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Abstract

Mortality forecasting has received increasing attention during recent decades
due to the negative financial effects of longevity improvements on public and pri-
vate institutions’ liabilities. However, little work has been done on forecasting
mortality from a cohort perspective. In this article, we introduce a novel method-
ology to forecast adult age-specific cohort mortality from age-at-death distribu-
tions. We show that cohort forecasts can improve our understanding of mortality
developments, as well as allow us to complete the mortality experience of partially
observed cohorts. We illustrate our methodology on adult female cohort mortality
in two high-longevity countries using data from the Human Mortality Database.

1 Introduction

Continuous and widespread gains in life expectancy (Riley, 2001; Oeppen and Vaupel,
2002) are increasingly challenging governments and insurance companies to provide
adequate pension products and elderly health care in ageing societies. Mortality fore-
casting has thus gained relevant prominence during the last decades, as relatively
small differences in the expected lifetimes of pensioners can have significant effects on
financial institutions’ liabilities.

A growing number of models have recently been proposed to forecast human mor-
tality using stochastic methodologies that allow to draw probabilistic statements about
the future. For a comprehensive review, see Booth (2006). Unsurprisingly, the vast
majority of these techniques are based on period mortality: indeed, financial institu-
tions are typically interested in the mortality developments of a group of individuals
composed by different birth cohorts. In addition, cohort data might be outdated,
unavailable or incomplete, hence period life tables have been developed to analyse a
hypothetical cohort if its age-specific death rates pertained throughout its life (Preston
et al., 2001).
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Cohort forecasts of mortality are nonetheless interesting and worth exploring for
two main reasons. First, survival in real birth cohorts is different from survival in
the hypothetical situation of unchanged period mortality rates because of: (i) tempo
effects, (ii) cohort effects and (iii) selection (for a full discussion, see Borgan and
Keilman, 2018, Sect. 2). As such, analysing and forecasting cohort mortality could
provide additional insights on mortality developments that could not be discerned from
the period perspective. Second, due to the nature of the data, cohort forecasts can be
employed to complete the mortality experience of partially observed cohorts.

In this article, we propose a novel methodology to forecast adult cohort mortality
that is based on the distribution of deaths. Age-at-death distributions have recently
received growing interest in mortality forecasting (Oeppen, 2008; Bergeron-Boucher
et al., 2017; Pascariu et al., 2017; Basellini and Camarda, 2018). As we will show,
the distribution of deaths has convenient features that makes it particularly suitable
to forecast cohort mortality; we thus propose a new extension of a recently proposed
methodology to model and forecast adult age-at-death distributions (Basellini and Ca-
marda, 2018), and we employ our model to analyse and forecast cohort mortality.

This paper is organized as follows. In Section 2, we review the methodology
proposed in this article, and describe the data used in the analysis. Section 3 shows
the results for Swedish and Swiss female adult mortality for the cohorts 1880-1950. In
Section 4, we discuss the results and future steps of our research.

2 Methods & Data

2.1 The C-STAD Model

Suppose we have two adult age-at-death distributions defined on the age range x ≥ 40.
Specifically, let f(x) be a “standard”, or reference, distribution and g(x) an observed
distribution. Let t(x;θ) be a transformation function of the age axis and a vector of
parameters θ such that:

g(x) = f [t(x;θ)] , (1)

i.e. the distribution g(x) is derived from a warping transformation of the age axis
of f(x). In particular, the term “warping” originates in Functional Data Analysis
(Ramsay and Silverman, 2005) and refers to the nonlinear transformation of a time
axis to achieve close alignment of functions.

Our goal is to find a parsimonious yet flexible transformation function t(x;θ) that
allows us to capture mortality developments rigorously. Let θ′ = [s, bL, cL, dL, bU ] be
the vector of our model’s parameters, where s = Mg − Mf denotes the difference
between the adult modal ages at death of g(x) and f(x). Then, the proposed Cubic
Segmented Transformation Age-at-death Distributions (C-STAD) model can be written
as:

t(x;θ) =

{
Mf + bL x̃+ cL x̃

2 + dL x̃
3 if x ≤Mg

Mf + bU x̃ if x > Mg (2)

where x̃ = x− s−Mf , and the subscripts L and U refer to the Lower and Upper parts
of the segmented transformation (i.e. before and after Mg), respectively.
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The warping function t(x;θ) takes the form of a segmented transformation model
which breaks at the value of Mg. Below Mg, the transformation function is cubic, while
it is linear above Mg. Although acting on t(x;θ), the model’s parameters are directly
related to different summary measures of the age-at-death distributions. Specifically,
while s captures the difference in modal ages between g(x) and f(x), bL and bU measure
the change in variability before and after the modal ages of the two distributions. For
the ages below Mg, cL and dL further measure differences in terms of asymmetry and
heaviness of the left tail between g(x) and f(x), respectively. In terms of mathematical
moments, the parameters bL and bU can be related to the variance of the distribution
before and after the mode, while cL and dL can be related to the skewness and kurtosis
of the distribution.

Figure 1 provides a graphical illustration of the C-STAD model. For simplicity,
we start from the simple case in which bL = bU = 1 and cL = dL = 0. Substitution of
these parameters in Eq. (2) yields a unique transformation function t(x,θ) = x−s, and
a corresponding distribution g1(x) = f(x− s) via Eq. (1). In the left panel of Fig. 1,
the standard distribution (grey line) is shifted to the right by an amount equal to s,
and g1(x) (blue line) maintains the original shape of f(x). The right panel shows the
transformation function related to this simple shifting scenario. Note that a left-shift
could be simply obtained with a negative value of s.
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Figure 1. A schematic overview of the Cubic Segmented Transformation Age-at-death
Distributions model.

Different parameters’ values allow to capture broader mortality developments than
the simple shifting scenario described above. While bL and bU modify the variability
of the distribution g2(x) (orange line, left panel) w.r.t. f(x) before and after the modal
age at death, cL and dL affect the asymmetry and heaviness of the left tail of g2(x)
as compared to f(x). In the example shown in Fig. 1, bL > 1 reduces the variability
of g2(x) before Mg w.r.t. f(x), while bU < 1 increases the variability of g2(x) after
Mg w.r.t. f(x). The effects of cL and dL are difficult to discern from the left panel.
However, the right panel shows the warping transformation t(x,θ) applied to f(x) to
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derive g2(x); the transformation (orange line) is composed by a cubic function (due
to non-zero values of cL and dL) before the cut-off point Mg, and by a linear function
above Mg.

2.2 Data

In this article, we aim to estimate and forecast adult cohort mortality for females in
two high-longevity countries, namely Sweden and Switzerland. Since our interest is
restricted to the senescent component of mortality, we start our analyses from age 40.
Specifically, we employ observed death counts Dx,c and exposure-to-risk Ex,c, classified
by age at death x = 40, . . . , 110+ for cohorts born in c = 1880, . . . , 1950, collected in
two matrices of m rows and n columns.

Estimation and forecasting of the C-STAD model, discussed in the following sub-
section, is performed on three different groups of cohorts. The first group contains the
fully observed cohorts c1 = 1880, . . . , 1905, i.e. for this group, Dx,c1 and Ex,c1 have
been observed at all ages x. We select 1880 as the first year of analysis to have a
sufficiently long time window for fitting the model. The second group is composed by
cohorts c2 = 1906, . . . , c̃, where c̃ denotes the last cohort for which the adult modal
age at death has been observed. In other words, Dx,c2 and Ex,c2 are incomplete, but
Dx and Ex have been observed at least until the age x = M for all cohorts in c2.
For the populations analysed here, c̃ is 1925 and 1924 for Sweden and Switzerland,
respectively. Finally, the third group is composed by cohorts c3 = c̃+ 1, . . . , 1950, for
which Dx,c3 and Ex,c3 have been observed up to some age x < M . Figure 2 below
provides an illustration of the divisions of cohorts into the three groups by means of a
Lexis diagram. Figure 3 shows an example of the observed and missing data for three
age-at-death distributions belonging to the different groups of cohorts.

The data are derived from the Human Mortality Database (HMD, 2018), which
provides free access to historical mortality data for 43 different territories and countries.
The HMD is a collection of detailed, consistent and high quality human mortality
data that were subject to a uniform set of procedures, which allow cross-national
comparability of the information (Barbieri et al., 2015).

2.3 Estimation and forecast of the C-STAD parameters

The derivation of the standard distribution f(x) is the first step in the fitting procedure
of the C-STAD model. In order to do so, we start by considering only the group of
fully observed cohorts c1 discussed beforehand. Since it is desirable that f(x) contains
all the representative features of the fully observed distributions, we adopt a landmark
registration procedure to derive f(x) as the mean of the aligned distributions (Basellini
and Camarda, 2018).

Specifically, we assume that death counts Dx,c at given age x and cohort c follow
a Poisson distribution:

Dx,c ∼ P(Ex,c µx,c) (3)

where Ex,c is the exposure-to-risk and µx,c the hazard or force of mortality (Brillinger,
1986). In order to align the observed distributions to the one of the first cohort (1880 in
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Figure 2. A Lexis diagram illustrating the division of cohorts into three groups.
2015 is the most recent year of data collection, while the last cohort with observed
M is c̃ = 1925 (M = 2015 − c̃ = 90, brown dashed line). The three groups are then
c1 = 1880, . . . , 1905, c2 = 1906, . . . , 1925 and c3 = 1926, . . . , 1950.
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Figure 3. Example of observed and missing data for three age-at-death distributions
belonging to the groups of cohorts c1, c2 and c3.
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our case), we smooth observed death counts using a P -spline approach and exposures
as an offset (Eilers and Marx, 1996; Camarda, 2012). This procedure allows us to:
(i) derive the modal age at death M c for each cohort c (ii) obtain an estimate of the
parameter ŝc = M c −M1880, (iii) align all observed distribution gc(x) w.r.t. g1880(x),
and thus derive the standard f(x) as the registered mean (for additional details, see
Basellini and Camarda, 2018). Note that f(x) can be expressed as a linear combination
of equally spaced B-spline basis B(x) over ages x and coefficients βf specific to the
standard distribution:

f(x) = exp [B(x)βf ] . (4)

Next, we estimate the parameters θ̃′c = [bL, cL, dL, bU ] for each cohort c in the first
group c1 (we remove the subscript c inside the vector for simplicity). This is achieved
by maximising the Poisson log-likelihood:

lnL
(
θ̃c|Dx,c, Ex,c, sc,βf ,w

)
∝
∑
x

w
[
Dx,c log

(
µC-STADx,c

)
− Ex,c µC-STADx,c

]
(5)

for c = 1880, . . . , 1905, where w is a vector of weights of length m, and µC-STADx,c denotes
the estimated hazard of the C-STAD model. Each element of w is equal to one if
the corresponding death and exposure data are observed, and zero otherwise. For
c1, all elements of w are equal to one. In words, the optimization procedure looks

for a combination of parameters θ̂′c =

[
ŝc,

ˆ̃
θ′c

]
for each cohort that produces an age-

at-death distribution ĝc(x) = f
[
t(x; θ̂c)

]
whose corresponding hazard maximises the

log-likelihood in Eq. (5).

For the second group of cohorts, we employ the same estimation procedure, with
only a small modification. On one hand, since the modal age at death has been
observed, there are no problems in the estimation of the parameter sc. On the other
hand, Dx,c and Ex,c are not observed at all ages; Eq. (5) can nonetheless be computed
by giving zero weights to the unobserved data. This can be achieved by replacing zeros
to the elements of w corresponding to the missing data. Two things are worth noting
here. First, the missing data only influence the estimation of bU , as complete data
are observed before the modal age for all cohorts in this group. Second, the estimate
θ̂c allows us to derive a complete set of age-specific mortality measures, i.e. we can
complete the mortality experience of the partially observed cohorts in c2.

Finally, for the third group of cohorts, we forecast the C-STAD parameters us-
ing the estimates of the first two groups. The lack of knowledge about the modal
age at death indeed makes it impossible to estimate the parameter sc from the par-
tially observed data, compute the log-likelihood function in Eq. (5) and estimate the
remaining parameters. As such, we specify two different multivariate vector autore-
gressive time-series models for the C-STAD parameters. The first model is fitted to
the parameters s and bU . From a theoretical perspective, these parameters are related
by the fact that mortality changes occurring above the mode could modify its value
(see Canudas-Romo, 2010, Appendix B). The second model is specified for bL, cL and
dL: these three parameters are theoretically related to each other since they pertain
to the same segment of the age-at-death distribution. The results for the countries
analysed indeed confirm these hypotheses, showing high correlation between the two
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set of parameters and low correlation between the other combinations (see Fig. A.1 in
Appendix A).

3 Results

3.1 Out-of-sample validation of the C-STAD model

Before completing the mortality experience of partially observed cohorts, we first as-
sess the accuracy of the C-STAD model by performing six predictive out-of-sample
validation exercises on Swedish and Swiss adult females. Specifically, we pretend that
the last year of collected data is 2015− δ, where δ = 10, 15, 20, 25, 30 and 35 years. We
then fit the C-STAD model to the fully observed cohorts c1 = (1880, . . . , 1905)− δ: we
modify the start and the end cohorts of the fitting period to keep its length constant
across the six exercises. We then forecast mortality δ years ahead, and we compare
the forecast life expectancy at age 40 (e40) and the Gini coefficient at age 40 (G40)
with the observed values.

An explicative example of this procedure is useful to clarify the out-of-sample
exercises. Let us consider δ = 10: then, the last year of fully observed data is 2005. We
thus fit the C-STAD to the fully observed cohorts c1 = 1870, . . . , 1895, and we forecast
10-year ahead. By doing so, we complete the mortality experience of the partially
observed cohorts 1896, . . . , 1905, and for each of these, we compute and compare the
estimated e40 and G40 with the observed ones.

It is worth mentioning at this point that, for the lower values of δ, forecasting is
achieved simply by fitting the C-STAD on the partially observed cohorts c2. In the
explicative example above, where the last data collection occurred in 2005, the cohort
1896, for instance, has been observed at all ages except 110. We thus take advantage
of the nature of cohort data and consider all possible observations to complete the
mortality experience of this partial cohort. Conversely, for higher values of δ, forecast-
ing is achieved by considering also the cohorts c3, which require the use of the VAR
models.

Table 1 presents the results of our analysis. The first and second columns contain
the cohorts used for fitting and forecasting the C-STAD, respectively. The third col-
umn contains the time horizon of the out-of-sample exercise, while the fourth column
the measure analysed (e40 or G40). Results are shown in the last two columns. We
assess the accuracy of the point forecasts by computing the root mean square error
(RMSE):

RMSE =

√∑δ
c=1(ŷ

δ
c − yδc)2
δ

(6)

where δ is the forecasting horizon, and ŷδc and yδc are the forecast and observed values
of either e40 or G40. For this analysis, we multiplied the values of G40 by 100 in order
to have comparable magnitude between the two indicators.

The table shows that the C-STAD forecasts are very accurate in completing the
mortality experience of partially observed cohorts. The RMSE values of the two indi-
cators are very low, especially for the first four forecast horizons. The accuracy slightly
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Fitting cohorts Forecast cohorts Horizon Measure SWE CHE

e40 0.08 0.05
1870-1895 1896-1905 10y

G40 0.04 0.02

e40 0.08 0.05
1865-1890 1891-1905 15y

G40 0.05 0.02

e40 0.07 0.04
1860-1885 1886-1905 20y

G40 0.07 0.04

e40 0.05 0.03
1855-1880 1881-1905 25y

G40 0.12 0.06

e40 0.07 0.56
1850-1875 1876-1905 30y

G40 0.12 0.55

e40 0.25 0.66
1845-1870 1871-1905 35y

G40 0.29 0.69

Table 1. Root mean squared errors of the C-STAD forecasts of e40 and G40 for
adult females in Sweden (SWE) and Switzerland (CHE) in six out-of-sample validation
exercises: forecast horizon of 10, 15, 20, 25, 30 and 35 years.

decreases in the last exercise (and also in the 30-year scenario for Switzerland), but the
errors remain relatively small in magnitude. Very similar results would be obtained if
we employed a different prediction accuracy measure (e.g. MAPE, MAE).

It is finally worth mentioning that the results are robust to the choice of the fitting
period. Indeed, we performed a sensitivity analysis by modifying the fitting period in
each exercise. Specifically, we fixed 1860 as the starting cohort for each exercise, and
we fitted the C-STAD on the available fully observed cohorts (e.g. 1860-1895 for the
first exercise, 1860-1870 for the last one). The results of this analysis are very similar
to those shown in Table 1.

3.2 Completing the mortality experience of partially observed co-
horts

Here, we show the results of employing the C-STAD model to estimate and forecast
adult female cohort mortality in Sweden and Switzerland for the cohorts 1880-1950.
The fitted and forecast parameters for the two countries are reported in Appendix
A, together with the correlation analysis of the time-series of the estimated parame-
ters.

Figure 4 shows the observed and fitted remaining life expectancies at age 40 (e40)
and Gini coefficient at age 40 (G40) in the two population analysed for the fully ob-
served cohorts 1880-1905. From the graphs, it emerges that the C-STAD estimates are
very close to the observed values for both measures in the two populations.

Figure 5 shows the observed (cohorts c1), completed (c2) and forecast (c3) e40
and G40 for the two population analysed. The derivation of prediction intervals for
the C-STAD forecasts is foreseen as our next research step (see Discussion in Section
4).
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Figure 4. Observed and C-STAD estimated remaining life expectancies at age 40
(e40, left panel) and Gini coefficient at age 40 (G40, right panel) for adult females in
Sweden and Switzerland for the fully observed cohorts 1880-1905.

4 Discussion

Mortality forecasting has drawn considerable interest in recent decades among aca-
demics and financial sector practitioners due to the increasing challenges posed by
population ageing. Advances in the field have almost exclusively been made on period
mortality, as the most recent and innovative techniques are based on modelling and
forecasting different functions of period life tables.

In this article, we take an alternative perspective and introduce a new method-
ology to model and forecast adult cohort mortality. Our approach focuses on cohort
age-at-death distributions: specifically, we propose a parametric warping transforma-
tion of a standard distribution to describe and forecast mortality developments. The
warping function takes the form of a cubic segmented transformation, hence called
Cubic Segmented Transformation Age-at-death Distributions (C-STAD) model.

We have shown the results of fitting and forecasting mortality with the C-STAD
model for Swedish and Swiss adult females for the cohorts 1880-1950. Our methodology
is accurate from a point forecast perspective: for each population, we performed six
out-of-sample validation exercises of different forecast horizons. The resulting point
forecast errors as measured by the RMSE are generally small, even for the longer
forecast horizons.

Models to forecast cohort mortality are relatively few because of heavy data
demand; however, this problem is reduced when only adult mortality is considered
(Booth, 2006). Our interest in this article is restricted to adult mortality, so this issue
does not affect us to a great extent. In addition, we believe that forecasts of cohort
mortality are interesting beyond period forecasts in two regards: (i) cohort mortality
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Figure 5. Observed (cohorts c1), C-STAD completed (c2) and forecast (c3) remaining
life expectancies at age 40 (e40, left panel) and Gini coefficient at age 40 (G40, right
panel) for adult females in Sweden and Switzerland for the cohorts 1880-1905.

developments are actually observed, and thus they differ from the hypothetical ones
assumed in period life tables, and (ii) cohort forecast can be exploited to complete the
mortality experience of partially observed cohorts.

Our approach is inspired by the Segmented Transformation Age-at-death Distri-
butions (STAD) model recently proposed by Basellini and Camarda (2018) to forecast
adult age-at-death distributions. In addition to shifting the focus from period to co-
hort mortality, our methodology extends the STAD to a cubic transformation before
the modal age at death. The additional parameters cL and dL are indeed necessary
to adequately describe cohort mortality developments at young adult ages. A possi-
ble explanation for this could be the significant improvements in maternal mortality
across the cohorts that we analyse. Non-linear functions above the mode were tested
too, but they did not provide a better fit compared to a linear function. We plan to
investigate in more details the reasons for the need of the additional parameters at
lower ages.

Future work is currently foreseen along different directions. First, we will derive
prediction intervals for the C-STAD forecasts. A residual bootstrapping approach is
under development for this purpose. The derivation of prediction intervals will allow us
to complement the point forecast accuracy analysis in Section 3.1 with the assessment
of interval forecast accuracy. Second, we will compare the C-STAD forecasts with
those derived from other approaches. A possible candidate for this comparison is a
cohort adaptation of the two-dimensional smoothing and forecasting P -splines method
proposed by Currie et al. (2004). Third, we will include cohort mortality rates as a
third indicator to assess forecasts’ accuracy in the out-of-sample exercises.

In addition to this, we are currently working on different approaches to estimate
bL, cL and dL using the partially observed data in c3, taking the forecast s and bU as
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given inputs. It would be indeed desirable to use the observed data to estimate rather
than forecast bL, cL and dL in c3. Conversely, the current VAR model for bL, cL and
dL does not consider the observed data in c3 (see Figure 2, light blue area). Finally, we
plan to: (i) perform sensitivity analyses on the choice of the cut-off cohort c̃ between
c2 and c3; (ii) compute the C-STAD forecast summary measures of period mortality
implied by the cohort forecasts, and compare them with those of other approaches,
such as the Lee and Carter (1992) model; and (iii) extend these analyses to other
populations.
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A Section 3.2: additional results

Figure A.1 shows the absolute correlation of the estimated C-STAD parameters in first
differences for Swedish and Swiss adult females for cohorts 1880-c̃, where c̃ is 1925 and
1924 for Sweden and Switzerland, respectively. The graph shows that the parameters
of the two VAR models, s and bU on one hand, and bL, cL and dL on the other, are
highly related to each other (light blue colours). Conversely, the correlation between
the other combinations of parameters is rather low (dark blue colours).

Sweden Switzerland

s bU bL cL dL s bU bL cL dL

s

bU

bL

cL

dL

0.25

0.50

0.75

1.00
value

Figure A.1. Absolute correlation of the C-STAD parameters estimates (in first dif-
ferences) for Swedish and Swiss adult females for cohorts 1880-c̃.

Figure A.2 shows the fitted and forecast C-STAD parameters for Swedish and
Swiss adult females for cohorts 1880-1950.
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