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Abstract: Dementia affected 16 million people and caused 110,000 deaths in the U.S. 

Dementias result from neuropathology and cause decrements to episodic memory. 

Alzheimer’s disease and related dementias (ADRD) or by cerebro-vascular and ischemic 

disease (VaID) cause most dementias, but these are unreliably identified in population 

data since diagnoses are difficult and expensive. The current study used pattern 

recognition on longitudinal trajectories of cognitive decline to identify latent, often 

unreported, cases of VaID and ADRD. The resulting method was reliably able to both 

identify and differentiate between these two causes of disease. Incidence of VaID and 

ADRD identified in this way was 40.23/1,000 (95% CI = [39.40-41.08]) and 27.63/1,000 

(95% CI = [26.97-28.29]) person-years respectively and was highly concordant with 

reported diagnoses. Age was significantly associated with higher incidence of both. This 

was the first study to use pattern recognition to identify and differentially identify latent 

neuropathology. 

 

  



Dementia affects 16 million people in the United States1, and was recorded as the 

underlying cause of death in as many as 110,000 deaths in 2017 2. More than 99% of all 

dementias fall into two main types: Alzheimer’s disease and related dementias (ADRD) 

accounting for approximately 60-80% of all cases 3; and cerebro-vascular and ischemic 

disease (VaID), which accounts for most of the remaining dementia cases 4. ADRD and 

VaID are both preceded and by different types of changes to cognitive functioning, 

making differential diagnosis difficult. However, ADRD is characterized by progressive 

losses of capability across domains of “fluid” cognition including episodic memory 5 

(Fig. 1). The end result is years of “accelerated declines” in cognitive function resulting 

in progression through milder forms of cognitive impairment to clinical limitations and 

dementia 6. In contrast, VaID is characterized by a rapid loss in functioning that may 

affect similar domains of cognition, but which cause losses over a very short period of 

time before stabilizing. Recent work has determined that patterns in ADRD might be 

usefully diagnosed using patterns in the rate of decline 7, this information has not been 

utilized to identify possible VaID. The objective of the current study was to examine the 

extent to which ADRD and VaID might be usefully identified using temporal patterns 

evident in longitudinal data. 

Methods 

We used waves 1-12 of the Health and Retirement Study (HRS), which collects 

cognitive data biennially starting in 1992 (response rate 81.6%). The HRS is open to 

enrollment at subsequent waves, and data are publicly available online 

(http://hrsonline.isr.umich.edu) 8. Because of the intense analytic requirements for 

differential diagnostic routines, respondents without at least 4 waves of data were 

http://hrsonline.isr.umich.edu/


excluded. The analytic sample therefore included 12,849 respondents who were observed 

a total of 111,349 times for up to 20 years per person (Tab.1).  

Measures 

Episodic memory is a critical measure of cognitive functioning that is both 

sensitive to cognitive aging and AD 9. To measure episodic memory, respondents were 

first provided with a list of 10 words and asked to correctly recall to their best ability with 

each correct one scoring one point. After 10-15 minutes of intermediate distraction 

questions, respondents were asked again to repeat all 10 words correctly to the 

interviewer to score the correct answers. The Total Episode Memory Index included the 

summation of both immediate and delayed verbal recall tests (/20 points). Because the 

first two waves utilized a 20-item word list, total scores for the two waves were divided 

by two to match later assessment procedures.  

Inferential Diagnoses  

Diagnostic categories were defined using a pattern recognition algorithm that was 

applied to each respondent in the database 10. The goal was to identify individuals whose 

longitudinal pattern of decline was similar to the diagnostic features shown in Figure 1. 

To accomplish this, a program searched through each individual’s data and determined 

whether each person’s data best fit the profile of 1) a linear pattern of change, 2) a piece-

wise linear accelerated pattern consistent with ADRD, or 3) a stepwise-linear pattern 

consistent with VaID. Since the pattern recognition program was particularly sensitive to 

random variation in the first or last waves, onsets occurring before the second or after the 

penultimate wave were ignored. Patient group and the best-fitting date of onset were 

recorded. In a small number of cases, the computer was unable to determine whether 



patterns were best fit by a VaID or ADRD patterns of decline, necessitating the creation 

of an “indeterminate” category.  

Respondent sex and date of birth were recorded. Since respondents with cognitive 

issues sometimes misreport current age, age in years was calculated using date of 

interview and date of birth. Year of birth was incorporated into longitudinal modeling 

efforts to account for baseline differences in functioning 11. Since there is a common 

reduction in cognitive function in the first time-point due to unfamiliarity with testing 

circumstances, a dichotomous indicator was incorporated that identified the first wave of 

assessment in both longitudinal modeling and pattern recognition analyses. Age in 

months was transformed into years.  

Validation 

In these data, diagnoses are available from self-reports. Self-reported stroke was 

recorded is a valid and reliable (AUC=0.99) method for identifying major stroke 12. 

Additionally, self-reported Alzheimer’s diagnoses were also available in waves 10-12, 

and were used to differentiate reported ADRD from stroke-related diseases in these data. 

Alzheimer’s diagnoses are notoriously bad, since relying on individuals with memory 

disorders to report diagnoses has low face validity, and because ADRD diagnoses are 

undercounted.   

Statistical Analyses 

Means and standard deviations, and percentages were used to describe the sample. 

Crude incidence rates were age-stratified. Crude incidence rates (IR) as well as age-

standardized incidence rates (aIR) were provided for the entire sample for both ADRD 

and VaID pathologies.  



Results 

Sample descriptive statistics (Tab. 1) revealed that respondents were in their 

sixties, on average, and was majority female and White. Bivariate results revealed that 

individuals with any indication of pathology were older than those without, and that those 

with ADRD or indeterminate pathology were older than those with Vascular pathology. 

On average, half of respondents had no observed pathology over the period of 

observation.  

[Table 1] 

Table 2 shows that those who were identified as having a VaID-pattern decline 

were also much more likely to report having had a stroke (AUC=0.86). The incidence 

rate for VaID-pattern declines was 40.23/1,000 (95% CI = [39.40-41.08]) person-years. 

Additionally, VaID-pattern cognitive declines were strongly associated with age (Figure 

2; HR = 1.046, 95% CI = [1.043-1.049], P<1E-06).  

[Table 2; Figure 2] 

Table 3 shows that those who were identified as having ADRD-pattern declines 

were also much more likely to report having had Alzheimer’s disease (AUC=0.68). The 

incidence rate for ADRD-pattern declines was 27.63/1,000 (95% CI = [26.97-28.29]) 

person-years. Additionally, ADRD-pattern cognitive declines were strongly associated 

with age (Figure 3; HR = 1.044, 95% CI = [1.042-1.047], P<1E-06).  

[Table 3; Figure 3] 

Next, we examined the overlap between reported and detected VaID and ADRD 

(Table 4). The first thing to note is that very few people reported having Alzheimer’s 

disease who did not also report having had a stroke. Secondly, there were a number of 



individuals who reported having a stroke who were determined to have ADRD-pattern 

declines. Finally, most of those who reported having a both a stroke and Alzheimer’s 

disease were, in our data, more likely to be identified as having ADRD-pattern declines. 

Critically, of those who did not report on either stroke or Alzheimer’s disease were often 

determined to have Alzheimer’s-pattern declines and/or strokes.  

[Table 4] 

Discussion 

This study used a pattern recognition algorithm to identify disease-specific shapes 

of cognitive decline as an objective metric indicative of the incidence of ADRD and 

VaID. This is the first study to examine the shape of longitudinal trajectories in order to 

identify and to further differentiate subtypes of dementia-causing neuropathology. This is 

also, to the authors’ knowledge, the first study to utilize pattern recognition on 

longitudinal epidemiologic data to identify any latent disease process. The methods used 

were able to reliably identify both ADRD and VaID-pattern declines in a sample of U.S. 

residents aged 50 and older with at least five observations. In this sample, this method 

was able to detect self-reported major strokes with high reliability (AUC=0.864, 95% CI 

= [0.859-0.869]) and ADRD with moderate reliability (AUC=0.677, 95% CI = [0.657-

0.696]). Further work is warranted to refine identification methods, and to further 

determine risk factors for ADRD and cerebrovascular-pattern cognitive declines.  

The pattern recognition method used in this study identified a large number of 

individuals with ADRD-pattern cognitive declines who did not report having a diagnosed 

dementia. This study expected to find many more ADRD-pattern declines than might be 

reported by respondents. ADRD is drastically under-diagnosed in population, with some 



estimates suggesting that as many as 50-80% patients with ADRD-related symptoms and 

neuropathology never receive a diagnosis 13. Additionally, this study identified ADRD-

patterns that may be still in preclinical phases since clinical diagnoses of dementia rely 

not on poor or degrading memory but rather on evidence of cognitive impairment 

accompanied by extant limitations in the ability to navigate social space 14. Nevertheless, 

further work seeking to validate these methods in identifying risk of latent ADRD 

neuropathology is critical in future work. 

VaID is caused by ischemic lesions ranging in size and impacts; however, the 

prevalence of these lesions and the type, location, and size needed to cause cognitive 

damage or impairment is unclear15. It is a huge challenge to make clinical and population 

diagnosis, as golden standard diagnosis relies on post-mortem evidence 16. Lacking 

evidence from neuroimaging, individuals or their representative are asked to determine 

the timing of symptoms in order to make a diagnosis 17. As a result, only major strokes 

are reliably diagnosed, most small strokes as well as many moderately large ones are 

never found. Since this process is difficult to disentangle from ADRD, most studies do 

not make a clear distinction between causes 18. This can result in lack of sufficient 

evidence for risk factors that are unique to any particular disease 19. Although recognized 

as a common cause of dementia in population-based cohorts 20, the lack of clear criteria 

and the low likelihood of detection make prevalence and incidence estimates from 

nationally representative studies suspect.  

Early dementia diagnoses create an opportunity to lower patient risks, prevent 

complications, and also help individuals to better prepare for their future 21. Thus, while 

there is currently no treatment, there is a need to develop methods to reliably identify 



dementia and its subtypes22. No studies have yet been found in clinical efforts sought to 

examine biomarkers23, neural characteristics24 or neuropsychological screening 

methods25, let alone population screening. Years of preclinical cognitive decline in 

longitudinal data fits dementia pathology patterns and in turn imply possibilities to utilize 

population-based data mining techniques to make a diagnose. Distinct from models 

replying on neuropsychological test cutoffs and using random slopes methods, we 

emphasized patterns of within-person change over time.  

Strengths & Limitations  

This study would be one of the earliest to provide modeling that is specifically 

focused on modeling both healthy aging and decline patterns and to differentiate subtypes 

of cognitive impairment. It associates longitudinal data closely with clinical pathology 

theories to seek the prevalence and distribution of the dementia and subtypes for the first 

time. Our method also helps estimate ADRD prevalence while avoiding an existing bias 

that relies on cutoffs which includes people who are consistently relatively low cognitive 

or in development of ADRD but not actually. A bias our model avoids is linear 

assumptions as within-person random slopes models made in precious studies. It might 

show a more convenient and less expensive way of limited clinical utility like cognitive 

neuropsychology or magnetic resonance imaging results to identify individuals with 

dementia or predict risk of dementia. While neuroimaging is increasingly feasible, it has 

not been reliably used to determine prevalence of the disease and remains a method for 

validation of findings rather than for determining the extent of disease in a population. 

We found more stroke cases than were otherwise reported, and it is therefore critical that 



future efforts seek to determine to what extent strokes identified in these types of data are 

corroborated by neuroimaging markers.  

Our method is designed to dementia patterns identification rather than accurate 

dementia diagnosis, so it is impossible to differentiate between different etiologies of 

disease. This study was limited in relying on self-reported diagnoses, undergoing 

dementia or stroke. Although “fluid” cognition is recognized as the main injury domains, 

stroke cases with slow or small losses to episodic memory, or concentrated on other 

domains of cognitive functioning, may also be missed. Finally, this study is also limited 

by the reliance on datasets with at least five follow ups occurring over a relative long 

period, implying that the number of databases able to use this type of method may be 

limited.  

Conclusions 

Diagnosing dementia and stroke is expensive and difficult, resulting in a large 

burden of disease that remains undiagnosed 26. This is problematic for research since 

those lacking diagnoses are likely to differ in a number of ways, including by level of 

access to healthcare or by level of connection with family members or friends needed to 

identify symptoms. This study sought to inferentially identify the incidence of ADRD 

and cerebrovascular diseases pathology by utilizing longitudinal decline patterns. The 

results are promising, but suggest that more work is warranted replicating, extending, and 

validating the current model. Given the potential importance of understanding timing of 

declines, future research is warranted to understand both healthy and pathological forms 

of cognitive aging. This study contributes to attempts to use simple cognitive variables to 

predicting subjects with a higher risk of developing dementia in the absence of 



Clinical tests among population. 
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Table 1. Descriptive characteristics at individual baseline of eligible participants for the 

entire sample and separated by inferential diagnosis 

 

Whole 

Sample  

No 

Pathology  

Vascular 

Pattern   

Alzheimer's 

Disease and 

Related 

Dementia 

Pattern  

Mixed or 

Indeterminate 

Pattern 

Characteristic Mean SD   Mean SD   Mean SD   Mean SD   Mean SD 

Age in years 61.84 8.73  59.97 7.79  63.42 10.03  63.46 8.69  65.05 8.84 

               
Characteristic %     %     %     %     %   

Race/Ethnicity               
White 75.44%   74.63%   75.15%   76.53%   77.76%  
Black 13.90%   14.30%   13.64%   13.53%   13.13%  
Other 2.09%   1.99%   2.33%   2.24%   1.72%  
Hispanic 8.57%   9.09%   8.89%   7.71%   7.39%  

Female sex 57.61%     55.87%     58.47%     59.23%     61.62%   

               

Group Size (n=18,102)   

(n=11,142 

[53.44%])   

(n=6,514 

[31.24%])   

(n=2,901 

[13.91%])   

(n=293 

[1.41%]) 

 

 

 

 

  



Table 2. Concordance between self-reported stroke and strokes detected using pattern 

recognition 

  

Reported 

Stroke  

No 

Reported 

Stroke  

VaID Pattern 6,045 1,031 

No Pattern 

Evident 556 5,198 

   

AUC (95% CI) 0.864 

(0.859-

0.869) 

RR (95% CI) 7.658 

(7.184-

8.164) 

   

Sensitivity  0.916 

Specificity  0.834 

Positive Predictive Value 0.854 

Negative Predictive Value 0.903 

Note: VaID: Cerebrovascular and ischemic disease. 

 

  



Table 3. Concordance between self-reported Alzheimer’s and detected ADRD-pattern 

declines  

  

Reported 

Alzheimer's  

No Reported 

Alzheimer's  

ADRD Pattern 395 4,928 

No Pattern 

Evident 150 8,333 

   

AUC (95% CI) 0.677 (0.657-0.696) 

RR (95% CI) 3.845 (3.22-4.592) 

   

Sensitivity  0.725 

Specificity  0.628 

Positive Predictive Value 0.074 

Negative Predictive Value 0.982 

Note: ADRD: Alzheimer’s disease or a related dementia. 

 

 

  



Table 4. Overlap between diagnoses reported and those that were identified using pattern 

recognition 

Reported 

Stroke 

No 

Pathology   

Vascular 

Disease 

Pattern   

Alzheimer's 

Disease and 

Related 

Dementia 

Patterning   

Mixed or 

Indeterminate   Total 

None reported 4,329  2  1,534  0  5,865 

Stroke reported 1,742  2,123  1,632  1,005  6,502 

Alzheimer's 

disease reported 33  0  25  0  58 

Both reported 33   115   204   72   424 

Missing report 2,285   854   1,798   317   5,254 

          
Total (without 

missing) 8,422   2,240   3,395   1,077   12,849 

 

  



Figure 1. Differential pathological characterization based on aging pattern in episodic 

memory 

 

Note: ADRD: Alzheimer’s disease or a related dementia. VaID: Cerebrovascular and 

ischemic disease. Declines occurred at a rate of -0.047 (95% CI = [-0.044, -0.049]) 

among those without pathology, but decayed faster for those with ADRD pattern declines 

(B = -0.535 (95% CI = [-0.525, -0.545]). The impact of strokes was relatively large, with 

those experiencing VaID-pattern declines showing a deficit of -1.764 words (95% CI = [-

1.721, -1.807]) on average afterwards. 
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Figure 2. Age-specific incidence of vascular-pattern cognitive declines 
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Figure 3. Age-specific incidence of ADRD-pattern cognitive declines.  
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