declines linearly with the amount of time 

elapsed between the event and the survey. Studies in cognitive psychology however 

suggest that this assumption may not be met in practice: more distant events might be 

easier to recall than more recent ones depending on a complex array of emotional, 

neural and cognitive factors (33).  

 

Others have emphasized possible social desirability biases in reporting of adverse 

perinatal events such as neonatal deaths and stillbirths (34). Women might conceal 

these aspects of their birth histories during a survey interview because they fear 

judgmental attitudes, gossip or stigma, either from the interviewer, relatives or other 

community members. Errors may also emerge in FBH because the local terms used by 

women to describe pregnancy outcomes in LMICs often do not match the western 

biomedical concepts of stillbirths and neonatal deaths. Haws et al. (34), for example, 

documented that women in Tanzania used terms (e.g., “immature baby”) that could be 

applied to both stillbirths and neonatal deaths. Even in health facilities, the fetal heart 

rate is not systematically monitored in LMICs, so that health workers might mistakenly 

classify some babies who do not show signs of movement (e.g., due to birth asphyxia) 



as stillbirths (35). 

 

Some of these factors may be accentuated by the behaviors of data collectors. 

Interviewers, for example, may be tempted to skip recording some births reported by the 

respondent in order to speed up the interview. This would then lead to a number of 

omissions. They might also report some children as being born earlier than they are in 

order to skip long series of questions that are only applicable for specific age groups. 

This might for example occur in the DHS or in the MICS, where time-consuming 

modules about post-natal care, child health and other topics are only applicable to 

children born within the past 5 years (20, 36). This would then lead to an increased 

frequency of date displacement and/or age errors.  

  

Few studies have quantified the extent of these reporting errors in FBH data. Liu et al. 

(37) used data collected in Malawi to assess how common misclassifications might be in 

FBH data. Compared to a more intensive verbal autopsy (VA) questionnaire conducted 

several months after the FBH survey, they found that 21% of the neonatal deaths 

reported during FBH might in fact have been stillbirths. Based on qualitative interviews, 

Haws et al (34) also uncovered discrepancies between a woman’s reproductive history 

and her reports of reproductive events during a survey interview. For example, they 

described several cases of women who reported a stillbirth while indicating that the baby 

had moved or breathed at the time of delivery, or who reported a neonatal death while 

describing that the baby’s body was cold or had deteriorating skin (thus suggesting it 

might have been a stillbirth). 

 

 A more comprehensive validation study of FBH data was conducted in the 1990’s in 

Bangladesh (38). It indicated that a number of neonatal and post-neonatal deaths might 



not be accurately reported during FBH. In that study, FBH respondents only reported 

81.0% of the neonatal deaths they had experienced according to a reference 

prospective dataset extracted from the Matlab Health and Demographic Surveillance 

System (39). Unfortunately, while this study investigated the effects of reporting errors 

on estimates of the total fertility rate, it did not investigate the implications of reporting 

errors for survey-based estimates of the NMR. Other assessments of the quality of FBH 

data have been reliability studies, in which estimates of mortality rates obtained from 

FBH were compared to estimates obtained from other sources or to predictions from 

statistical models (21, 22). Such studies are thus based on benchmarks that contain 

significant limitations (e.g., model life tables or census data). They have also focused on 

infant mortality (29), rather than specifically on neonatal mortality.  

 

The impact of reporting errors on estimates of the NMR obtained from FBH data is 

difficult to predict. This is so because some errors might typically lead to downward 

biases (e.g., omissions), whereas other errors might lead to upward biases (e.g., 

misclassifications of stillbirths as neonatal deaths). In some settings, these errors might 

offset each other and result in a roughly accurate NMR estimate. In other settings 

though, they might cumulate and result in severely biased NMR estimates. In this paper, 

we report the results of a detailed validation study of FBH conducted in an urban setting 

of Guinea-Bissau in 2016-2017. We then use a simple mathematical model to 

investigate the net effects of reporting errors in FBH data on estimates of 1) the level of 

the NMR, and 2) differences in NMR between population groups. 

 

 

 

DATA AND METHODS 



 

Study setting: Guinea-Bissau is a low-income country in West Africa, with a population of 

approximately 1.8 million and an estimated life expectancy of 56 years in 2010-15 (40). 

The most recent nationally representative FBH survey was conducted in 2014. It 

documented a NMR of 36, and a post-neonatal mortality rate of 20, per 1,000 live births 

nationwide (41). The survey also indicated a gradient in neonatal mortality associated 

with educational level of the mother: there were more than 40 neonatal deaths per 1,000 

live births among uneducated mothers, vs. 28 among mothers with secondary schooling 

or higher.  

 

Reference dataset: We worked within the urban Health and Demographic Surveillance 

System (HDSS) of the Bandim Health Project (BHP). This is an open cohort that 

monitors the populations of six neighborhoods of Bissau, the capital city (e.g.,42, 43-45). 

The areas covered by the BHP are situated approximately 2 km away from the city 

centre and include more than 103,000 inhabitants. In these areas, the HDSS records 

pregnancies, births, deaths and migrations since 1978. Every month, fieldworkers visit 

every household in HDSS areas to register pregnancies and record their outcomes (e.g. 

stillbirth vs. live birth). Children are then followed every 3 months to record survival, 

nutritional status and health-seeking behaviors. BHP also registers all births at the 

National Hospital (Simão Mendes) (45) and at a health center serving parts of the HDSS 

population (Centro de Saude de Bandim), and these data are linked with the HDSS 

records. New households (e.g. those established after construction of a new dwelling) 

are added to the BHP data set on a continuous basis.  

 

We used data from the HDSS as the reference dataset against which we evaluated FBH 

data. Among HDSSs, the BHP has one of the most rigorous protocols for monitoring 



perinatal events and infant survival, because it is based on monthly household visits to 

detect and monitor pregnancies and their outcomes (46). Despite its high quality, 

however, the HDSS data do not constitute a gold standard measure of neonatal 

mortality. This is so in part because some pregnancies might be missed during monthly 

household visits, and because some pregnant women and their children might migrate 

outside of the HDSS area during follow-up. In addition, neither the HDSS nor the local 

hospitals and health centers collect precise data on fetal heart rate after delivery using 

highly sensitive monitors. As a result, a small number of stillbirths may be misclassified 

as neonatal deaths in these HDSS data, and vice-versa.  

 

Data collection: We selected a stratified random sample of women aged 15-49 years old 

from the lists of HDSS residents. We oversampled women in three strata: those who had 

experienced in the past 5 years either 1) a neonatal death among their live-born 

children, 2) a post-neonatal death among their live-born children, or 3) a stillbirth. This 

was necessary to ensure that we had sufficient reported numbers of such events to 

evaluate the accuracy of FBH. The fourth sampling stratum was constituted of women 

who did not experience any of these events according to the HDSS over the past 5 

years prior to the validation study e.g., all of their children were still alive, or had died 

after age 1 year. We designed sampling weights to account for differences in the 

probability of inclusion and participation rates in each of these strata.  

 

Our questionnaire included a subset of the modules of the 2014 Guinea-Bissau MICS 

questionnaire: a) questions about the respondent’s socioeconomic background (e.g., 

age, educational level, marital status), b) summary questions about her fertility, and c) a 

standard FBH. The FBH module first asked respondent to list all the live births they have 

ever had in chronological order. Then, for each reported live birth, it asked the gender of 



the child, whether he/she was part of a multiple birth, whether he/she was still alive at 

the time of the survey, and the date of birth. For children who were still alive, the FBH 

asked respondents to report their age and residence. For children who had died, it asked 

respondents to state the age at death in days if they had died within their first month of 

life, in months if they had died between 1 and 23 months, and in years if they had died at 

older ages.  

 

Similar to the 2014 MICS, the questionnaire also included d) questions about 

pregnancies that did not result in a live. We asked respondents if they had ever 

experienced such a pregnancy termination. If so, we asked them how many such 

terminations they had experienced over their lifetime, and when was the most recent 

one. We did not ask respondents to state the type of pregnancy termination they 

experienced (e.g., stillbirth vs. miscarriage or abortion). Finally, as in the 2014 MICS, we 

included e) questions about live births of the past two years prior to the survey. These 

questions focused on antenatal and post-natal care, birth and (if applicable) death 

registration, and the care of recent illnesses such as cough, diarrhea and/or fevers.    

 

We recruited interviewers who had collected FBH data during the 2014 MICS in Guinea-

Bissau. We provided them with refresher training for a week before beginning data 

collection for the validation study. The interviewers were not given HDSS data prior to 

conducting FBH interviews. In particular, they did not know whether the women they had 

to interview had experienced any births, adverse perinatal events (e.g., stillbirths, 

neonatal deaths) or post-neonatal deaths over the past 5 years. We devised an 

electronic data collection tool that emulated the tool used in MICS and DHS surveys. 

Specifically, we used the Qualtrics platform (47) on android tablets. We selected 

Qualtrics because it allows collecting FBH data within a single screen, by displaying all 



reported live births in a large table, as is currently done in DHS and MICS (which collect 

data on more expensive Windows-based tablets using CSpro). Other android platforms 

such as Survey Solutions or Open Data Kit (48, 49) do not allow collecting FBH data in 

this fashion. Instead, they ask interviewers to establish a list of live births, and then they 

ask each question about these live births on a separate screen. FBH data collected 

using these platforms might thus not be comparable to FBH data collected by DHS or 

MICS.  

 

As in MICS and DHS, we incorporated data consistency checks into our Qualtrics 

program, which alerted interviewers to potential errors or implausible FBH patterns (e.g., 

intervals between live births that are too short). All data were uploaded every day to a 

cloud-based server, and checked by a data editor. All study instruments were translated 

into Portuguese and Creole, the vernacular language most commonly used in Bissau. As 

was done during the 2014 MICS, questions were displayed in Portuguese, but asked in 

Creole, except for 2 interviews that required a translator and were conducted in French 

(among Fulani migrants recently arrived from the neighboring Republic of Guinea).  

   

Data analysis: We first described the constitution of the study sample, including reasons 

for non-participation and non-inclusion. We investigated the selectivity of the study 

sample by comparing the HDSS records of the women who participated in the validation 

study, to the HDSS records who were selected but could not be interviewed. This 

comparison focused on maternal age and history of neonatal deaths, post-neonatal 

deaths, and stillbirths. Details are included in appendix A1. We then described the 

characteristics of study participants. We considered maternal characteristics such as 

age group (15-24y, 25-34y and 35y and older), educational level (no schooling vs. 

primary schooling vs. secondary schooling and higher), marital status (currently in an 



union vs. never in an union, vs. previously in an union), religion (Catholic vs. Muslim vs. 

Protestant vs. other) and ethnicity (Pepel vs. Fulani vs other ethnic groups). We also 

considered characteristics of the “index” pregnancy, i.e., the pregnancy/birth that 

prompted inclusion of the respondent in one of the sampling strata described above. For 

example, consider a woman who had 3 pregnancies recorded by the HDSS over the 

past 5 years: two of these pregnancies resulted in live births who then survived until age 

1, whereas the third pregnancy resulted in a live birth that later died after 7 days. This 

woman was then included in the “neonatal death” stratum, and the pregnancy 

characteristics we considered in these analyses concern the pregnancy that resulted in a 

neonatal death (the “index” pregnancy). These characteristics included gender of the 

child, place of delivery (at home, vs. at hospital, vs. at health center, vs. elsewhere) and 

whether the delivery took place via cesarean section. 

 

Evaluation of the accuracy of FBH data: We cross-tabulated the FBH data with reference 

data extracted from HDSS records. We did so separately for neonatal and post-neonatal 

deaths. We defined the sensitivity of FBH data as the proportion of respondents with 

neonatal/post-neonatal deaths in the previous 5 years according to the HDSS, who 

reported experiencing such events in the same timeframe during FBH. Conversely, we 

defined the specificity of FBH data in recording neonatal/post-neonatal deaths as the 

proportion of respondents without neonatal/post-neonatal deaths in the previous 5 years 

according to the HDSS, who did not report such events in the same timeframe during 

FBH. We investigated whether the specificity of FBH data in recording neonatal deaths 

varied across the three sampling strata in which women had not experienced a neonatal 

death according to the HDSS (e.g., women who had experienced a stillbirth or a post-

neonatal death over the past 5 years).  

 



In this context, we defined a false negative report as a respondent with a neonatal/post-

neonatal death according to HDSS who did not report such a death during FBH. A false 

negative was attributed to 1) a date error if the respondent reported a neonatal/post-

neonatal death before the reference period; 2) an age error if the respondent reported a 

death in another age group during the reference period; 3) an omission if the respondent 

did not report any under-5 death or pregnancy termination during the reference period, 

and 4) a misclassification if the respondent did not report any under-5 death but reported 

a pregnancy termination during the reference period. Similarly, a false positive (i.e., a 

respondent without a neonatal/post-neonatal death according to HDSS who nonetheless 

reported such a death during FBH) was attributed to 1) a date error if the respondent 

reported a neonatal/post-neonatal death that had occurred prior to the reference period 

as having occurred during the reference period; 2) an age error if the respondent had 

experienced a neonatal, post-neonatal or child death according to HDSS but mistakenly 

reported it as having occurred in another age group during the reference period; and 3) a 

misclassification if the respondent had experienced a pregnancy termination according 

to HDSS but reported it as a neonatal death during the reference period of the FBH. All 

these analyses used sampling weights to account for differences in the probabilities of 

selection and participation across strata. For each estimate of a proportion described 

above, we calculated the 95% confidence interval.  

 

Effects of FBH reporting errors on NMR estimates: We devised a mathematical model to 

investigate the effects of reporting errors in FBH data on the accuracy of NMR 

estimates. Briefly, this model links the true NMR in a population to a survey estimate of 

the NMR, via a set of conditional probabilities describing reporting errors in FBH (e.g., 

sensitivity, specificity). A complete description of the model is given in appendix A2. 

Following a common approach in assessments of perinatal mortality data (22), we 



applied this model to data series from England and Wales, where live births, stillbirths, 

neonatal deaths, infant and under-5 deaths have been reported annually since the 

1920’s (appendix A3). For each 5-year time period, we used our model and our 

validation results to calculate the estimate of the NMR that would have been obtained if 

a FBH survey had been conducted in this population. Then, we compared this 

counterfactual estimate to the estimate that was recorded through vital statistics in 

England and Wales.  

 

Our estimates of the accuracy of FBH data (e.g., sensitivity) are affected by sampling 

errors. To account for this uncertainty in our assessment of the effects of reporting errors 

on NMR estimates, we calculated 95% confidence intervals. For each population-period, 

we generated 1,000 survey estimates of the NMR through random draws from the 

distributions of each reporting parameter (e.g., sensitivity), in conjunction with model 

equations. We then calculated the 2.5th, 50th and 97.5th percentiles of the distribution of 

these estimates, and compared them to the NMR estimates available from vital statistics 

(England & Wales) 

 

Robustness tests: Because our reference data (HDSS) in this validation study do not 

constitute a gold standard measure of neonatal mortality, we performed several tests to 

evaluate the robustness of our findings to possible errors in HDSS data. We conducted a 

series of re-analyses of the validation study data in which we 1) randomly reclassified 

events recorded by the HDSS datasets (e.g., some stillbirths were recoded as neonatal 

deaths, and vice-versa), and 2) introduced additional neonatal deaths in the HDSS 

dataset to account for the potential incompleteness of HDSS registration of pregnancies. 

We developed 4 conservative scenarios, reflecting the likely magnitude of possible 

errors in HDSS data on neonatal mortality. The scenarios are described in Appendix A4. 



We replicated each scenario 1,000 times, and re-calculated our study outcomes (e.g., 

sensitivity of FBH data) in each of these replicates. We then evaluated whether our 

assessment of the direction of bias in NMR estimates derived from survey data would be 

altered in each scenario. Throughout these robustness tests, we assumed that the 

recording of dates and ages is accurate in HDSS due to the intensive follow-up by HDSS 

fieldworkers. We thus do not introduce age errors or date displacements in HDSS data.     

 

Differential reporting between population groups: Finally, we investigated differences in 

FBH accuracy between population groups. We focused on non-reported neonatal deaths 

in FBH (i.e., false negatives) because there were too few cases of other errors (e.g., 

false positives). Among respondents who experienced a neonatal death according to 

HDSS, we created a binary variable indicating whether they reported such a death 

during the FBH survey (i.e. a true positive). We then used logistic regressions to assess 

the association between maternal and child characteristics on one hand, and the 

likelihood of reporting a neonatal death during the survey on the other hand. For these 

analyses we also considered the sampling weights described above.  

 

Using the mathematical model in appendix A2, we investigated whether differences in 

the sensitivity of FBH data between population groups might lead to bias in survey 

estimates of the differences in NMR between those groups. We focused on differentials 

in NMR associated with maternal education because the 2014 MICS suggested a large 

NMR gradient by maternal education (41). We analyzed two hypothetical scenarios, 

which represent two possible patterns of inequalities in perinatal and under-5 survival. In 

the first scenario (“constant inequality”), the risks of stillbirth and under-5 mortality rates 

(e.g., neonatal and post-neonatal),are elevated by a similar factor among mothers 

without schooling, relative to mothers with secondary school or higher. In the second 



scenario (“age-varying inequality”), the risks of stillbirth and neonatal deaths are 

elevated by a similar factor among mothers without schooling, but there are no 

differences in the risk of post-neonatal mortality and in the risk of dying at ages 1-4 years 

old between the two educational groups. This latter scenario reflects contexts in which 

post-neonatal mortality is reduced to low levels throughout the population, due for 

example to a strong and equitable vaccination program (50, 51). The scenarios are 

described more fully in appendix A5. In each scenario, we let the true risk ratio of 

neonatal mortality associated with lack of maternal education vary between 1 and 2.5. 

We then plot the relationship between the true and estimated risk ratios. All data 

analyses were carried out using STATA 14. 

 

RESULTS 

 

We selected 599 records of women aged 15-49 years old among HDSS rosters (figure 

2). After reviewing HDSS and linked hospital records, we excluded 13 women who had 

died prior to the study, 3 who were duplicate registrations, and 1 who was older than 49 

years old. Thus, we contacted 582 women to offer study participation. Among those, 7 

had died prior to our visit, and 80 had permanently migrated outside of the HDSS area 

since the last HDSS visit. They were thus ineligible for study participation. Among the 

495 women who were eligible for enrollment, 66 were absent at all 3 study visits, and 3 

were unknown. In addition, in two instances, we interviewed someone who was not the 

target HDSS resident. This was detected initially by large discrepancies between the age 

reported by the respondent (>20 years) and her birth record in the HDSS. It was then 

confirmed by household inquiries made by study supervisors. In two other instances the 

respondent was registered by the HDSS only after the birth of (one of) her child(ren). As 

a result, prospective data on neonatal mortality are not available for these two 



respondents and they were excluded. Our analytical sample thus included 422 women, 

yielding an overall participation rate of 85.3% (422/495).  

 

[FIGURE 2 ABOUT HERE] 

 

The women included in this analytical sample were not older than those who were not 

included (appendix A1). In each sampling stratum, the women included in our analytical 

sample also did not differ from other women on key aspects of their pregnancy histories 

(Appendix A1). One exception to this pattern is related to the experience of post-

neonatal deaths: women included in the analytical sample appeared less likely to have 

experienced such a death than women who were not included (p=0.006). In total, 178 

respondents had experienced at least one neonatal death over the past 5 years 

according to the HDSS, 86 had experienced a post-neonatal death and 89 had 

experienced at least one stillbirth (figure 2).  

 

Approximately one in four respondents were aged 15-24 years old, whereas one in five 

were 35 years or older (table 1). The educational level was low, with 17.0% of 

respondents never having attended school. Two thirds of the respondents were in a 

union at the time of the survey, and 4.7% were divorced, widowed or had separated. 

Catholics and Muslims were the two main religious groups (46.6% and 32.5%, 

respectively), whereas Fula and Pepel constituted the two largest ethnic groups (20.1% 

and 27.3%, respectively). The majority of (index) children (live born or stillborn) were 

male; reflecting increased neonatal and post-neonatal mortality among boys in Bandim 

(52-54). Approximately, one in five index deliveries occurred at home, whereas 44.0% of 

those deliveries occurred in the national hospital Simao Mendes. Finally, only a small 

minority of the index deliveries (8.3%) occurred via cesarean section.  



 

[TABLE 1 ABOUT HERE] 

 

The sensitivity of FBH in recording neonatal deaths was moderate (table 2, 79.1%, 95% 

CI = 72.0% to 84.8%), but the specificity was high (99.3%, 95% CI = 98.9% to 99.6%). 

The specificity varied however depending on the pregnancy history recorded by the 

HDSS. Among respondents with at least one stillbirth in the past 5 years, specificity was 

86.6% (95% CI = 74.8 to 93.4%), whereas it was 84.0% (95% CI, 73.2% to 90.9%) 

among respondents with a post-neonatal death in the past 5 years, and 100.0% (i.e., no 

false positive reports) among other respondents. The specificity of FBH in recording 

post-neonatal deaths was 99.9% (95% CI = 99.8 to 100.0%), whereas its sensitivity was 

69.1% (95% CI = 57.7% to 78.6%).  

 

[TABLE 2 ABOUT HERE] 

 

False negative reports of neonatal deaths were due in large part to misclassifications of 

neonatal deaths as stillbirths (43.4%, figure 3). However, omissions also accounted for 

close to a third of false negatives (30.4%). Date displacements and age errors 

accounted for smaller proportions of false negatives (18.0% and 8.2%, respectively). For 

post-neonatal deaths, the majority of false negatives stemmed from age under-

statement and omissions.  

 

[FIGURE 3 ABOUT HERE] 

 

Among false negative reports of neonatal deaths, the sources of error differed between 

deaths that had occurred in the early neonatal period (0-6 days) and those that occurred 



in the late neonatal period (7-27 days) according to the HDSS (Appendix A6). Among 

early neonatal deaths that were not reported during FBH, close to two thirds were 

attributed to misclassifications. All of those deaths were neonatal deaths that had 

occurred on the day of birth according to the HDSS.  On the other hand, there were no 

misclassifications among the deaths that occurred in the late neonatal period according 

to the HDSS. Instead, errors in that period originated in roughly equal proportion from 

date errors, age over-estimates and omissions.  

 

False positive reports of neonatal deaths in FBH data were primarily due to 

misclassifications of stillbirths as neonatal deaths (62.7%, figure 3). Other sources of 

false positive reports of neonatal deaths included age under-statement (31.4%) and date 

displacement (5.9%). All the false positive reports of neonatal deaths attributable to 

misclassifications were reported to have occurred within the first two days after birth 

according to the respondent. There were few false positive reports of post-neonatal 

deaths, but all of them were due to age over-statement. 

 

When inserted into our mathematical model, these patterns of reporting errors appeared 

to imply that FBH data over-estimates the NMR. When applied to data from England & 

Wales between 1927 and 2017 (figure 4), our model predicted a survey estimate of the 

NMR that would be 4.7% to 19.8% higher than the NMR reported from vital statistics. 

This upward bias appeared to be highest for time periods when the “true” NMR was 

either high (approximately 30 per 1,000), or low (< 5 neonatal deaths per 1,000) in 

England and Wales. The confidence intervals associated with our estimates of bias in 

survey estimates of the NMR were however wide. Except for a cluster of estimates when 

neonatal mortality was around 30 deaths per 1,000 live births in England and Wales, the 



confidence intervals routinely included the possibility that a FBH survey would result in a 

NMR that was either unbiased or too low (i.e., bias <1).   

 

 

[FIGURE 4 ABOUT HERE] 

 

 

In robustness tests (figure 5), we explored how our findings might be affected by errors 

in reference HDSS data. We found that our assessment of the direction of bias in NMR 

estimates obtained from survey data would not be altered by the introduction of such 

errors. Even in a very conservative scenario (scenario D) where we considered that 

misclassifications were common in HDSS data, and that the HDSS might have failed to 

record up to 1 in 5 pregnancies, FBH data would on average still lead to over-estimates 

of the NMR in most settings similar to those observed in England and Wales.  

 

[FIGURE 5 ABOUT HERE] 

 

We found limited differences in the likelihood of accurately reporting a neonatal death 

(sensitivity) across maternal and child characteristics (table 3). However, the sensitivity 

of FBH data was associated with the educational level of respondents in our sample: 

among women with secondary schooling or higher, it was 87.0% vs. 69.6% among 

women with no schooling. In adjusted logistic regressions, the odds of accurately 

reporting neonatal deaths were 3.58 times higher among women with secondary 

education or higher than those with no schooling (95 % CI = 1.05 to 12.2).  

 

[TABLE 3 ABOUT HERE] 



 

In figure 6, we investigated the impact of such differentials in the sensitivity of FBH data 

on our ability to detect differences in NMR between educational groups using survey 

data. We found that these reporting patterns would lead to under-estimates of the extent 

of educational inequalities in NMR in the two scenarios we considered (figure 6). In 

these scenarios, when there were no educational differences in NMR (rate ratio = 1), 

FBH data erroneously suggested that the children of women without schooling 

experienced lower neonatal mortality than the children of women with secondary school 

education or higher. When there were large educational differences in NMR, FBH data 

yielded estimates of rate ratios that were too low (e.g., 1.85 vs. 2.5 in the scenario of 

“age-varying inequality”).  

 

[FIGURE 6 ABOUT HERE] 

 

 

DISCUSSION 

 

Using a high-quality reference dataset from the Bandim Health Project in Guinea-Bissau, 

we found that FBH data collected during surveys had high specificity (99.3%) but 

moderate sensitivity (79.1%) in recording neonatal deaths. These estimates of the 

accuracy of FBH data on neonatal deaths are comparable to those obtained in a prior 

validation study conducted in Matlab, Bangladesh in the 1990’s (38), where a sensitivity 

of 82.0% was obtained. However, our estimates of the sensitivity of FBH data in 

recording post-neonatal deaths in Guinea-Bissau were much lower than those obtained 

in Bangladesh (69.1% in Bandim vs 87.0% in Matlab).     

 



Our validation study adds to prior work on the accuracy of FBH data in several important 

ways. First, we provided estimates of the specificity of FBH in recording neonatal and 

post-neonatal deaths. Such estimates were not available from the Matlab study in 

Bangladesh, even though they are crucial in evaluating the potential consequences of 

reporting errors on the accuracy of mortality estimates. Indeed, since neonatal (and 

post-neonatal) deaths are rare events, large biases can result from even small 

imperfections in the specificity of survey data on these events. Second, we investigated 

the sources of errors in FBH data. We showed that FBH data on neonatal mortality were 

vulnerable to all 4 potential sources of reporting errors: date displacement, age errors, 

omissions and misclassifications. In particular, we found that stillbirths were often 

misclassified as neonatal deaths, whereas a number of post-neonatal deaths were 

transferred to the neonatal period due to age errors. This information might play a key 

role in guiding data improvement strategies and the development of new statistical 

models of the NMR that account for reporting errors in FBH data.  

 

We found that the reporting errors observed in our validation study might lead to an 

upward bias in survey estimates of the NMR. Using a simple mathematical model 

applied to historical data from England and Wales on the distribution of perinatal and 

other under-5 deaths, we found that FBH data might lead to over-estimates of the NMR 

ranging from approximately 5 to 20%. These data on England and Wales spanned a 

broad array of perinatal and under-5 survival contexts, characterized by neonatal 

mortality rates ranging from 2.5 to >30 per 1,000 live births. The highest levels of bias in 

survey estimates of the NMR were however apparent at the highest levels of the NMR 

observed in England and Wales, i.e., approximately 30 neonatal deaths per 1,000 live 

births. Due to the lower sensitivity of FBH data on neonatal deaths among respondents 



with low educational levels, we also found that FBH data might underestimate the extent 

of educational differentials in NMR.  

 

Our study has several limitations. First, the size of our validation sample was too limited 

to estimate various reporting parameters precisely. For example, our estimates of the 

extent of age transfers between neonatal and post-neonatal groups were based on a few 

cases, thus resulting in high levels of uncertainty. This subsequently affected our 

assessment of the impact of reporting errors on the accuracy of NMR estimates (figure 

4), which resulted in wide confidence intervals that often included the possibility that the 

survey estimate was unbiased. Because of the limited sample size, we also could not 

investigate more detailed patterns of reporting errors. We thus could not assess the 

covariates associated with false positive reports of neonatal and post-neonatal deaths, 

nor were we able to determine if the sources of errors varied according to key 

characteristics of the respondent (e.g., educational level).  

 

Second, we used the FBH instrument that was implemented in the 2014 Guinea-Bissau 

MICS, but that instrument only inquired about pregnancy terminations, rather than 

asking respondents to also report the type of pregnancy termination they experienced 

(e.g., stillbirths or miscarriages). Due to these limitations of the survey instrument, we 

could not investigate the quality of survey measures of the stillbirth rate. Our assessment 

of the sources of errors in FBH data may also have been slightly biased. Indeed, when a 

neonatal death was not reported (false negative), we attributed this error to 

misclassifications between stillbirths and neonatal deaths as long as the respondent 

reported at least one pregnancy termination during the reference period. But if that 

pregnancy termination was not a stillbirth (e.g, if it was a miscarriage or an abortion), 

then the error might instead have been attributed to an omission instead.  



 

Third, our reference HDSS dataset might have been affected by a number of errors in 

the recording of neonatal deaths. On the one hand, it might have included a number of 

misclassifications between stillbirths and neonatal deaths. Such errors might even be 

present in data from hospital settings, because in Bissau as in most other LMICs, health 

workers do not use monitors to precisely determine whether the delivery resulted in a 

detectable fetal heartbeat. Additionally, the HDSS might also have failed to record a 

number of pregnancies that have occurred in the target population. As a result, some 

participants in our study might have experienced a neonatal death among their children, 

even though the HDSS failed to record it. In robustness tests however, we obtained 

similar results after randomly reclassifying a varying fraction of all stillbirths, and of the 

neonatal deaths that occurred within a few days of delivery. Our robustness tests also 

indicated that even high levels of incompleteness in pregnancy records included in 

HDSS datasets would not alter our conclusions about the direction of bias in NMR 

estimates. 

 

Fourth, our results may not be representative of other settings where FBH data are 

collected in LMICs. Our study population was urban, and thus our results likely do not 

extend to rural areas. Our study also did not include a number of potential participants 

who had either migrated permanently or were temporarily absent from the Bandim 

HDSS area. Finally, we found that the women who were included our analytical sample 

experienced fewer post-neonatal deaths among their children than women who could 

not be included. These patterns of selectivity might have affected our estimates of the 

sensitivity and specificity of FBH data in recording neonatal and post-neonatal deaths. 

 



Fifth, our study did not measure the full extent of reporting errors among live children 

and among children who died at ages one year and above. We were only able to 

document some age errors that transferred those older children to the post-neonatal 

period, and we did not find any age errors that led to transfers from 1-4 years old to the 

neonatal period. We were not able to measure the prevalence of omissions and date 

displacements among live children, nor were we able to measure the extent of age 

errors that would transfer deaths among 1-4 year olds to the 5-9 year old age group. In 

our modeling of study data, we thus made assumptions about these reporting patterns,  

(see appendix A2). This is problematic because such errors in FBH data would lead to 

an upward bias in estimates of the NMR, by excluding a number of births from its 

denominator while leaving its numerator largely unaffected. In our analyses, we 

investigated how much these reporting parameters might impact the survey estimates of 

the NMR. We found that misreporting of child deaths might only have a limited, because 

such deaths have become increasingly rare over time. On the other hand, omissions and 

displacements of live children aged 0-4 years old might have a strong effect on biases in 

these estimates.  

 

To parameterize our analyses, we used estimates of the prevalence of omissions and 

date displacements among live children and deaths between ages 1-4 years old 

computed by Pullum and Becker (2014). However, in doing so, we used their median 

estimates of the extent of these errors, whereas in some surveys they found that age 

transfers in particular could be much more prevalent. If errors in the reporting of FBH 

data about live children and about deaths among 1-4 year olds are more common than 

we assumed in this study (appendix A2), then the upward bias in survey estimates of the 

NMR might be larger than we estimated. 

 



Sixth, HDSS participants in Bandim are frequently interviewed and followed-up about 

their reproductive health and the survival of their children. They may thus report their 

FBH more accurately during a survey interview than other women who are not in such 

frequent contact with data collectors. As a result, the extent and magnitude of reporting 

errors in FBH data might be larger in settings without similar follow-up. Additional 

validation studies of FBH data should be conducted in diverse LMIC settings with less 

intensive follow-up, for example through record linkages with antenatal care clinics. 

 

Finally, we did not measure potential errors in the reporting of the clustering of neonatal 

or post-neonatal deaths among mothers (i.e., women experiencing multiple such events 

over a short period of time). This was not possible because of the limited extent of this 

clustering in areas covered by the Bandim HDSS (table A1). Indeed, in our sample, only 

7 participants (<2%) had experienced more than 1 neonatal death among their children 

over the past 5 years according to the HDSS. Among those, only one did not report any 

neonatal death, whereas the other 6 participants reported all the neonatal deaths that 

were also recorded by the HDSS.  

 

Despite these limitations, our study has important implications. On the one hand, it 

suggests that in order to improve the accuracy of FBH data collected during surveys, a 

combination of strategies might be needed. To avoid omissions of neonatal deaths, FBH 

questionnaires might be supplemented by probing questions or prompts asking 

respondents about events that might be more likely to be left out of birth histories (e.g., a 

death having occurred shortly after birth). To reduce the prevalence of misclassifications 

between stillbirths and neonatal deaths, FBH questionnaires might be supplemented by 

a series of questions about the vital signs displayed by newborns, e.g., what their skin 

condition looked like, and whether they moved, cried or breathed. Such questions are 



often included in VA questionnaires, and might allow reclassifying a number of live births 

as stillbirths if the reported newborn did not display signs of life (37). Since 

misclassifications only appear to affect newborns that have died in the early neonatal 

period (appendix A6), these questions might be limited to that sub-group in order to save 

time and resources during surveys. In addition, survey questionnaires might be 

expanded to include a full pregnancy history, during which respondents are asked not 

only to list all of their live births as in FBH, but also the pregnancies that did not result in 

a live birth. This approach might help collect more accurate data on infant survival (38), 

by 1) limiting omissions of neonatal deaths, and 2) affording additional opportunities to 

probe for the proper classification of events as stillbirths or neonatal deaths. Large-scale 

trials comparing FBH data to data from full pregnancy histories are currently under way 

(18). Finally, to reduce age errors and date displacements, survey questionnaires might 

incorporate event history calendars, which have helped improve the quality of adult 

mortality data (55, 56).  

 

On the other hand, our study also indicates that FBH should be used cautiously in the 

development and evaluation of new methods to estimate neonatal mortality. Indeed, 

FBH have recently served as a benchmark against which new data collection platforms 

or statistical models to measure NMR are evaluated (17, 19). While they represent the 

current best practice in mortality measurement in LMICs with limited vital records, FBH 

data also misrepresent the true extent of neonatal mortality in potentially complex ways. 

As a result, biases in NMR estimates obtained from FBH data might be transferred to 

these new methods. When possible, evaluations of new measurement tools should 

account for the possibility of bias in FBH data.  

 



Finally, our study highlights that survey data collected through FBH might misrepresent 

progress towards the achievement of global health objectives related to newborn health, 

particularly for the most disadvantaged population groups. In order for FBH data to 

adequately play their expected role in the stewardship of global health programs 

targeting newborn and child health, they require statistical adjustments that properly 

account for the added bias and uncertainty linked to reporting errors. The development 

of such adjustments will likely require additional validation studies in other LMICs, to 

better understand whether the patterns of sensitivity and specificity of FBH data might 

differ in other settings, relative to what we observed in Guinea-Bissau. It will also require 

the development of statistical models that adequately reflect these properties of FBH 

data in their estimates of the NMR and associated assessments of uncertainty. This 

should constitute a priority for institutes and organizations currently engaged in 

assessing progress towards the achievement of the neonatal mortality target of the 3rd 

sustainable development goal.   
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Figure 1: an example of reporting errors in full birth history data 
 
Notes: DOB = Date of birth, AAD = Age at death. In this example, baby #1 and baby #2 were affected by date errors. Baby 
#3 was affected by age over-statement, whereas baby #4 was an omission.

Baby #1 
DOB: 01/01/2009 

Baby #2 
DOB: 12/01/2011

Baby #3 
DOB: 16/06/2013 

AAD: 10 days 

Baby #4 
DOB: 26/08/2016 

AAD: 1 day 

Baby #1 
DOB: 01/06/2010 

Baby #2 
DOB: 12/01/2012

Baby #3 
DOB: 16/06/2013 

AAD: 1 month 

TRUE BIRTH HISTORY: 
 

REPORTED BIRTH HISTORY: 
 

Interview 



Figure 2: flow chart of study enrollment 

  
33,387 women 15-49y 

residing in Bandim 
HDSS (11/2015) 

599 sampled from 
HDSS datasets 

582 contacted for study 
participation 

13 deceased according 
to record update 

3 duplicate registrations 

1 older than 49 years 

7 reported deceased 

80 migrated outside of 
HDSS area 

66 absent at all visits 

3 unknown 

426 interviewed during 
study 

422 included in 
analytical sample 

2 were not target 
respondents 

2 without reference 
mortality data  

178 with at least 
one neonatal 

death 

86 with at least 
one post- 

neonatal death 

89 with at least 
one stillbirth 

69 other women 
aged 15-49y 

495 eligible for study 
participation 



 
 
Maternal and child characteristics N(%) 
Maternal variables  

Age group  
15-24y 106 (25.2) 
25-34y 226 (53.5) 
≥ 35y 90 (21.3) 

Schooling  
None 72 (17.0) 
Primary 137 (32.5) 
Secondary or higher 213 (50.5) 

Marital status  
Currently in a union 284 (67.2) 
Never in union 118 (28.0) 
Previously in union 20 (4.8) 

Religion  
Catholic 198 (47.0) 
Muslim 135 (32.0) 
Protestant 49 (11.5) 
Othera 40 (9.5) 

Ethnicity  
Fula 86 (20.3) 
Pepel 116 (27.5) 
Otherb 220 (52.2) 

Child variablesc  
Gender  

Male 261 (61.9) 
Female 161 (38.1) 

Place of birth  
At home 92 (21.7) 
At national hospital 187 (44.5) 
At health center 85 (20.3) 
Other place 57 (13.5) 

Cesarean section  
No 391 (92.6) 
Yes 31 (7.4) 

Table 1: reported characteristics of participants 
Notes: the figures in the table are weighted to account for differences in sampling probabilities and non-response 
across the sampling strata. Figures in parentheses are column percentages.  
a Other religions include primarily respondents practicing traditional beliefs and religions. 
b Fulas and Pepels are the two largest ethnic groups. Other ethnic groups include primarily Manjacos, Mandingas and 
Balantas.  
c These variables refer to the child/delivery, which prompted inclusion of the respondent in her sampling stratum. For 
example, if a respondent had 3 live births over the past 5 years including one that resulted in a neonatal death, and 
two that are still alive, according to the HDSS, then these variables refer to the neonatal death.  
 



 
 Neonatal deaths Post-neonatal deaths 
 Sensitivity Specificity Sensitivity Specificity 
Overall 79.1% 

(72.0% to 84.8%) 
99.3% 
(98.9% to 99.6%) 

69.1% 
(57.7% to 78.6%) 

99.9% 
(99.8 to 100.0%) 

Sub-groups     
Respondent w/ stillbirth -- 86.6% 

(74.8% to 93.4%) 
-- -- 

Respondent w/ post-neonatal 
death 

-- 84.0% 
(73.2% to 90.9%) 

-- -- 

Other respondents -- 100.0% 
(--) 

-- -- 

Table 2: sensitivity and specificity of FBH data in recording neonatal and post-neonatal deaths 
Notes: specificity is the proportion of respondents who did not experience a neonatal death during the reference period 
according to the HDSS, who also did not report such a death during the FBH survey; sensitivity is the proportion of 
respondents who experienced a neonatal death according to the HDSS during the reference period who also reported such a 
death during the survey. All figures are weighted to account for sampling design and non-response. 



Figure 3: sources of error in FBH data 
Notes: Date displacement refers to events reported to have occurred earlier/later than recorded 
by the HDSS, leading to erroneous exclusion/inclusion from the reference period. Age under-
statement refer to errors resulting from the fact that a respondent reported her child’s age at 
death too low compared to the age at death recorded in the HDSS dataset. Age over-statement 
refers to the opposite situation. Misclassification refers to events that were reported in a manner 
that does not correspond to HDSS records. For example, a respondent with a neonatal death 
according to HDSS who did not report such a death during the survey (false negative) might have 
reported a stillbirth instead. Omission refers to respondents with a neonatal death according to 
the HDSS who did not report such a death during the survey, and who also did not report a 
stillbirth nor a post-neonatal death.  
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Figure 4: Effects of reporting errors on survey estimates of the neonatal mortality 
rate 
Notes: We used the mathematical model described in appendix A2, along with data from 
England & Wales (described in appendix A3); to calculate the survey estimates of the 
NMR that would have been obtained in a population if a FBH survey had been 
conducted with the reporting parameters observed in Bandim. The bias is obtained by 
dividing the calculated survey estimate of the NMR by the true level of the NMR in the 
population of interest. A bias above 1 indicates that FBH data would over-estimate the 
level of NMR in, whereas a bias under 1 indicates that survey data would under-estimate 
the level of the NMR. The 95% confidence intervals represented in this figure are 
obtained from 1,000 draws from the distributions of the reporting parameters. Annual 
data from England and Wales were aggregated into consecutive 5-year periods (e.g., 
1927-1931, 1932-1936) to ensure that our counterfactual survey estimates did not 
include overlapping sets of events.   
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Figure 5: Robustness tests 
Notes: in these figures, we recalculated study outcomes (e.g., sensitivity, specificity) 
after randomly re-classifying and possibly adding a certain number of events in the 
HDSS datasets according to scenarios defined in appendix A4. In these graphs, the 
surfaces are colored according to an analysis that takes the HDSS datasets at face 
value, similar to figure 4. The darker blue areas then represent the combinations of 
parameters for which a FBH survey would yield an under-estimate of the NMR, whereas 
the light blue areas represent the combinations of parameters for which a FBH survey 
would yield an over-estimate of the NMR. At the boundary between the darker blue and 
light blue areas, the FBH survey yields an unbiased estimate of the NMR. The black 
contour line on each graph represents the location where the boundary between over 
and under-estimates would be placed if the HDSS dataset contained the errors assumed 
in each scenario. For example, in scenario A, the boundary would be shifted downwards 
slightly, whereas in scenario D, the boundary would be shifted upwards, so that a 
greater number of parameter combinations would result in under-estimates of the NMR. 
We replicated each scenario 1,000 times, and in these graphs, the boundary drawn in 
black represents the 50th percentile of the distribution of these replicates. 
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 Sensitivity 

(%) 
P-
value 

uOR of true 
positive 
(95% CI) 

aOR of true 
positive 
(95% CI) 

Maternal variables     
Age group  0.900   

15-24y 81.2%  Ref Ref 
25-34y 78.0%  0.82 (0.33 to 2.01) 0.87 (0.33 to 2.32) 
≥ 35y 78.3%  0.83 (0.26 to 2.61) 1.12 (0.22 to 5.64) 

Schooling  0.068   
None 69.6%  Ref Ref 
Primary 75.9%  1.38 (0.53 to 3.61) 1.95 (0.63 to 6.01) 
Secondary or higher 87.0%  2.92 (1.20 to 4.36) 3.58 (1.05 to 12.2) 

Religion  0.278   
Catholic 84.5%  Ref Ref 
Muslim 71.8%  0.47 (0.18 to 1.19) 0.90 (0.25 to 3.24) 
Protestant 81.0%  0.78 (0.22 to 2.75) 1.06 (0.31 to 3.64) 
Other 86.1%  1.14 (0.25 to 5.13) 3.47 (0.48 to 25.4) 

Marital status  0.271   
Currently in an union 76.3%  Ref Ref 
Never in union 88.2%  2.31 (0.78 to 6.87) 2.27 (0.77 to 6.71) 
Previously in union 73.3%  0.85 (0.19 to 3.75) 0.45 (0.07 to 2.94) 

Ethnicity  0.527   
Fula 72.2%  Ref Ref 
Pepel 81.9%  1.74 (0.59 to 5.13) 0.69 (0.15 to 3.28) 
Otherb 80.6%  1.60 (0.62 to 4.12) 0.88 (0.26 to 3.02) 

Child variablesc     
Gender  0.426   

Male 81.4%  Ref Ref 
Female 76.1%  0.73 (0.33 to 1.59) 0.55 (0.23 to 1.34) 

Place of birth  0.759   
At home 81.6%  Ref Ref 
At hospital 75.7%  0.70 (0.24 to 2.08) 0.43 (0.13 to 1.50) 
At health center 81.6%  1.01 (0.28 to 3.59) 0.60 (0.15 to 2.33) 
Other place 86.5%  1.45 (0.23 to 9.00) 1.51 (0.13 to 17.9) 

Cesarean section  0.549   
No 79.8%  Ref Ref 
Yes 74.1%  0.72 (0.25 to 2.10) 0.74 (0.21 to 2.61) 

Table 3: Correlates of the sensitivity of FBH on neonatal deaths (n =174) 
Notes: all figures were calculated after accounting for sampling design and non-
response by using sampling weights. uOR = unadjusted odds ratios; aOR = adjusted 
odds ratios. aORs were calculated from a logistic regression that included all covariates 
appearing in this table.  
 
 
 
 
 
 
 
 
 



Figure 6: implications of reporting errors for measurement of educational 
differentials in NMR 
Notes: In each panel, the solid red line represents equality between true and estimated 
rate ratios. Below that line, the survey under-estimates the extent of differences in NMR 
between educational groups. Above that line, the opposite is true. The left panel 
represents a hypothetical scenario of “constant inequality”, in which the risks of 
stillbirths, neonatal deaths and post-neonatal deaths are increased by a similar factor 
among the least educated group. The right panel represents a hypothetical scenario of 
“age-varying inequality”, in which the risks of stillbirths and neonatal deaths are 
increased by a similar factor among the least educated group, but there are no 
differences in post-neonatal mortality between the least and most educated groups. The 
confidence intervals represented in this figure are obtained from 1,000 draws from the 
distributions of the reporting parameters.  
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