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Abstract Demographers are uncertain about the shape of infant mortality during the
first year of life. While there is a consensus that the risk of death follows a Gompertz
law over much of the adult age span, no such agreement exists about the paramet-
ric form of mortality at the very beginning of life with most literature on the topic
suggesting either an exponential or some power-law expression. Based on individ-
ual level US birth and death register data I present evidence that the age-trajectory
of infant mortality displays both power-law and exponential behavior and is better
described by a product of those functions: an “exponentially-truncated power law”.
Across all infant populations under consideration the age-trajectory of mortality fol-
lowing birth is initially dominated by a power-law regime and over the course of
infancy eventually approaches an exponential decline of less than a 1% reduction per
additional day of age. The speed of the transition from a power-law to an exponential
decline in the risk of death varies greatly by medical strata (5 minute APGAR score,
birthweight and age of gestation at birth). The observed truncated power-law behav-
ior may be the result of a shock-recovery or a mortality selection process.
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Background

Since Benjamin Gompertz published his eponymous law of mortality for the adult
ages many suggestions have been made for a law of similar generality describing the
age pattern of infant and/or childhood mortality. Maybe the earliest attempt was pub-
lished by Oppermann (1870) who proposed1 µ(x) = ax−1/2 +b+cx1/2 for mortality
prior to age 20. With a power-law as first term this formula has the curious feature of
predicting an infinite risk of death at the moment of birth, a property that reportedly
was important to Oppermann though the reasons remain unclear (Steffensen 1930).
One year later Thiele (1871), motivated by the search for a mortality law covering the
whole human life-span assumed2 µ(x) = ae−bx, the hazard of a negative Gompertz
distribution, for the changing risk of death prior to maturity. These two expressions,
a power-law and an exponential, constitute the functional basis for most parametric
models of infant/childhood mortality employed thereon. Different power-law hazards
have been used to describe the age pattern of infant mortality by Brillinger (1961),
Choe (1981), de Beer and Janssen (2016) and Berrut et al. (2016); Gompertz-like
exponential functions appeared as infant mortality terms in Siler (1979), Mode and
Busby (1982), Rogers and Little (1994); and compositions of power- and exponential
function have been suggested by Wittstein and Bumsted (1883) and Heligman and
Pollard (1980).

The mortality models above can be interpreted as describing a not further spec-
ified risk to which an infant adapts over time, resulting in a continuous decline
in mortality as the child grows (as explicitly stated by Siler 1979; Heligman and
Pollard 1980).3 Levitis (2011) called this the “acquired robustness hypothesis”. A
“competing-risks” explanation was proposed by Bourgeois-Pichat (1951) who hy-
pothesized that the observed age pattern of mortality over the first year of life is the
result of two separate processes: intrinsic mortality due to congenital disorders and
extrinsic mortality due to accidents and maltreatment of the child. Noticing that the
cumulative distribution of deaths during the post-neonatal period (> 1 month of age)
is closely matched by a linear function of log3

10(days since birth + 1) while neonatal
deaths follow a different age-trajectory Bourgeois-Pichat proposed that intrinsic and
extrinsic mortality over age do not share the same functional form and that extrinsic
mortality only starts to dominate over intrinsic mortality after the first month of life.

Some attempts have been made to express the parametric form of the infant hazard
of death as a frailty model (Vaupel and Yashin 1983; Hougaard 1984; Vaupel and
Yashin 1985). An important insight from these models is that in a population where
individuals differ significantly in their risk of death the average mortality over age
is determined not only by individual level age-effects but also by mortality selection,
i.e. the changing composition of a cohort towards individuals with low frailty (Vaupel
et al. 1979). It has been demonstrated that a declining infant mortality age-trajectory
may result from constant individual level hazards of different magnitudes (Vaupel

1 Throughout the paper µ(x) denotes the force of mortality at age x.
2 . . . after giving a full-page credit to Oppermann and only stopping short of apologizing for proposing

a different expression. . .
3 An exception is Oppermann (1870) who essentially proposed a competing risks model though the

meaning Oppermann gave to the three components of his formula is unknown.
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and Yashin 1983, 1985). Hougaard (1984) suggested that the high mortality right
after birth and the fast subsequent decline may be the result of a large heterogeneity
in individual frailties in the population of newborns.

In the presence of the ubiquitous semi-parametric Cox proportional hazards model
(Cox 1972) and penalized smoothing spline models for count data (Eilers and Marx
1996; Camarda et al. 2016) it may seem like an exercise in nostalgia to consider
parametric hazard expressions as a basis for the analysis of the infant mortality age
pattern. Yet a parametric treatment of deaths during the first year of life comes with
unique advantages:

1) Successes in combating infant mortality over the past century made infant death
an increasingly rare event in large parts of the world (World Health Organization
2006; World Health Organization 2015). This challenges the statistician to de-
velop a methodology suited to inference from rare events, especially if the object
of study is infant mortality over age, on the regional level, by season, in nations
with a small population, by socio-economic group, by cause-of-death, or by any
combination of those criteria. If correctly specified, parametric survival models
alleviate the statistical challenge of small event counts. By imposing a tight struc-
ture on the distribution of life-times one can gain insight from comparatively
little data. Furthermore, a parametric specification of infant mortality expressed
in terms of observable quantities (e.g. mortality at the day of birth, rate of post-
neonatal mortality decline) facilitates the use of Bayesian methodology – a useful
tool for working with sparse data – because informative prior distributions on the
parameters are easily specified if the parameters are well understood.

2) Parametric models may allow insight into the mechanisms that determine the age-
distribution of infant deaths. This is especially apparent with regards to the frailty
model (Vaupel et al. 1979) which expresses the age-pattern of mortality on the
population level as emerging from heterogeneous individual level hazards via
selective mortality.

3) Information on the ages at death during infancy may only be available in broad
age groups (e.g. birth to 1 day, 1 day to 1 week, 1 week to 1 month, months 1
to 12). If the parametric form of the ages at death during the first year of life is
known this information can be used to graduate the grouped data. This is espe-
cially relevant for demographers who are interested a precise estimation of the
“average age at death during infancy”, a relevant statistic for the construction of
life-tables.

The advantages above depend on the correct functional specification for the age
distribution of infant deaths. Identifying this distribution requires a) data on the pre-
cise timing of each infant death in a birth cohort (ideally on a day-to-day basis); b) a
cohort of infants large enough for a clear trend in the age-trajectory of infant mortality
rates to dominate over random variation; and c) data on multiple birth-cohorts, and
sub-populations so that it is possible to check the generality of the identified func-
tional form. The individual level data on millions of births and infant deaths provided
by the National Center for Health Statistics (2016) fits these requirements and for this
article I confine the search for a “law” of infant mortality to the US population.
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After a brief description of the data, the methods and the current day-to-day age
pattern of infant mortality in the United States I will present evidence for both power-
law and exponential behavior of the age-trajectory of infant death. Both types of
models are then synthesized into a truncated power-law hazard expression, a gener-
alization of both the power-law and negative Gompertz hazards, which fit is evaluated
on life-tables for various cohorts and sub-populations of US infants. A discussion of
the generative mechanisms which could give rise to a truncated power-law hazard
concludes the paper.

Data

The “NCHS Cohort Linked Birth – Infant Death Data Files” (National Center for
Health Statistics 2016) contain a complete census of births and infant deaths on the
territory of the United States4 and feature most fields present on the birth and infant-
death certificates. The size and detail of the data allows for the calculation of day-to-
day infant life-tables for various sub-populations.

I confine the analysis to the quinquennial birth cohorts 1995-1999 and 2005-2009
stratified by sex, prematurity, five minute APGAR score and social background of
the mother. Those particular variables constitute major sources of heterogeneity in
infant mortality along biological, medical and social dimensions and are among the
most reliably reported fields.5 In total I analyse data on 277,004 infant deaths out of
40,727,055 births over the birth cohorts 1995–1999 and 2005–2009.

Female and male infant life-tables are calculated for both birth cohorts, each life-
table stratified by either the five minute APGAR score (an ordinal measure of an
infants vitality shortly after delivery discretized into 3 levels), prematurity (defined
via age of gestation upon delivery and discretized into 4 levels), mother’s education (3
levels) or mothers ethnicity (4 levels). Those 56 life-tables thus cover heterogeneity
in the age-trajectory of infant mortality among period, medical and social strata.

Methods

In order to determine the functional shape of infant mortality over the first year of life
I fit the exponentially-truncated shifted-power family of hazards6 to the day-to-day
death counts and exposures for various populations of US infants. Let µ(x) be the

4 Available data on the overseas territories has been excluded due to compatibility issues.
5 It must be noted that the results of this paper can not be generalized to populations other than present

day US infants without further study. While similar results for countries with similar overall levels of
infant mortality (implying a similar level of development) are to be expected, it would be foolish to assume
the same age pattern of infant mortality in pre-20th century populations or present populations suffering
under a crisis: Historically the age-pattern of infant mortality was very much shaped by the interaction
of seasonality effects, improper substitutes for breast-feeding, and deadly infectious diseases (Knodel and
Kintner 1977; Huck 1995), factors which have lost relevance in the US over the course of the 20th century.
Likewise an analysis of 21st century US infant mortality yields little insight into the characteristics of
infant death in parts of the world suffering from humanitarian crises and violent conflicts.

6 In the following referred to simply as “truncated power” hazard.



The Age-Trajectory of Infant Mortality 5

ax-p
Power hzrd.

a(x+c)-p
Shifted-power hzrd.

a(x+c)-1
Pareto II hzrd.

a(x+1)-p
Unity-shifted power hzrd.

ae-bx
Negative

Gompertz hzrd.

a(x+c)-pe-bx
Truncated power hzrd.

c=1 p=1c=0

b=0 p=0

bk(x+c)k-1
Shifted Weibull hzrd.

k=1-p and b=a/(1-p)

bk(x+1)k-1
Unity-shifted Weibull hzrd.

bkxk-1
Weibull hzrd.

k=1-p and b=a/(1-p) k=1-p and b=a/(1-p)

λ/(1+σ²λx)
Gamma-exponential hzrd.

a=1/σ² and c=a/λ

Fig. 1 The exponentially-truncated shifted-power family of hazards considered for the age-trajectory of
infant mortality. The family contains the negative Gompertz, Pareto II, and Weibull hazards.

force of mortality (the hazard) at age x. The truncated power family is given by the
expression

µTP(x) = a(x+ c)−pe−bx,

and contains many of the models proposed in the literature on infant mortality
age-trajectories as special cases, such as the hazard functions of the negative Gom-
pertz (Lomax 1954; Marshall and Olkin 2007, pp. 368) and the Pareto II distribution
(Lomax 1954; Marshall and Olkin 2007, pp. 400), the exponential-Gamma frailty
parametrization of the Pareto II distribution (Clayton and Cuzick 1985; Wienke 2011,
p. 78), (shifted)-power hazards and their (shifted)-Weibull parametrizations (Lehman
1963; Marshall and Olkin 2007, pp. 321, see figure 1). Having all these models nested
in a single family facilitates goodness-of-fit comparisons: A simpler model may be
rejected in favor of a more complicated one on the grounds of significance test on the
parameters and the whole family of models can be rejected if the full expression fails
to accurately describe the data.

Prior to fitting the full truncated-hazard model to the data I will discuss the re-
spective properties and parameter interpretation of the nested power- and negative
Gompertz- hazards and demonstrate their fit (or lack thereof) to the observed death
rates of the complete cohort of infants born in the US 2005 to 2009. This is to build
evidence that it takes both a power- and an exponential component to adequately
describe mortality over infancy, a subtlety that to my best knowledge has remained
unmentioned by the literature so far.

In a second analysis I test the fit of the truncated power hazard by birth cohort, sex,
APGAR score, gestation at birth, origin- and education of the mother. Confronting
a mortality model with such a heterogeneous collection of life-tables acts as a valid-
ity test and allows for the quantification of heterogeneous mortality trajectories via
comparison of model coefficients across population strata. Particular attention will
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be paid to non-proportional variations of the hazard, and to the behavior of the haz-
ard during the neonatal period (the first month of life) and during the post-neonatal
period (month 1 to 12 of age).

All the models in this paper are fitted as generalized linear models (GLMs). Such
an approach guarantees concave likelihood surfaces and consequently stable esti-
mation of the model parameters while also capitalizing on the wide availability of
software to fit and evaluate GLMs. By using suitable link functions and/or transfor-
mations of the age variable a range of parametric hazard functions can be linearized
and thus fit to observed age specific death counts and exposures via a Poisson-GLM
(Aitkin and Clayton 1980; Clayton 1983; Currie 2016).

The truncated power family of hazards (and therefore the nested negative Gom-
pertz, Weibull and Pareto hazards, see figure 1) may be fit, after deciding on the value
for c, as Poisson-GLMs with a log-link. This is possible due to the semi-linearity of
µTP(x) on the log-scale:

log µTP(x) = log(a)− p log(x+ c)−bx = β0 +β1 log(x+ c)+β2x,

with a = exp(β0), p = −β1 and b = −β2. The non-linear c parameter is esti-
mated by maximizing the profile likelihood (Murphy and Van der Vaart 2000) of c
over a range of GLM fits.7 Model inference is performed via the model deviances,
Pearson-residuals, and a pseudo-R2 criterion based on the fitted models deviance ver-
sus the deviance of the null (intercept-only) model. Confidence intervals around the
parameter estimates of the truncated power hazard are calculated from 1000 repeated
fits of the model on 1000 different parametric-bootstrap replicates of each life-table.
Unlike the asymptotic standard errors retrieved from the GLM fit the bootstrap ap-
proach incorporates the uncertainty associated with the estimation of the non-linear
c parameter.

The age-trajectory of US infant mortality

The age-trajectory of infant mortality as observed in the US birth cohort 2005-2009
is characterized by a peak right at birth with a rapid decline thereafter (see figure 2).
While the mortality rate over the first hour following birth is around 0.02 (deaths per
person-day of exposure), 24 hours later the hazard is at only 1.1% of its initial value
and then again drops by a factor of 10 over the next 29 days. Around one month after
birth the hazard starts to decline with a near constant relative-rate, approaching an
exponential behavior.

The pattern of a “super-exponential” decline in mortality during the neonatal pe-
riod followed by an exponential tail over the remainder of the first year of life holds
true for girls and boys, irrespective of the social background of their mothers, the
APGAR score upon birth, the gestation at birth or birth cohort (see figures 4, 5, 6, 7).

7 Let L (β ,c) be the full likelihood of a GLM fit with coefficients β and age-offset c. The profile
likelihood of c is given by Lp(c) = maxβ L (β ,c) and c is estimated as ĉ = argmaxc[maxβ L (β ,c)]. I
found Lp(c) to be concave over c and the maximization was quick and stable.



The Age-Trajectory of Infant Mortality 7

1st hour of life

hours 1 to 24

daily rates...

99.4%

100.0%

0%

100%

0 360

S
(x

)

S
(x|X

<365)

Share of survivors at a given age

1e−06

1e−05

1e−04

1e−03

1e−02

100%

10%

1%

0.1%

0.01%

0 60 120 180 240 300 360

Time Since Birth [Days]

M
or

ta
lit

y 
R

at
e

M
ortality R

elative to Level at B
irth

Fig. 2 Mortality rates over the first year of life for the US birth cohort 2005-2009. Mortality drops rapidly
during the neonatal period after which it approches an exponential decline. Rates represent deaths per
person-day of exposure. Circle area is proportional to the number of deaths at each interval. Raw data:
NCHS Cohort Linked Birth - Infant Death Data Files.

Evidence for an exponentially-truncated power hazard

Negative Gompertz hazard

Thiele (1871), in an early attempt to model mortality across the whole human age-
span, proposed to express the risk of death prior to maturity as an exponential function
of age,

µGP(x) = ae−bx,

with (x,a,b) ≥ 0. This is the hazard function of a Gompertz distribution with a
negative b parameter and therefore mirrors the shape of the hazard commonly as-
sumed for adult humans. The simplicity of an exponential term for the hazard facili-
tates analytic treatment and gives the parameters a direct interpretation as important
quantities in the study of infant mortality, µGP(0) = a being the hazard of death at

the moment of birth and − µ ′GP(x)
µGP(x)

= b the instantaneous relative rate of mortality de-
cline over age. The fact that the risk drops with a constant relative rate over age is the
defining feature of the negative Gompertz hazard. Related quantities are independent
of age as well: the time t it takes for the hazard to drop by a factor k is the solution
to equation µGP(x+t)

µGP(x)
= 1

k given by t1/k =
log(k)

b and for each unit increase in age the

hazard changes by a factor µGP(x+1)
µGP(x)

= exp(−b).
The negative Gompertz hazard can be expressed as a log-linear model with Pois-

son distributed age-specific death counts Dx as outcome and age-specific exposure
times Ex as fixed offset8

8 Assuming that the width of each age group is small enough as to not introduce substantial aggregation
bias.
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Fig. 3 Fitted versus observed mortality over the first year of life for the US birth cohort 2005-2009. The
age-trajectory of infant mortality in the US exhibits both power-law and exponential behavior. While the
negative Gompertz hazard with its exponential shape achieves the poorest of fits over the complete infancy
period (a) it performs exceptionally well as a description for the post-neonatal mortality decline (b). Among
the power-law expressions only the flexibly-shifted power hazard is capable of capturing the rapid decline
in mortality over the first hours and days of life (e), still all three power-laws under consideration exhibit
clear trends in their residuals over age (c, d, e). By combining a power-law and a negative Gompertz
hazard in the truncated power model (f) we take into account the different behavior of the hazard in the
neonatal- and post-neonatal periods and achieve a close fit over the entire first year of life. Rates represent
deaths per person-day of exposure. Circle area is proportional to the number of deaths at each interval. R2

is the percentage of deviance explained by the model. The Pearson-residuals mark the distance between
prediction and observation in terms Poisson standard deviations around the prediction. Raw data: NCHS
Cohort Linked Birth - Infant Death Data Files.

logE[D|x] = β0 +β1x+ logEx,with D∼ Poisson.

From this fit the parameters of µGP are recovered as a = exp(β0) and b =−β1.
The negative Gompertz model of infant mortality is especially popular in biology

due to the influential paper by Siler (1979) who included it as part of his “Competing-
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Table 1 Number of months over the five year period 2005-2009 a negative Gompertz fit achieved a lower
deviance on the post-neonatal cohort life-tables compared to a given power-law fit. Data: US infants born
in years 2005-2009. NCHS Cohort Linked Birth - Infant Death Data Files.

Gompertz vs. Female Male

Pareto II 44/60 73.3% 54/60 90%
Unity-shifted power 59/60 98.3% 60/60 100%
Flexibly-shifted power 23/60 38.3% 41/60 68.3%

Risk Model for Animal Mortality”. In this model a Gompertz term with negative b
parameter is used “to account for the hazard due to immaturity” (Siler 1979). For
life-tables of human infants and children however, the negative Gompertz law has
long been found to provide an insufficient fit (Thiele 1871, p. 326; Choe 1981; Gage
and Dyke 1986).

Figure 3a clearly shows that the age-trajectory of infant mortality for the 2005-
2009 US birth cohort deviates from a pure log-linear (i.e. exponential) form, ruling
out the Gompertz hazard as a suitable model for the entire infant age range. Yet, a log-
linear decline constitutes a near perfect description of the mortality trajectory over
the post-neonatal period (figure 3b). The rate of death at day 30 after birth is around
2.03 deaths per 100,000 person-days of exposure with a subsequent decline of about
0.93% per additional day of age. Remarkably these two numbers explain 97.8% of
the total deviance in the data during the post-neonatal period. Further investigating
this result I fit negative Gompertz and power-law hazards to the post-neonatal life-
tables for each of the 60 monthly US birth-cohorts from January 2005 to December
2009 separate by sex. In the majority of the cases the negative Gompertz hazard
provided a closer fit to the observed post-neonatal mortality trajectory than either of
the alternative two or three parameter power-law hazards (table 1).

Power-law hazard

Various power laws have been specified to characterize the age-specific hazard of
infant death (Oppermann 1870; Brillinger 1961; Choe 1981; de Beer and Janssen
2016; Berrut et al. 2016) all of which are variations on the basic expression

µPW(x) = ax−p,

with (a, p) ≥ 0 and x > 0. Just like a negative Gompertz hazard, a power-law
hazard monotonically approaches 0 as x→∞, however, the relative rate of decline of
a power hazard varies with age according to − µ ′PW(x)

µPW(x) =
p
x , i.e. it is greatest right after

birth and approaches 0 as age increases. It is this behavior that allows a power-law
to initially decline faster than a Gompertz hazard, yet slower for larger x, rendering it
potentially useful for the description of the day-to-day age pattern of infant mortality.

Similar to the Gompertz case the parameters of the power hazard can be inter-
preted in terms of mortality level and rate-of-change: The risk of death at age x = 1
is given by µPW(1) = a and the proportional change in mortality for change in age
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by proportion w is µPW(wx)
µPW(x) = w−p. The proportional increase in age w needed for

the hazard to drop by factor k is the solution to equation µPW(wx)
µPW(x) = 1/k given by

t1/k = k
1
p . The power parameter p by itself represents the elasticity of the hazard,

dlog µPW(x)
dlogx = −p, i.e. for every infinitesimal proportional increase in age the hazard

drops by proportion p. A convenient property of power laws is that the elasticity is
invariant to any re-scaling of age in the form x′ = wx. In practice this means that the
units used for the age column of the infant life-tables (e.g. hours, days, weeks) have
no effect on the estimation of the exponent p.

Note that µPW can be re-parametrized into the hazard of the Weibull distribution
µUW(x) = bkxk−1 by substituting p = 1− k and a = bk.

Berrut et al. (2016) fit µPW to death rates starting shortly after birth for a range of
human and non-human populations and identify power-law behavior in most popu-
lations.9 Specifically they identify a segmented power-law relationship between age
and death rate for a cohort of Swiss infants. The first segment starts 1 hour after birth
and lasts for 8 hours, while a different power coefficient is identified for the remainder
of the first month of life.

Unity-shifted power hazard

As x approaches 0, hazard µPW approaches infinity. Due to this behavior, a pure
power-law hazard can not be used to describe the age pattern of infant mortality
starting from the moment of birth. Instead one can either choose to exclude the mo-
ment/hour/day of birth from the study period (as did Choe 1981; Berrut et al. 2016)
or add a positive location parameter to µPW, i.e. µPW(x+ c). The location parameter
can either be estimated from the data – allowing for additional model flexibility – or
set to some constant. The latter option has the advantage that the resulting hazard can
be written as a fully linear function of log-mortality. For mathematical convenience
one may use a unity offset resulting in the unity-shifted power expression

µUP(x) = a(x+1)−p,

with (x,a, p)≥ 0. Due to the unity offset the risk of death at the moment of birth
is µUP(0) = a. The elasticity of µUP(x) approaches −p as x→ ∞. In practice I found
−p to be a very close approximation to the true elasticity of µUP(x) for at least the
post-neonatal period thus one may safely interpret p as the approximate proportional
drop in the hazard of infant death for an infinitesimal proportional change in age
starting at day 30 after birth.

The unity-shifted power hazard can be fit as the log-linear Poisson regression

logE[D|x] = β0 +β1 log(x+1)+ logEx,with D∼ Poisson,

with a = exp(β0) and p =−β1.

9 Note that while occurrence-exposure rates are used in this article, Berrut et al. (2016) use the total
number of births in the denominator of their death-rates.
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Note that µUP can be translated into the unity-shifted Weibull hazard µUW(x) =
bk(x+1)k−1 by substituting k = 1− p and b = a/(1− p).

While the unity-shifted power-law fits the 2005-2009 US infant life-table better
than the Gompertz hazard a look at the Pearson residuals in figure 3c still indicates
a systematic misspecification. Due to its very nature the unity-shifted power-law can
not capture the exponential portion of the hazard and it also fails to adequately de-
scribe the extremely fast drop in the risk of death over the first hours following birth.

Pareto hazard

In their model for the age pattern of human mortality de Beer and Janssen (2016)
express the hazard of death during infancy and childhood as µ(x) = a

c+x . This is the
hazard function of a Pareto type II distribution (Lomax 1954; Marshall and Olkin
2007, pp. 400). Rewriting the hazard reveals a shifted power-law with exponent −1,
scaling factor a and location offset c,

µPT(x) = a(x+ c)−1,

where (x,a) ≥ 0 and c > 0. While for the unity-shifted power-law the location
offset is fixed and the power exponent varies the situation is reversed for the Pareto
II hazard with a fixed power and a variable location offset. As µPT(x) is finite for
x > −c one may interpret the c parameter as the duration µPT extends into the pre-
natal period. For such an interpretation to be justified the intrapartum death-rates
(death during labor, i.e. at x < 0) have to follow the same functional form as the infant
death rates and, given that µ(x+ c) is declining with age, have to be higher than the
mortality rates after birth. Of course the mortality at birth is µPT(0) = a/c with a
being the hazard level at x = 1− c. The elasticity of the Pareto hazard is dlog µPT(x)

dlogx =

− x
x+c which approaches −1 as x→ ∞. This implies a central characteristic of the

Pareto hazard, namely that in the limit any proportional increase in age by factor
w results in a proportional change of the hazard by 1/w, e.g. doubling age halves
the hazard. In practice the estimated values for c are small enough for this limiting
behavior to set in shortly after birth.

The Pareto hazard can be fit as

logE[D|x] = β0− log(x+ c)+ logEx, with D∼ Poisson,

an intercept-only model with additional offset − log(x+ c) and a = exp(β0). As
described earlier c is estimated by maximizing its profile-likelihood.

Vaupel and Yashin (1983) propose to describe the infant/childhood component
of human mortality by a Gamma-Exponential frailty model with population hazard
function µGE(x) = λ/(1+σ2λx), i.e. a continuous mixture distribution of constant
baseline hazards (corresponding to an exponential baseline distribution of deaths)
with Gamma-distributed rate parameter λ . As noted by Wienke (2011) this model is
equivalent to µPT when a = 1/σ2, i.e. the inverse of the variance parameter of the
Gamma-Exponential frailty model, and c = a/λ . Therefore µPT may be interpreted
as the population hazard resulting from mortality selection among individuals with
constant hazards of Gamma-varying magnitudes.
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The fit of the Pareto hazard to the 2005-2009 US infant life-tables is similar to
that of the shifted-power-law: inadequate (figure 3d).

Flexibly-shifted power hazard

Adding a positive location offset c to µPW results in the flexibly-shifted power hazard

µFP(x) = a(x+ c)−p,

where (x,a,b)≥ 0 and c > 0. This hazard shape contains the Pareto II hazard and
the unity-shifted power hazard as special cases. Note that µFP can be interpreted as
the hazard function of the shifted Weibull distribution µSW(x) = bk(x+ c)k−1 with
k = 1− p and b = a/(1− p).

The elasticity of the flexibly-shifted power hazard is dlog µFP(x)
dlogx = − px

x+c which
approaches −p as x→ ∞. Due to small estimates for c this limiting behavior sets in
shortly after birth, allowing an interpretation of the p parameter as the proportional
drop in mortality for an infinitesimal proportional increase in age for all but the very
first moments after birth. As for the Pareto II hazard parameter a is the hazard level
at age 1− c and c may be interpreted as the time that µFP extends into the pre-natal
period.

The flexibly-shifted power hazard can be fitted as a Poisson-GLM of the form

logE[D|x] = β0 +β1 log(x+ c)+ logEx, with D∼ Poisson,

with the original parameters recovered as a = exp(β0) and p =−β1. Just like for
the Pareto hazard c is estimated by maximizing its profile-likelihood.

Allowing for both a free power parameter p and a free location offset c greatly im-
proves the fit to the US 2005-2009 infant life-tables compared to the more restricted
unity-shifted power and Pareto hazards (figure 3e). The estimate for c is 0.0012 (i.e. a
location shift by≈ 1.7 minutes of age) and for p equals 0.69, corresponding to an ap-
proximate drop in mortality by (1−2−0.69)×100 = 38% for every doubling of age.
While fitting better than the hazards discussed above, the Pearson residuals in figure
3e still exhibit a clear curvature signifying a systematic lack of fit.

Exponentially-truncated power-law hazard

Multiplying the flexibly-shifted power-law hazard µFP with an exponential term re-
sults in the exponentially-truncated power expression

µTP(x) = a(x+ c)−pe−bx,

with (x,a, p,b) ≥ 0 and c > 0. This hazard contains all of the above models as
special cases (see figure 1).

The power-component of the hazard is said to be “truncated” by the exponential
component because with increasing age µTP approaches a constant relative rate of
change, formally limx→∞

µ ′TP(x)
µTP(x)

=−b.
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Table 2 Percent reduction in residual deviance after truncating the power-law hazard with an exponential
term. All results significant at p < 0.001 (via deviance ratio tests).

1995-1999 2005-2009

Female Male Female Male

Low [5,9) 20.6 27.9 49.5 49.7
Regular 9+ 86.8 86.4 89.8 92.0APGAR
Very low [0,5) 50.2 45.6 61.3 60.3

College or university 67.3 66.0 76.6 76.8
Elementary or less 38.6 41.9 30.5 40.9Education
High school 76.9 74.7 79.9 77.3

Hispanic 55.4 63.6 60.2 69.4
Non-Hispanic Black 56.0 60.1 65.1 63.9
Non-Hispanic White 76.3 74.2 81.9 79.6Origin

Other 20.3 29.4 24.7 33.5

Extremely preterm ¡28w 67.4 67.1 74.1 75.7
Moderate to late preterm [32,37)w 58.2 60.0 71.0 70.2
Term 37w+ 79.8 78.1 83.7 80.9Prematurity

Very preterm [28,32)w 54.7 56.1 60.9 63.0

The Poisson-GLM form of the truncated power hazard is

logE[D|x] = β0 +β1 log(x+ c)+β2x+ logEx, with D∼ Poisson,

where a = exp(β0), p = −β1, b = −β2 and the non-linear coefficient c is esti-
mated via profile-likelihood maximization.

Adding the exponential term to µFP significantly (p < 0.001 via deviance-ratio
test) improves the fit of the Poisson-GLM to the 2005-2009 US birth cohort and flat-
tens the trend in the Pearson residuals over age (figure 3f). Infant mortality over age
eventually follows an exponential trajectory – a result that, as will be demonstrated,
holds true for different birth-cohorts, by sex, medical and social strata.

Evaluation of the truncated power hazard

The exponentially truncated power-law hazard achieves an excellent fit irrespective of
cohort, sex, five minute APGAR score, gestational age at birth, origin or education of
the mother. In all life-tables under consideration the percentage of deviance explained
by the model ranges from 94.5% to 99.6%. For every single population the inclusion
of an exponential term in addition to the shifted-power term significantly (p < 0.001
via deviance-ratio tests) improves the fit, reducing the residual deviance by more than
50% on 43 out of the 56 populations (table 2).

The shape of the hazard function over age varies most strongly by APGAR score
(figure 4). The exponential behavior of the hazard is most pronounced for the popu-
lation of infants born with a score of 9 or 10 (the majority of infants born). Within
two weeks after delivery the initial mortality spike at birth transitions into a log-linear
decline in mortality-risk of around 0.7% per day. Conversely, the hazard trajectory of
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the life-table for infants with a “low” APGAR score (indicating health problems of
upon delivery), while still exponential in the tail, features a more gradual transition
into log-linear behavior. The greatest difference in the behavior of the hazard among
the APGAR groups can be seen over the first week of life. While for APGAR group
0 to 5 the hazard drops by a factor of 1000 from the day of birth to an age of seven
days it only drops by a factor of 9 or less for the other groups. Thus hazards vary by
APGAR score in a highly non-proportional fashion as can also be inferred from the
varying power (p), exponential-rate (b) and offset (c) parameters of the fitted models.
Non-proportional behavior, albeit less pronounced, is also evident when comparing
hazards by prematurity, with higher values for the power parameter p = −β1 for
lower ages of gestation at birth10 (figure 6).

The relative rate of mortality decline during the post-neonatal period (as approx-
imated by b) is higher for premature infants and infants with a low APGAR score
compared to infants born at term or with a regular APGAR score. This implies that
the relative difference in mortality between very frail and less frail infants diminishes
over age to some degree.

Hazards are mostly proportional by ethnicity of the mother (figure 5) with the
risk of death during the later stages of infancy declining exponentially with a rate of
0.3 to 0.5% per day of age and the power parameter ranging from −0.51 to −0.55
across the life-table strata. Notably during the post-neonatal period mortality over
age declines slower for children of African-american mothers compared to infants of
white mothers11; taken together with the observation that the intercept of the hazard
curve is highest among infants of African-american mothers, this puts the group at a
double disadvantage. Along education strata the hazards are proportional (figure 7).

Apart from a proportionally higher hazard for males compared to females there
are no systematic differences in the age-trajectory of infant mortality between the
sexes. Similarly the difference between the two birth cohorts is mostly proportional
with the younger cohort having a lower intercept β0 (figures 4–7).

Interpretation of the truncated power hazard

A shock-recovery process

The power-exponential product of the population hazard µTP can be interpreted as a
non-homogeneous split Poisson process, where shocks to an infants health arrive with
rate λ (x) per unit person-time, each shock resulting in infant death with probability
p(x).12

Let N(x) be the number of infants alive at age x and let E[M] be the expected
value of a Poisson distributed random variable M with rate parameter

∫ x+n
x λ (x)N(x)

10 A result also observed by Berrut et al. (2016) for Swiss and Norwegian infants after fitting a simple
power-law to age specific mortality rates.

11 Significant at p < 0.05 for female and male infants of either birth cohort, see table 5 in the appendix
and associated non-overlapping 95% confidence intervals around the b parameter for African-american
and white mothers.

12 Shock models in the context of human mortality have for example been studied by Strehler and Mild-
van (1960), Finkelstein (2005), Cha and Finkelstein (2016).
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Fig. 4 Age specific hazard of death as predicted by the truncated power model contrasted with observed
daily mortality rates by sex, birth-cohort, and 5-minute APGAR score. Rates represent deaths per person-
day of exposure. Circle area is proportional to the number of deaths at each interval. R2 is the percentage
of deviance explained by the model. Raw data: NCHS Cohort Linked Birth - Infant Death Data Files.
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Fig. 5 Age specific hazard of death as predicted by the truncated power model contrasted with observed
daily mortality rates by sex, birth-cohort, and ethnicity of the mother. Rates represent deaths per person-
day of exposure. Circle area is proportional to the number of deaths at each interval. R2 is the percentage
of deviance explained by the model. Raw data: NCHS Cohort Linked Birth - Infant Death Data Files.

representing the total number of health-shocks the population of infants is expected
to experience over age interval [x,x+n). If each shock leads to death with probabil-
ity p(x) then the number of deaths D over age interval [x,x+ n) follows a Poisson
distribution with expected value

E[nDx] =
∫ x+n

x
λ (x)p(x)N(x)dx,
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Fig. 6 Age specific hazard of death as predicted by the truncated power model contrasted with observed
daily mortality rates by sex, birth-cohort, and prematuriy. Rates represent deaths per person-day of expo-
sure. Circle area is proportional to the number of deaths at each interval. R2 is the percentage of deviance
explained by the model. Raw data: NCHS Cohort Linked Birth - Infant Death Data Files.
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Fig. 7 Age specific hazard of death as predicted by the truncated power model contrasted with observed
daily mortality rates by sex, birth-cohort, and education of mother. Rates represent deaths per person-day
of exposure. Circle area is proportional to the number of deaths at each interval. R2 is the percentage of
deviance explained by the model. Raw data: NCHS Cohort Linked Birth - Infant Death Data Files.

see Prékopa (1958) for a proof. The hazard of death experienced by survivors N
at time x is µ(x) = λ (x)p(x). If the rate of shocks λ (x) varies over time according
to a flexibly-shifted power hazard and if the probability of a shock leading to death
p(x) is exponentially declining the truncated power-law hazard is recovered. Note
that neither the rate of shocks nor the probability of death following a shock are
identified as this would require inferring the model µ(x) = a1(x+c)−p×a2e−bx from
the fit µ(x) = a(x+c)−pe−bx – a problem with infinitely many solutions. Completely
identified however are the power and the exponential rate parameters p and b which
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can be interpreted as follows: For the extremely preterm female births of the US birth
cohort 1995-1999 (figure 3f) the rate of shocks, λ (x) ∝ (x+ 0.002)−0.74, declined
rapidly in the vicinity of birth by approximately (1−2−0.74)×100 = 40% for every
doubling of age whereas the probability of a shock leading to death, p(x) ∝ e−bx,
declined by about 0.9% per additional day of age.

Why use the power-law for the rate of shocks and the exponential term for the
probability of a shock leading to death instead of the other way around – after all
both options lead to the same expression for µ(x). I find it likely that the rapid neona-
tal mortality decline is predominantly a result of the waning stresses of birth – a
sudden transition which may inflict a series of “shocks” to the infant – and not the
result of a fast decline in the mortality risk associated with each shock. Furthermore,
as limx→∞

µ ′FP(x)
µFP(x)

= 0, the power-law approaches a constant hazard as age increases,
allowing it to capture the age-independent rate of accidents which may dominate the
rate of shocks later in infancy.

A very specific shock-recovery process is described by the Strehler-Mildvan model
of senescent mortality. Strehler and Mildvan (1960) propose a model where individ-
uals experience shocks to their health at a constant rate α . The magnitude of each
shock, ranging from mild to severe, is a value drawn from an exponential random
variable with rate β . The shocks are checked by the vitality of an individual which
is a positive and declining function of age. When the magnitude of a shock at age x
exceeds the individuals vitality at that age, death occurs. Strehler and Mildvan (1960)
show that this process leads to a Gompertz distribution of life-times with correspond-
ing hazard function µ(x) = αeβx.

The truncated power hazard of infant mortality can be derived from such a Strehler-
Mildvan process by changing two assumptions: 1) Where Strehler and Mildvan (1960)
assume a decrease of vitality with time due to ageing one assumes an increase due
to growth, and 2) instead of assuming shocks to arrive with a constant rate α one
assumes that the risk of experiencing complications is highest at birth and falls over
time (according to a shifted Weibull distribution distribution).

A mortality selection process

In the multiplicative frailty model (Vaupel et al. 1979) it is assumed that all individ-
uals in a population share the same age specific “baseline hazard” of death µ0(x) but
on different “frailty” levels z which act multiplicatively on the baseline. Consequently
the age specific hazard conditioned on frailty is given by

µ(x|z) = zµ0(x).

Frailty is treated as a random variable Z with density f (z|x) at age x. Integrat-
ing out the frailty yields the expression for the hazard observed at the population
level, which is a mixture of the individual level hazards weighted by the age specific
distribution of frailties

µ(x) =
∫

∞

0
µ(x|z) f (z|x)dz,
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which may be re-expressed as

µ(x) = µ0(x)
∫

∞

0
z f (z|x)dz = µ0(x)E[Z|x],

showing that the population hazard is a product of the baseline hazard and the av-
erage frailty among the population at age x. By choosing µ0(x) = ae−bx and E[Z|x] =
(x+ c)−p we express the truncated power-law hazard µTP as a multiplicative frailty
model.

Frailty models can be interpreted in terms of mortality selection: Because indi-
viduals with a high frailty on average die earlier than those with lower values for
z the average frailty among a cohort of individuals declines over time. Above we
modeled this decline as an shifted power function of age and consequently p can be
interpreted as the approximate elasticity of average frailty wrt. age, 0.69 for the US
birth cohort 2005-1999, corresponding to an approximate drop in average frailty by
38% for every doubling of age – a substantial mortality selection shortly after birth.

While differing in frailty, all individuals of a cohort are assumed to share the same
baseline hazard. By modelling this individual level risk as an exponential function of
age we assume that each additional unit of age decreases an infants risk of death
by factor exp(−b), around 0.4% per additional day of age for the 2005-1999 US
birth cohort (3f). This relatively slow rate of decline may be attributed to aquired
robustness due to the infants continued growth and development.

Of course one could, to the same effect, also choose µ0(x) = a(x + c)−p and
E[Z|x] = e−bx. This model implies that the power-law behavior of the population haz-
ard (mostly seen during the first month of life) arises from individual level processes
while above we have assumed that the rapid mortality decline after birth is mostly due
to changing average frailty, i.e. mortality selection. Different choices for the baseline
hazard and the distribution of frailties can result in the same expression for the pop-
ulation hazard – an identifiability problem which is well known in the frailty-model
literature (e.g. Hougaard 1995).

Discussion

Using highly detailed individual level data on the timing of death over the first year
of life I found strong evidence for an exponentially truncated power-law behavior of
the hazard of infant death in two recent US birth cohorts. The shift from a power-law
regime to an exponential decline has not been noted in the literature before and in-
vites speculation regarding the mechanisms that give rise to such a pattern. Observed
hazards may be the result of mechanisms which have been discussed at length in the
context of senescent risk of death: mortality selection due to heterogeneous frailties
and a shock-recovery process.

The frailty hypothesis may be tested via a decomposition analysis. Vaupel and
Zhang (2010) prove that, if the population hazard µ(x) and the stratum specific haz-
ards µ(x|z) are known for a cohort, then the rate of change over age of µ(x) can be
decomposed into a “direct change” component and change due to the process of mor-
tality selection. Using this decomposition one could for example calculate how much
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of the decline in the risk of death over the first week of life as shown in figure 2 is due
the changing population composition by prematurity status resulting from the early
death of extremely premature infants, i.e. mortality selection.

A test of the shock-recovery model is less straightforward as it requires both a
clear definition of what constitutes a shock and data on the timing of such shocks to
see if their rate of occurrence corresponds to either the exponential or the power-law
component of the truncated power-law hazard.

Note that the truncated power hazard discussed in this paper does not permit an
interpretation as a competing-risks model. Such a model was implied by Bourgeois-
Pichat (1951) for the age-trajectory of infant mortality, which he partitioned into
deaths due to congenital disorders and deaths due to accidents. An alternative competing-
risks model featuring a power-law and an exponential term could take the form
µCR(x)= a1(x+c)−p+a2 exp(−bx), which may be re-written as µCR(x)= exp[loga1−
p log(x+ c)]+ exp[loga2− bx]. Sums-of-exponentials can be fit in the GLM frame-
work by using a composite-link-function (Thompson and Baker 1981; Camarda et al.
2016). Assuming that deaths due to intrinsic causes follow a power-law behavior
whereas extrinsic deaths feature the hazard of a negative-Gompertz distribution, this
competing-risks formulation of the age-specific hazard of infant death over time per-
mits a shape-based cause-of-death decomposition.

The results of this paper indicate that the proportional hazards assumption does
not hold across APGAR score and prematurity strata. The association of those vari-
ables with the baseline hazard of death over the first year of life is highly non-
proportional with much of the “effect” focussed on the first weeks of life. Indeed
differences in the rate of post-neonatal mortality decline imply that the relative dif-
ference in mortality between very frail and less frail infants diminishes over age to
some degree.

Insofar as the truncated power hazard generalizes to populations other than present
day US it can become a valuable tool for working with low-quality data on the tim-
ing of infant deaths. Based on µTP one can calculate life-table a0 from coarse data;
design model infant-life-tables; smooth over data artifacts such as age-heaping; es-
timate seasonal effects on mortality separately from age effects; or include realistic
infant mortality schedules into a simulation model.
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Appendix: Parameter estimates and confidence intervals for the truncated power
hazard
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