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Climate change in combination with sea level rise is intensifying the force and frequency of 
extreme events that damage the natural environment and the health and wealth of populations 
across the globe. In 2017 three major hurricanes hit the U.S. in short succession, upending the 
lives of millions of Americans. Hurricane Florence and Typhoon Mangkhut have done the same, on 
opposite sides of the globe. The cleanup and rebuilding efforts after these sorts of disasters cost 
billions and typically  lasts for several years. 
 
Developing tools for assessing and measuring both the extent of damage and the pace of recovery 
and linking these measurements to data on populations is a critical frontier at the intersection of 
population-environment linkages. Because satellite imagery is routinely collected on an on-going 
basis it  is ideally-suited for documenting change before and after an unanticipated disaster, even 
in the most remote locations. The objective of this paper is to combine high resolution satellite 
imagery, machine learning tools, and survey and census data in the context of a large-scale natural 
disaster to demonstrate proof-of-concept for a set of techniques that will enhance social 
scientists’ ability to cost-effectively and efficiently evaluate the long-term impacts of extreme 
events on the environment and on population well-being.  
 
The Event 
The event we study is the 2004 Indian Ocean Tsunami. The tsunami was triggered by a massive 
megathrust earthquake. The 1,500 km rupture generated tsunami waves that impacted shorelines 
throughout the region and propagated wave energy into all other world oceans (1-3). Worldwide 
casualties totaled over 250,000. The western coastline of the Indonesian province of Aceh was the 
area hit hardest. Tsunami waves averaging 25-30m struck Aceh’s shore some 15 minutes after the 
quake (4-5). In Aceh, 160,000 people, roughly 5% of the population, perished. The height, force, 
and inland reach of water from the tsunami depended on topographical features of the ocean 
floor and the shoreline (6-7). Low-lying coastal communities were largely destroyed in some areas. 
Along riverways the water encroached as much as 9 kilometers, versus 3-4 kilometers in other 
nearby locations (7). Inland areas that were flooded sustained substantial damage to the 
environment but few deaths.  
 
In the tsunami’s aftermath a $7 billion recovery effort was launched, at the time the largest, most 
ambitious rebuilding effort ever undertaken in a developing country, and one that was quite 
successful by many metrics. As one example, 140,000 homes were built in the five years after the 
event, to replace the estimated 120,000 that were damaged or destroyed. USAID rebuilt a major 
transportation artery along Aceh’s challenging west coast, and many other groups contributed to 
the reconstruction of schools, health facilities, village halls, and mosques. 
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The triptych of high resolution imagery below illustrates the transformation of one community, 
first by the tsunami waves, where green has been replaced by bare earth, and then by the 
rebuilding effort, in which the road, bridge, housing, and cropped fields have reappeared. The 
same process was repeated in hundreds of communities along Aceh’s west coast. Harnessing the 
information contained in these images and linking it to population data offers a wealth of 
opportunities for understanding how populations and the environment around them rebound in 
the aftermath of a disaster.  
 

   
 
 
 
 
The Population Data 
We draw on two primary sources of population data. The first is the Study of the Tsunami 
Aftermath and Recovery (STAR). STAR is a longitudinal survey of individuals, households and 
communities. The baseline, conducted 10 months before the tsunami, interviewed over 33,000 
respondents of all ages in nearly 500 communities (for more information see stardata.org). The 
STAR sample includes 13 kabupaten that border the coast in Aceh and North Sumatra. Tsunami 
survivors and their children born after the tsunami were tracked and interviewed annually for 5 
years after the disaster and again in a 10 year follow-up in 2015. 
 
Attrition poses special challenges in a study of a major disruptive event. Nearly two-thirds of the 
population in areas that were most affected by the 2004 tsunami was displaced; some of those 
people returned to their pre-tsunami locations, others moved multiple times. It is critical to 
measure the impact of the disaster on a sample that is representative of the entire post-tsunami 
population, including those who moved. We have, therefore, worked extremely hard to track 
every surviving baseline respondent including movers to other provinces in Indonesia and to 
Malaysia. By designing, testing and implementing sophisticated follow-up procedures, we have 
successfully re-interviewed over 96% of the survivors and, therefore, our study sample is 
representative of the population of survivors immediately after the tsunami. 
  
The second data source is census data of the two provinces conducted in 2005 (a special post-
tsunami census) and 2010 (the regular Indonesian decennial census). The questionnaires are short 
but the extensive geographic coverage provides a useful counterpart to the STAR survey when 

2004, pre-tsunami  2005 two weeks post-tsunami 2010, five years later 
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examining how populations respond to changes in their environment, and how they contribute to 
environmental “reshaping” after a disaster. 
 
Harnessing Satellite Imagery 
The images displayed above provide a compelling snapshot of the extent of change to landcover 
over a six year period. Harnessing the full potential of high resolution imagery to characterize how 
events that change the environment affect landcover requires methods to examine and code 
visually observable changes in a way that scales efficiently. We have developed a machine learning 
approach to classification of landcover that allows us to quantify features of landscapes before, 
just after, and five to ten years after the tsunami. 
 
The tool we designed uses a principled image preprocessing pipeline and a version of the SegNet 
convolutional neural network architecture described by Badrinarayanan and others (8). We settled 
on this method after testing and rejecting several others (boosted random forest, linear 
discriminant classifier, quadratic discriminant classifier, and K nearest neighbor). Our 
preprocessing pipeline uses mathematical tools to augment the available information in the 
imagery data (Gram-Schmidt pansharpening, normalization, and the application of affine 
transformations). The SegNet approach involves teaching the network to recognize particular 
patterns by providing it with a training data set and then applying the trained network to new 
images, eliminating the need for manual labelling. Variations of this approach have been used 
successfully for other building recognition tasks (Ghaffarian and Ghaffarian 2014; Yuan 2016).  
 
As a first step we obtained images from Digital Globe via their grants program for the years 2004, 
2005, 2007, and 2009. We developed a training dataset that includes over 9 million manually 
labelled building pixels, based on images from the subdistricts of Banda Aceh (the capital of Aceh 
province) and Aceh Besar (the surrounding more rural subdistrict) (Peshkin 2018). It is important 
to note that the images we are working with depict buildings with far less regular patterns than 
the images other research has relied on. This is particularly true for images from the aftermath of 
the tsunami (see image below), making our task considerably more complex than previous 
applications. On the other hand, reconstruction housing is typically far more recognizable (third 
panel).  
 

    
 
 
 
 
Preliminary Results 

Building images from prior work  Aceh, 2005      Aceh ~2009 (reconstruction) 
(Ghaffarian and Ghaffarian 2014) 
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To this point we have used our tool to capture buildings using images from 2005 (just after the 
tsunami) and 2007, when some rebuilding was underway.  The images below provide an example 
of how a high-resolution image on the left appears after the network has labelled the buildings 
(right image). 

 
The standard summary measure of performance for neural networks applied to computer vision 
problems is the F1 statistic, which is the harmonic mean of a measure of recall (the share of 
relevant items that are detected, which declines as false negative increases) and a measure of 
precision (the share of detected items that relevant, which declines as false positives increases). 
This measure is computed by comparing labels created by the network to manually-labeled images 
that were not used as part of the training data.  By these measures our method is quite effective, 
even for the highly disordered imagery from 2005. In addition our method is highly efficient, 
classifying 1.1 pixels per minute versus about 200 pixels per minute, on average, by human coders. 
 
Segmentation Recall Precision F1 
ISPRS Gold Standard (Kaiser et al 2017) 0.91 0.84 0.88 
Ghaffarian and Ghaffarian (2014) 0.88 0.72 0.78 
Yuan (2016) 0.80 0.81 0.80 
Our method 0.85 0.77 0.81 
    2005 0.84 0.74 0.78 
    2007 0.86 0.80 0.83 
 
 
Next Steps 
Having demonstrated the basic feasibility and accuracy of this approach, there are several obvious 
next steps that are underway and that will be completed in the coming months. Working with our 
proof-of-concept labelling described above, we will develop measures of surface area covered by 
buildings at different time points and georeference the measures so that we can compute 
measures of change over time in share of land cover accounted for by buildings, for known 
administrative units. Additionally we will link those measures to the communities covered in the 
STAR survey, which will allow us to link changes over time in building coverage to outcomes and 
behaviors for STAR respondents. Finally, we are in the process of extending our classification tool 
so that rather than capturing only buildings, we can capture six separate categories:  water, 
agriculture, rubble, foundations, buildings, and roads. This expansion will substantially enrich the 
ways we can use the data, for example linking change in land use to changes in population 
composition, sources of livelihood, and other social and economic outcomes. 
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