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Abstract

Differences in life expectancy between high and low socioeconomic
groups are often large and have widened in many countries in recent
decades. In the US, this difference may now be as large as ten to 14
years. Such longevity gaps by socioeconomic status strongly affect the
actuarial fairness and progressivity of many public pension systems,
suggesting a need for policy reforms to address this issue. However,
behavioral responses to longevity differences and policy change com-
plicate the analysis of possible reforms. Here we consider how some
pension reforms would perform in a general equilibrium setting when
there is heterogeneity in both longevity and ability. We evaluate the
redistributive effects of three Notional Defined Contribution plans and
three Defined Benefit plans, calibrated on the US case, drawing on a
recent National Research Council study and other information.
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1 Introduction

There are large differences in mortality by socioeconomic status in rich indus-
trial nations and in some developing countries as well, according to a growing
literature which has also found that these differences have often widened in
recent decades (NASEM, 2015; OECD, 2016; Waldron, 2007; Bosworth et al.,
2016; Chetty et al., 2016; Rosero-Bixby and Dow, 2016; Rostron et al., 2010).
While these increasing inequalities in health are themselves an urgent and
critically important problem for policy, here we will focus on a different issue:
These mortality differences interact with government programs, particularly
those for the elderly such as public pensions, health care, and long term care.
The economically advantaged groups survive for more years than those with
lower income, and thereby receive more costly benefits from each of these pro-
grams. Unless tax and contribution structures, on the one hand, and benefit
structures on the other, take such differences into account the result can be
a net transfer of income from the poor to the rich through these programs.
To the extent that programs are designed to be progressive, and intended to
redistribute income from rich to poor, these mortality differences will reduce
or even reverse the direction of redistribution. Effects of this sort on govern-
ment programs in the United States were recently quantified and found large
(National Academies of Sciences, Engineering and Medicine, 2015; henceforth
NASEM, 2015). For example, the widening of the longevity gap between the
top and bottom income quintile in the US raised the present value of lifetime
government benefits for the top quintile relative to the bottom by $132,000 for
men and by $157,000 for women (NASEM, 2015, :11). Consequences of this
kind are surely present in other countries as well.

As populations age, the fiscal sustainability of government programs for the
elderly has been increasingly threatened, leading to strong pressures for policy
adjustments now and in the near future. Potential policy adjustments, such
as raising the Normal Retirement Age for pensions or indexing each genera-
tion’s benefit level to its remaining life expectancy, will have different effects on
groups with different mortality, effects that will increase if the mortality differ-
ences continue to widen. The interactions of mortality differences with policy
adjustments were also analyzed by the NASEM study, for selected program
changes.

Analysis of these effects and interactions is far from straightforward, due
both to data limitations and to the likelihood of broader behavioral responses
by individuals to policies and to their own mortality risks. On the data side,
assessments require calculation of taxes and benefits over an entire adult life-
time in relation to mortality differences across an entire lifetime. Since work
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often starts before age 20, and because many individuals survive past 100,
analysis requires longitudinal data for each generation over a span of some-
thing like 80 years, disaggregated by socioeconomic status. Such data are
seldom if ever available. Empirical studies such as NASEM (2015) have in
practice been based on a mixture of observed, simulated and projected data,
reflecting many assumptions and introducing many uncertainties, and even
after these efforts data on some key variables may be unavailable for parts of
the lifecycle.

There are also difficult theoretical issues. Presumably these mortality dif-
ferences are to some degree known to the actors, who then take them into
account as they formulate their lifecycle plans for education, consumption,
saving, and retirement, plans that are further complicated by individual dif-
ferences in ability. Once government programs are added to the picture, all
sorts of new incentives and distortions arise, with different effects for different
longevity and ability groups. Analysis of the redistributive effects of govern-
ment programs must also consider the way that these individual behavioral
responses will affect the outcome.

In this paper we focus on public pensions rather than considering the whole
range of public programs for the elderly. We develop a general equilibrium
model for a small open economy, the population of which exhibits heteroge-
neous ability and mortality leading to differences in education, income, and
retirement planning. Mortality differences by long term earnings are based on
the analysis in NASEM (2015), and the parameters of our theoretical model
are calibrated to match key aspects of the NASEM findings. We focus on re-
distributive effects of six different public pension systems: three Notional De-
fined Contribution (NDC) plans and three Defined Benefit (DB) plans. One
version of these NDC and DB plans ignores mortality differences at retire-
ment. Another three versions —one NDC and two DB plans— differ in their
approaches to structuring taxes/contributions or benefits so as to reduce or
avoid the program inequities arising from differences in life expectancy, or to
achieve redistribution more generally. These five systems are compared to an
ideal NDC plan (our benchmark) in which both contributions and retirement
benefits are adjusted for the mortality of each group. For concreteness, our
analysis draws in various ways on the results of the NASEM (2015) study of
the US case, either with a core DB system closely resembling that of the US,
or a modified NDC system that shares some quantitative features of the US
case. In order to focus on the role of the mortality differences, we simplify
in various ways, including assuming that the systems are in long term fiscal
balance.

Our main findings stem from the behavioral responses arising from the
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difference in retirement between NDC and DB plans. NDC systems minimize
labor market distortions by better linking contributions to pension benefits.
Thus, in NDC systems earlier or later retirement ages tend to be as neu-
tral as possible to the budget of the social security and the individual, since
benefits are automatically adjusted according to the remaining years-lived in
retirement. In contrast, DB systems poorly link contributions to pension ben-
efits as life expectancy increases. In order to re-introduce actuarial fairness,
DB pension systems apply penalties/rewards for early/late retirement ages.
However, when these penalties/rewards are not in line with those that are
actuarially fair, the pension system not only modifies the retirement, but it
also leads to a series of other behavioral responses that affect the wealth and
welfare of individuals. In particular, our estimates indicate that under the
mortality regime of the 1930 cohort in the US, individuals would have retired
between ages 61 and 64 in NDC plans, whereas individuals would have retired
on average one year later in DB plans. This difference in the retirement age
raises the marginal benefit of education in DB plans. Hence, the average num-
ber of years in schooling and the stock of human capital is higher in DB plans.
However, we find that in DB systems the average increase in lifetime income is
accompanied by a fall in lifetime welfare, since the increase in lifetime income
comes at the expense of less leisure time during the working period and at
retirement.

Throughout the article, we will focus on how the six public pension systems
redistributive income across income groups and how individuals response to
alternative pension settings. The paper is structured as follows. In Section 2
we detail the demographic characteristics of the population. In Section 3 we
set a general accounting framework for simultaneously analyzing NDC and DB
pension systems. In Section 4 we introduce a lifecycle model of labor supply
in which individuals decide their education, hours worked, and the retirement
age. Details about assumption, data used, and parameters values are provided
in Section 5. The redistributive properties of each pension system by income
quintile under two mortality regimes are presented in Section 6. Section 7
concludes. We provide a detailed derivation of the economic model in the
Appendix.

2 Demographics

Individuals. We assume that the mortality of each individual is completely
determined by their lifetime income. We denote by I = {1, 2, . . . , I} the set
of I income levels. Let the probability of surviving to age x of an individual
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belonging to group i ∈ I be

pi(x) = e−
∫ x
0 µi(t)dt, (1)

with pi(0) = 1, pi(ω) = 0, ω ∈ (0,∞) denotes the maximum age, and
µi(t) ≥ 0 is the mortality hazard rate at age t of an individual of group i
(with ∂µi(t)/∂t ≥ 0 for t ≥ x̄). The life expectancy at age x of an individual
belonging to group i is defined as

ei(x) =

∫ ω

x

pi(t)

pi(x)
dt. (2)

Fig. 1 shows the life expectancy at ages 15, 50, and 65 for the US male cohorts
born in 1930 and 1960 based on the report by the NASEM (2015).1 The data
shows that the difference in life expectancy between the highest and the lowest
quintiles is 6.5, 5.1, and 3.3 years at age 15, 50, and 65, respectively, for the
birth cohort born in 1930. The difference in life expectancy between these two
income groups widens for the cohort born in 1960. In particular, the difference
becomes as high as 16.2, 11.9, 9.4 years at ages 15, 50, and 65, respectively.

Population. To simplify the demographic analysis, we assume each longevity
group grows steadily at a rate n and that the total number of births across
longevity groups is the same.2 As a consequence, the total population size at
time t is

P (t) = B(t)

∫ ω

0

e−nxp(x)dx, with p(x) =
1

I

∑
i∈I
pi(x), (3)

where B(t) is the total number of births at time t, p(x) is the average survival,
which implies that the average mortality hazard rate at age x, denoted by
µ(x), is

∑
i∈I µi(x)pi(x)

/∑
i∈I pi(x) . Thus, the existence of different longevity

groups implies that the average mortality hazard rate is biased with age to-
wards the mortality hazard rate of higher income individuals.

1We calculate the survival probabilities associated to each birth cohort and income quin-
tile by finding the cohort-life table from the US Social Security Administration (SSA) that
matches the life expectancy at age 65 by birth cohort and income quintile reported by
NASEM (2015). See https://www.ssa.gov/oact/NOTES/as120/LifeTables_Body.html.

2Thus, we are implicitly assuming that fertility is higher for lower income groups, to
overcome the lower proportion of females surviving through the reproductive ages.
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Figure 1: Life expectancy at ages 15, 50, and 65 by income quintile, US males,
cohorts 1930 and 1960.

Note: Authors’ estimates based on data reported in the report by the NASEM (2015).

6



3 The pension model

The aim of the paper is to analyze the redistributive impact that different pen-
sion plans have on life cycle decisions of heterogeneous individuals by income
quintile. In order to provide comparable results across pension systems, we
need a framework that allows us to compare simultaneously all pension plans.
For this purpose we will use a pension point system, described below, that
can reproduce both a defined benefit (DB) system and a defined contribution
(DC) system (see, for instance, Börsch-Supan, 2006; OECD, 2005).

3.1 Parametric components

In order to keep the model as tractable as possible, we exclude in the pension
system disability benefits, survivor benefits, and widowhood benefits. As a
consequence, the pension system acts as an insurance institution that only
pays benefits to those workers that survive to retirement. Let us assume
that by contributing to the pension system the amount τy(t), where τ is the
contribution rate and y(t) is the labor income subject to payroll tax, workers
gain pension points, pp(t), that entitle them to receive a pension benefit upon
retirement. Suppose that workers earn φ pension points per unit of social
contribution paid. Moreover, let us assume pension points are capitalized,
or indexed, according to r plus a mortality risk premium. The risk premium
arises because we exclude benefits from disability, survivor, and widowhood.
The capitalization factor r is assumed to be equal or lower than the market
interest rate, which we denote by r. Most of the capitalization factors, or
indexes, applied in pension systems fit into one of the following three cases:
(i) when r = 0, past contributions are only adjusted for inflation; (ii) when
r = r, past contributions are invested in the market and capitalized according
to the interest rate r (i.e., funded system); and (iii) when r = n + g, where
n is the population growth and g is the productivity growth rate, then past
contributions are capitalized according to the growth rate of the national wage
bill at the macro level, which corresponds to the intrinsic growth rate of a
PAYG pension system (Samuelson, 1958).3 The amount of pension points
earned depends on whether the system is DB or DC. In a DC system, the
pension points earned each period are equal to the contribution paid (i.e.,
φ = 1), whereas in a DB system the pension points are equal to the yearly
pension benefit accrual, which is a fraction (%) of the labor income earned
or a fraction (%/τ) of the contributions paid (i.e., φ = %/τ); that is, pension

3Samuelson (1958) shows that the internal rate of return of a transfer system is equal to
the growth rate of the contribution base of the system.
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benefits built up in a year-to-year basis. Thus, the total number of pension
points accumulated at the exact age x ≥ x0 by an individual of type i ∈ I in
any pension system can be formulated as follows

ppis(x, x0; r) ≡ ppis(x) = φ

∫ x

x0

er(x−t)
ps(t)

ps(x)
τyi(t)dt with ppis(x0) = 0, (4)

where x0 is the minimum working age, r is the capitalization factor, ps(x)
is the survival probability to age x used by the pension system, yi(t) is the
labor income of a worker belonging to group i at age t, and I is the set of
possible income groups. Note that the second subscript ‘s’ denotes the survival
probability used by the social security system. The total number of pension
points in Eq. (4) receives a different name in each pension system. For instance,
in a DC system, the total number of pension points before retirement is equal
to the pension wealth, while in a DB system the total number of pension points
at retirement is equal to the average indexed yearly earnings.

To calculate the pension benefit (b) of a retiree, the government applies
a conversion factor, fis(Ri, ppis(Ri)), that transforms at age Ri the pension
points accumulated (pp) into pension benefits

bis(Ri, ppis(Ri)) = fis(Ri, ppis(Ri))ppis(Ri). (5)

In a DC system, the government transforms the pension wealth into an an-
nuity using cohort-specific life tables and an effective interest rate. Thus, the
conversion factor at the age of retirement (Ri) is

fis(Ri, ppis(Ri)) = Ei(Ri)/As(Ri, r), (6)

where Ei(Ri) is a factor that corrects for the difference in life expectancy of
individuals of type i ∈ I relative to the average individual. Similar to Ayuso
et al. (2017) we assume the correction factor is specific to the group that the
individual belongs and it depends on the retirement age Ri. As(Ri, r) is the
present value of a life annuity of 1 dollar per year, paid from age Ri onwards,
calculated with an effective interest of r and a survival probability ps(·).4

In the DB system, the government multiplies the average indexed yearly
earnings by a replacement rate, ϕ(pp), and then applies an adjustment fac-
tor β(Ri) for early or late retirement to determine the pension benefit of the
retiree. The replacement rate can be constant (i.e., ϕ(pp) = ϕ) or it can
decrease as the average indexed yearly earnings increases (i.e., ϕ′(pp) < 0).

4The actuarial present value of an individual of type i at the exact age t when the effective

interest rate is r is given by Ai(t, r) =
∫ ω

t
e−r(x−t) pi(x)

pi(t)
dx.
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Finally, to consider actuarial fairness we implement for the DB system the
penalties/rewards for early/late retirement established in the US pension sys-
tem for each birth cohort. As a result, in a DB system, the conversion factor
at the age of retirement Ri is

fis(Ri, ppis(Ri)) = Ei(Ri)β(Ri)ϕ(ppis(Ri)), (7)

where Ei(Ri) is the same correction factor for the difference in life expectancy
of individuals of type i ∈ I relative to the average individual introduced in
Eq. (6).

3.2 Pension wealth

Given that individuals expect to receive future benefits during retirement out
of their contributions, the pension system generates a transfer wealth, which is
known as the social security wealth. Depending on the individual characteris-
tics and the pension scheme, the social security wealth might not only change
savings, but it might also affect consumption, the supply of labor, and even
the accumulation of human capital (Sánchez-Romero and Prskawetz, 2017).

Assuming that an individual will retire at age Ri, we define the social secu-
rity wealth at age x ≤ Ri of an individual of type i, denoted by SSWis(x,Ri),
as

SSWis(x,Ri) ≡ SSWis(x) = e−r(Ri−x)pi(Ri)

pi(x)
bis(Ri, ppis(Ri))Ai(Ri, r)−

−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τyi(t)dt. (8)

The first component of (8) is the present value, survival weighted, at age x
of the future benefits during retirement, while the second component of (8) is
the present value, survival weighted, of the remaining pension contributions
to pay from age x until retirement.

Eq. (8) is standard in pension economics and finance literature and helps to
study how the pension system affects the decisions on saving and retirement
(Feldstein, 1974; Gruber and Wise, 1999). However, (8) does not provide
information about how the social security will influence on the intensive labor
supply. For this reason, we propose rewriting (8) in terms of implicit taxes on
labor income. In particular, using (4)–(5) the social security wealth can also
be written as follows:

SSWis(x) = Pis(x)
ppis(x)

φ
−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
tis(t)yi(t)dt, (9)
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The derivation of (9) from (8) is provided in Appendix A. The first component
of (9) is the monetary value given by an individual of type i to the social
security contributions paid until age x, while the second component of (9) is
the present value, survival weighted, at age x of all the implicit taxes/subsidies
on labor income that individuals will expect to pay/receive until retirement.

Eq. (9) contains two new terms that are next explained in detail. First, the
term Pis(x, Si, Ri) is the value of one dollar contributed to the pension
system at age x for an individual of type i, who would retire at age Ri and
has been contributing since age Si

Pis(x, Si, Ri) ≡ Pis(x) = φe(r−r)(Ri−x)pi(Ri)

pi(x)

ps(x)

ps(Ri)
fis(Ri, ppis(Ri))Ai(Ri; r) > 0.

(10)

As Figure 2 shows the term Pis is the result of multiplying the value of a
pension point per unit of social contribution, φ, by the ratio of two present
values. First, the present value, survival weighted, at age x of the retirement
benefits which would be claimed from age R by an individual of type i from
her/his pension points pp —see the top panel of Figure 2. This present value
is also known as (gross) pension wealth at age x ∈ (0, R). Second, the present
value, survival weighted, at age x of the same pension points pp at age R
calculated from the point of view of the social security system—see the bottom
panel of Figure 2.

Eq. (10) implies that when the individual and the social security system
value the pension points pp equally, then the value of one dollar contributed
to the pension system (Pis) is unity. However, when the value of pp for an
individual of type i is greater (resp. lower) than that by the social security
system, then Pis is greater (resp. lower) than unity. A value of Pis greater
than one implies that an individual of type i receives a greater return from
her/his contribution to the pension system than investing the same dollar in
the capital market, and vice versa. As a consequence, Pis provides information
about the rate of return of a pension system, regardless of the pension points
accumulated.

Using (9) and (10), we can calculate the value of one dollar contributed to
the pension system and how it evolves with age for an individual of type i.
Specifically, the value of Pis at the age of retirement, Ri, for a worker of type
i is

Pis(Ri) =
SSWis(Ri)

ppis(Ri)/φ
= φfis(Ri, ppis(Ri))Ai(Ri; r). (11)
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(a) Value of pp at age x for the individual
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e−r(R−x) ps(R)
ps(x)

B= e−r(R−x) ps(R)
ps(x)

pp

(b) Value of pp at age x for the pension system

Value of Pis(x) = φA
B

Figure 2: The value of one dollar contributed to the pension system at age x
for an individual who plans to retire at age R, Pis(x)

In an actuarially fair pension system —i.e, φfis(Ri, ppis(Ri)) = 1/Ai(Ri; r)—
the value of Pis is one. Also, from (11) we can see that in a pension system
that guarantees the same social security wealth SSW to all individuals who
have accumulated the same amount of pension points pp, the value of Pis at
age R is the same for all individual types i ∈ I. In addition, differentiating
(10) with respect to age x gives the evolution over the lifecycle of Pis

1

Pis(x)

∂Pis(x)

∂x
= (r − r) + (µi(x)− µs(x)). (12)

When µs(x) = µi(x), we have that Pis increases more rapidly with age when
the market interest rate is higher than the capitalization factor of the social
security system (i.e, r > r). When r = r, if the social security system applies
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the same average mortality rate to all individual types, those individuals with
a life expectancy below the average level (i.e., ei(x0) < es(x0) or µi(x) >
µs(x)∀x) will begin with a low valuation of their contributions but it will
increase with age, while those individuals with a life expectancy above the
average level (i.e., ei(x0) > es(x0) or µi(x) < µs(x)∀x) will begin with a higher
valuation of their contributions but it will decrease with age. See Figure 3 for
an illustration. Thus, this second component accounts for the redistribution
of resources within the cohort from those with low life expectancy to those
with high life expectancy.

Pis(x)

Age x

if µi(x) = µs(x)

x0 R
0

1

if µi(x) > µs(x)
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Figure 3: Stylized evolution of the monetary price of one dollar contributed
to the pension system at age x for an individual who plans to retire at age R,
Pis(x). Case: when r = r.

The second term in (9) includes tis(x, Si, Ri); i.e., the implicit tax/subsidy
rate on labor income faced at age x by an individual of type i, who retires
at age Ri and has been contributing to the system since age Si

tis(x, Si, Ri) ≡ tis(x) = τ (1− Pis(x)) . (13)

From (13) we can see that tis might be either positive (tax) or negative (sub-
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sidy) according to the value of Pis

tis(x)

{
> 0 if Pis(x) < 1,

< 0 if Pis(x) > 1.
(14)

This relationship is shown graphically in the vertical axis in Fig. 3. From (14)
we have three important relationships. First, a pension system is actuarially
fair if it satisfies that Pis(x) = 1 for all x ∈ (Si, Ri). Second, Pis provides
information about the implicit tax/subsidy on labor income, which can be
used for comparing alternative pension systems.5 Third, differentiating (13)
with respect to age gives

∂

∂x
(1− tis(x)) = τ

∂Pis(x)

∂x
. (15)

Thus, from (15) we can see that the evolution of one dollar net of implicit
tax/subsidies is the proportional to the evolution of Pis.

Finally, note from (9) that we can write the social security wealth at
age x0 (the age at start making decisions) in terms of the lifetime implicit
taxes/subsidies paid

SSWis(x0) = −
∫ Ri

x0

e−r(t−x0) pi(t)

pi(x0)
tis(t)yi(t)dt. (16)

From (16) we can see that the social security wealth is negative when contri-
butions are seen as an implicit tax on labor income —i.e. tis(t) > 0 for all
t ∈ (0,Ri)—, while the social security wealth becomes positive when contri-
butions are implicitly seen as a subsidy on labor income —i.e. tis(t) < 0 for
all t ∈ (0,Ri).

3.3 Basic components of alternative pay-as-you-go pen-
sion systems

In this paper we analyze six alternative PAYG pension systems (3 DCs and
3 DBs). To easy the comparison across pension systems and clearly show
their main features, we introduce three assumptions that are convenient to
understand how the six alternative pension systems affect eqs. (5)–(16) across

5A similar metric for analyzing alternative pension points is the internal rate of return.
However, unlike the internal rate of return, the monetary value of a pension point also gives
information about the wealth of the individual if we multiply P by the total number of
pension points accumulated (pp).
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individual types. First, we assume the market interest rate coincides with the
internal rate of return of a PAYG pension system (i.e., r = r ≡ n+g).6 Second,
the retirement age Ri is assumed to be the same across individual types and
coincides with the normal retirement age established by the pension system,
which we denote by Rn. In other words, we abstract from any penalty/reward
for early/late retirement (i.e., β(Rn) = 1).7 Third, all pension systems provide
the same replacement rate for the average individual within each cohort, which
implies that ϕ = (τ/%)/As(Rn, r). However, the first two assumptions will not
hold in our simulation results, which are based on actual data for the US.

The following pension systems are implemented:

1. A standard notional defined contribution system (NDC-I) in which the
government applies the same average life table for all income groups for
computing the pension points and calculating the retirement benefits.

2. A notional defined contribution system (NDC-II) in which the govern-
ment computes the pension points using an average life table for all in-
come groups. However, unlike NDC-I, the government uses the income-
specific life table for the calculation of the retirement benefits. This
pension system mimics the one proposed by Ayuso et al. (2017).

3. A notional defined contribution system (NDC-III) in which the govern-
ment applies the income-specific life table associated to each individual
type both for the computation of the pension points and for the calcu-
lation of the retirement benefits.

4. A defined benefit system that uses all the parametric components of the
US pension system, except for the replacement rate that is assumed to
be constant at 0,417 (DB-I).

5. A defined benefit system with a progressive replacement rate (see Fig. 2
in Sánchez-Romero and Prskawetz, 2017). This pension system mimics
the US pension system (DB-II).

6. A defined benefit system with a two-tier replacement rate (DB-III). One
tier that introduces a progressive replacement rate as in the US pension
system, while the second tier corrects for differences in life expectancy
similar to the NDC-II.

6Note that, for the sake of simplicity, here, we assume no difference between a funded
and an unfunded pension system. Later, in Section 6 we assume that r > r.

7The parametric component β(Rn) is in fact one of the ways that differential mortal-
ity affects actuarial fairness of PAYG pension systems. In Section 6 we use the actual
penalty/reward function by birth cohort from the US pension system.
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Table 1: Alternative PAYG pension systems and their impact on the social
security wealth at age x0 by life expectancy

Defined Contribution (DC)
Avg. Life Table (LT) Corrected Avg. LT i-th LT

Symbol NDC-I NDC-II NDC-III
Indexation r n+ g n+ g n+ g

Point factor φ 1 1 1

Correction factor Ei 1 As(Rn, r)/Ai(Rn, r) 1

Replacement rate fis 1/As(Rn, r) Ei(Rn)/As(Rn, r) 1/Ai(Rn, r)

Value of $1 contributed Pis(x0)

{
< 1 for ei < es,

> 1 for ei > es.

{
< 1 for ei < es,

> 1 for ei > es.
1

Value of $1 contributed Pis(Rn)

{
< 1 for ei < es,

> 1 for ei > es.
1 1

Implicit tax/subsidy tis

{
> 0 for ei < es,

< 0 for ei > es.

{
≥ 0 for ei < es,

≤ 0 for ei > es.
0

Soc. sec. wealth SSWis(x0)

{
< 0 for ei < es,

> 0 for ei > es.

{
< 0 for ei < es,

> 0 for ei > es.
0

Defined Benefit (DB)
Non-Progressive Progressive Corrected-Progressive

Symbol DB-I DB-II DB-III
Indexation r n+ g n+ g n+ g

Point factor φ %/τ %/τ %/τ

Correction factor Ei 1 1 As(Rn, r)/Ai(Rn, r)

Replacement rate fis β(Rn)ϕ β(Rn)ϕ(ppi(Rn), r) Ei(Rn)β(Rn)ϕ(ppi(Rn), r)

Value of $1 contributed Pis(x0)

{
< 1 for ei < es,

> 1 for ei > es.
≶ 1 ≶ 1

Value of $1 contributed Pis(Rn)

{
< 1 for ei < es,

> 1 for ei > es.
≶ 1

{
> 1 for ei < es,

< 1 for ei > es.

Implicit tax/subsidy tis

{
> 0 for ei < es,

< 0 for ei > es.
≶ 0 ≶ 0

Soc. sec. wealth SSWis(x0)

{
< 0 for ei < es,

> 0 for ei > es.
≶ 0 ≶ 0

Notes: ‘es’ denotes the life expectancy of the reference population group used by the social security system, which
we assume is calculated using the average survival probability of the birth cohort. ‘ei’ denotes the life expectancy
of the individual analyzed. x0 is the minimum working age. All the calculations are done under the following
assumptions: (a) the life expectancy is positively correlated with the income level, (b) the market interest rate r is
equal to r = n + g, (c) the pension replacement rate ϕ is equal to (τ/%)/As(Rn, r) so as to coincide with the defined
contribution system, and (d) the retirement age is fixed at the normal retirement age for all population groups, which
implies that β(Rn) = 1. Ai(Rn, r) denotes the actuarial present value of an individual of type i at the exact age R
when the effective interest rate is r.

Table 1 summarizes how each pension system may affect eqs. (5)–(16)
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across individual types. Table 1 is divided in two sections. The top section
contains the information for the defined contribution systems (from NDC-I
to NDC-III), while the section at the bottom provides the information for
the defined benefit systems (from DB-I to DB-III). For each pension system
the information is divided in two groups of individuals. Individuals with an
average life expectancy below the average level (ei < es) and individuals with
an average life expectancy above the average level (ei > es). Table 1 shows
that under the presence of a heterogeneous population by life expectancy, those
individuals who have a priori an average life expectancy below (resp. above)
the average level become (a) net contributors (resp. beneficiaries) in a NDC-
I, NDC-II, DB-I systems —i.e., SSWis(x0) < (>)0, they become (b) neither
contributors nor beneficiaries in a NDC-III system —i.e. SSWis(x0) = 0, while
(c) the sign of the social security wealth is a priori ambiguous in a DB-II and
a DB-III systems. Nonetheless, if pension systems are highly progressive, then
it should be expected that those individuals with low (resp. high) income, who
also have a life expectancy below (resp. above) the average level, will become
net beneficiaries from (resp. contributors to) the pension system.

Table 1 can also be used for understanding the impact of each pension
system on the social security wealth after relaxing the first two assumptions. In
particular, if we first allow r > r, the overall value of a pension point will decline
in all pension systems, the average implicit tax/subsidy will increase, and thus
the social security wealth at age x0 will be lower. Second, if individuals retire
before (resp. after) Rn, the social security wealth value will be smaller (resp.
bigger) but the signs will remain. Of course, non-actuarial corrections of the
penalties/rewards for early/late retirement will have a strong effect.

4 The economic model

In the previous section we presented a general accounting framework for an-
alyzing most pension systems. Next, we explain the main features of the life
cycle model implemented to construct the labor income earned, the contri-
butions paid, the total pension points accumulated, and the pension benefits
claimed by each individual type i ∈ I across the six pension systems analyzed.

4.1 The individual problem

Let us consider an individual, who belongs to quintile i ∈ I, starts making
decisions after finishing the compulsory educational system at age x0, and lives
up to a maximum age ω. Our individual earns a wage rate per hour worked
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wi, which is assumed to be a function of years of schooling and years of post-
schooling experience. Let the wage rate per hour worked for an individual
of type i ∈ I at age x conditional on S years of schooling be wi(x, S) =
hi(S)w̄(x−S), where hi(S) is the stock of human capital of an individual with
S years of schooling and w̄(x−S) > 0 accounts for the returns to x−S years of
post-schooling experience. Assume the stock of human capital of an individual
type i ∈ I accumulates at age x ∈ [x0, Si) according to a Ben-Porath (1967)
technology

∂hi(x)

∂x
= θihi(x)γ − δhi(x) with hi(x0) = 1, (17)

where θi is the learning ability of an individual belonging to group i ∈ I,
γ ∈ (0, 1) is the returns to scale to the time devoted to education, and δ is
the human capital depreciation rate. Assume the wage rate per hour worked
increases with post-schooling experience according to the following Mincer
(1974) equation

w̄(x− S) = exp
(
β0(x− S)− β1(x− S)2

)
for x ≥ S, (18)

where β0, β1 > 0 are parameters that guarantee the usual hump-shape of the
wage rate per unit of human capital (see for instance Table 2, p. 326, in
Heckman et al., 2006).

During the working period the individual supplies her/his intensive labor
in exchange for the wage rate wi(x, S) and pay contributions to the pension
system. Assume the individual understands that that higher contributions
imply higher future benefits. Thus, individuals do not see their contributions
to the pension system as a tax on labor income. This assumption connects
the economic model with the general pension model introduced in Section 3.
Finally, once the individual reach the retirement age, she/he receives the cor-
responding pension benefits and enjoys leisure.

Budget constraint. The choice of the path of consumption ci, hours worked
`i, length of schooling Si, and the retirement age Ri are bounded by a lifetime
budget constraint. We assume the existence of a perfect annuity market in
which individuals can purchase life-insured loans, when they are in debt, and
annuities in case of having positive financial wealth. Individuals start with
zero assets, ai(x0) = 0, and in the terminal age ω they do not hold wealth,
ai(ω) = 0. Using (9) the lifetime budget constraint at age x > x0 of an
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individual of type i ∈ I is∫ ω

x

e−r(t−x) pi(t)

pi(x)
ci(t)dt = ai(x) + Pis(x)

ppis(x)

φ
+

+

∫ Ri

x

e−r(t−x) pi(t)

pi(x)
(1− tis(t))wi(t, Si)`i(t)dt, (19)

where r is the market interest rate, pi(t)/pi(x) is the probability of surviving
to age t conditional on being alive at age x for an individual of type i, ai(x)
are the assets held at age x, Pis(x) is the value of one dollar contributed to
the pension system at age x for an individual type i, ppis(x) are the pension
points accumulated until age x by an individual of type i. Differentiating (4)
with respect to age we have that pension points accumulate over the working
life according to

∂ppis(x)

∂x
= (r + µs(x))ppis(x) + φτwi(x, Si)`i(x) for x ∈ (Si, Ri). (20)

r is the capitalization factor of the social security pension system, µs(x) is the
mortality hazard rate at age x used by the pension system, φ is the pension
point per unit of social contribution paid, τ is the social contribution rate,
tis(t) is the implicit tax/subsidy rate on labor income faced by an individual
type i at age t, and wi(t, Si)`i(t) is the (gross) labor income earned at age t
by an individual of type i after working `i(t) hours for a wage rate per hour
worked of wi(t, Si).

Eq. (19) clearly shows how consumption over the remaining lifespan is
financed by current assets ai(x), by the monetary value of the social security

contributions paid until age x, Pis(x)ppis(x)
φ

, and by the present value at age x

of the remaining flow of labor income net of implicit taxes/subsidies.

Preferences. Consider an individual optimally choose the consumption path
ci, the length of schooling Si, the number of hours worked `i for the wage rate
wi, given by (17)-(18), and the retirement age Ri by maximizing the lifetime
expected utility Vi at age x ∈ [x0, S), which is given by

Vi(x) =

∫ ω

x

e−ρ(t−x) pi(t)

pi(x)
U (ci(t)) dt−

∫ Ri

Si

e−ρ(t−x) pi(t)

pi(x)
αiv (`i(t)) dt

−
∫ Si

x

e−ρ(t−x) pi(t)

pi(x)
ηidt+

∫ ω

Ri

e−ρ(t−x) pi(t)

pi(x)
ϕ(t)dt. (21)
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The first two components on the right-hand side of (21) are, respectively, the
lifetime utility from consumption and the lifetime disutility from work. The
third term accounts for the disutility from attending school (Sánchez-Romero
et al., 2016; Restuccia and Vandenbroucke, 2013; Oreopoulos, 2007) and the
last term captures the utility of leisure during retirement. ρ is the subjective
discount factor, pi(t) is the probability of surviving to age t by an individual
of type i ∈ I, U(c) is an instantaneous utility function that is assumed to be
twice differentiable with U ′(c) > 0 and U ′′(c) < 0, αi > 0 is the weight of the
disutility of the labor supplied for an individual of type i, v (`) is the disutility
of working ` hours (with v′(`) > 0 and v′′(`) > 0), ηi > 0 is the marginal
disutility from attending school and ϕ(t) > 0 (with ϕ′(t) ≥ 0) is the marginal
utility of leisure during retirment, which increases with age as the amount of
retirement time is squeezed by later and later retirement. Similar to Bloom et
al. (2014) we assume ϕ(t) is proportional to the mortality rate.

The last three terms in (21) are key for (i) taking into account that the
return to schooling exceeds the marginal cost of education (Heckman et al.,
2006), (ii) for reproducing the supply of labor during the working life, which is
hump-shaped, and (iii) for replicating actual retirement ages given that indi-
viduals would never retire because continuing work would raise consumption
and reduce intensive labor.

4.2 Optimal decisions

The primary objective of this section is to explain how each pension system
affects the economic behavior of our heterogeneous individuals. To do so, we
solve the problem of maximizing the lifetime utility (21) subject to the lifetime
budget constraint (19) and the laws of motion (17)–(18). The definition of the
Hamiltonians and the first-order conditions are reported in the Appendix B.
Then, we proceed to look at the behavioral responses of an individual of type
i to the different pension systems. First, we start analyzing how each pension
plan affects consumption and hours worked for a given length of schooling
and retirement age. Given the optimal consumption and labor supply, we
will follow analyzing the impact that each pension plan has on the length of
schooling. We finalize the section studying the impact of each pension system
on retirement.

In a lifecycle model behavioral responses are explained by the impact that
marginal changes in values and taxes have on the decision variables. For
this reason, in this section we will define a set of marginal values and taxes
associated to those introduced in Section 3.2.
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Consumption and hours worked. Given a length of schooling and retire-
ment age (Si, Ri), the optimization yields the following optimal consumption at
age x ∈ (x0, ω) and intensive labor supply (hours worked) at age x ∈ (Si, Ri):

ci(x) = eσc(r−ρ)(x−x0)

(∫ Ri
Si
D(t;x0,−σ`)wtis(t) (wτis(t))

σ` dt

(αi)
σ`
∫ ω
x0
D(t;x0, σc)dt

) σc
σ`+σc

, (22)

`i(x) = eσ`(ρ−r)(x−x0)

 (αi)
−σc
∫ ω
x0
D(t;x0, σc)dt∫ Ri

Si
D(t;x0,−σ`) wtis(t)

(wτis(x))σc

(
wτis(t)
wτis(x)

)σ`
dt


σ`

σ`+σc

, (23)

where

D(t;x0, σ) =
pi(t)

pi(x0)
e−[r(1−σ)+σρ](t−x0), (24)

wtis(t, Si, Ri) ≡ wtis(t) = (1− tis(t))wi(t, Si), (25)

wτis(t, Si, Ri) ≡ wτis(t) = (1− τis(t))wi(t, Si). (26)

The term σc = − U ′(c)
cU ′′(c)

> 0 is the intertemporal elasticity of substitution for

consumption, σ` = v′(`)
`v′′(`)

> 0 is the intertemporal elasticity of substitution for

labor, and (1−τis(t))wi(t, Si) is the net wage rate per hour worked after paying
a marginal implicit tax/subsidy rate on labor income faced at age t by
an individual of type i, who retires at age Ri and has been contributing to the
system since age Si

τis(t, Si, Ri) ≡ τis(t) = τ (1− Pis(t)) . (27)

Pis(t, Si, Ri) is the marginal value of one dollar of social contribution
for an individual of type i, who retires at age Ri and has been contributing
to the system since age Si.

8 Unlike Pis, the value of Pis is calculated as the
marginal rate of substitution between pension points and assets, conditional
on the retirement age Ri:

Pis(t, Si, Ri) ≡ Pis(t) =
∂Vi(t)/∂ (ppis(t)/φ)

∂Vi(t)/∂ai(t)

∣∣∣∣
R=Ri

= Pis(t) (1− εis) . (28)

Therefore, Pis(t) can be defined as the “value of an additional unit of social
contribution” at age t for an individual of type i who plans to retire at age

8A similar expression to (27) can be found in Auerbach and Kotlikoff (1987) and Sánchez-
Romero and Prskawetz (2017).
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Ri. The term εis is the elasticity between the replacement rate and pension
points at retirement of an individual of type i, or

εis = − ppis(Ri)

fis(Ri, ppis(Ri))

∂fis(Ri, ppis(Ri))

∂ppis(Ri)
≥ 0. (29)

From (28)-(29) we have that the marginal value of one dollar of social contri-
bution is lower than the value of one dollar of social contribution because, as
a result of paying additional contributions to the pension system, the pension
replacement rate falls when εis > 0. The condition εis > 0 is satisfied not only
in progressive pension systems, but also in pension systems with a flat pension
benefit (or Beveridge pension systems). Hence, we can distinguish two cases:

(i) A flat pension system in which the replacement rate is invariant to the
pension points accumulated; i.e., εis = 0.9 In this pension system, Pis =
Pis and τis = tis.

(ii) A progressive pension system in which the replacement rate decreases
with the number of pension points accumulated; i.e., εis > 0. In this
pension system, Pis < Pis and τis > tis.

Considering a stable, mature pension PAYG pension system, Fig. 4 shows
the marginal value of a unit of social contribution at the normal retirement age
Rn for the six different pension systems analyzed in Section 3.3.10 Fig. 4(a)
shows the value of Pis regardless of the gap in life expectancy across the
different income groups. Fig. 4(b) shows the change in Pis that would result
from the difference in life expectancy at age 65 when the implicit rate of return
of the pension system r (i) equals the market interest rate r (solid line) or (ii)
is lower than the market interest rate (dashed line). Thus, the value of Pis is
obtained by multiplying the value in Fig. 4(a) by the corresponding value by
longevity gap in Fig. 4(b). Looking at Fig. 4 we can see that in all NDC plans
and in the DB-I plan the value of Pis and the value of Pis coincide and is equal
to q = Ai(Rn,r)

As(Rn,r)
. The value of q reflects (i) differences in longevity between

each income group and the life table used by the social security system and
(ii) the fact that the benefit received from the public pension system differs
from the benefit the individual would receive if she/he transforms the social
security wealth into a private annuity. In contrast, in DB-II and DB-III plans,
the value of Pis is substantially lower than Pis when the total pension points
is higher than one-sixth of the average labor income.

9We exclude from our analysis any pension system that is a priori regressive; i.e, a
pension system that a priori transfers resources from the poor to the rich.

10We assume the normal retirement age so that no other penalties/rewards for early/late
retirement are considered.
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Figure 4: Marginal value of one dollar of social contribution at the normal
retirement age Rn.
Note: Calculation based on a normal retirement age Rn of 65 and an average life expectancy

at age 65 of 21.4 years. The term y represents the average labor income.

The difference in Pis and Pis and the evolution of Pis over the working
life —see Eq. (12)— determine the impact of the alternative pension system
on consumption and the labor supply. Looking at (22), using (13) and (27),
and assuming that r = r, we find that a pension system has an unambiguous
positive (resp. negative) impact on consumption when the condition

(1− τ + τPis(t))(1− τ + τPis(t))σ` > (resp. <)1∀t ∈ (Si, Ri) (30)

is satisfied. This occurs for individuals with a life expectancy above (resp.
below) the average level in a NDC system and in the DB-I. However, in the
progressive pension systems DB-II and DB-III, the impact on consumption
is ambiguous. Note in Fig. 4 that the positive effect of a P > 1 when pp <
y is offset by P < 1 and the value of q = Ai(Rn;r)

As(Rn;r)
, which would be lower

than one due to the positive correlation between income and life expectancy.
The opposite occurs for individuals with pp ∈ (y, 2y), while it is negative
for individuals with pp > 2y. Thus, it is likely that only for those with a
total pension points (pp) below one-sixth of the average labor income, the
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consumption will increase in a DB-II and DB-III systems.
The total number of hours worked are also affected by the alternative

pension system when σc 6= 1. Nevertheless, following Chetty (2006) and as-
suming σc is equal to one, Eq. (23) suggests that pension systems with a
constant replacement rate do not significantly affect the total number of hours
worked over the lifecycle. Instead, Eq. (23) shows that pension systems will
increase/decrease the labor supply early in the working life and compensate it
with decreases/increases later in the working life. This is because the pension
system influences the labor supply at the intensive margin through the evolu-
tion, and not the level, of the implicit taxes/subsidies —see the ratios of net
wages rates in the denominator of Eq. (23). Thus, from Fig. 3 we can see that
the intensive labor supply (hours worked) early in the working life decreases
(resp. increase) for those individuals with a Pis increasing (resp. decreasing)
with age, while the intensive labor supply late in the working life increases
(resp. decrease) for those individuals with a Pis increasing (resp. decreasing)
with age. A similar restructure of the hours worked over the working life oc-
curs in progressive pension systems (DB-II and DB-III). However, given that
in a progressive pension system (1−tis(t)) ≥ (1−τis(t)) for all t ∈ (Si, Ri), the
DB-II and DB-III plans also reduce the intensive labor supply for individuals
with a pp ∈ (y

6
, 2y), while these pension systems do no affect the intensive

labor supply for those with a pp < y
6

or with a pp > 2y.

Length of schooling. In the previous section we have considered the length
of schooling fixed. Now, we relax this condition and study the impact of each
pension system on the optimal length of schooling. Given a retirement age Ri,
the optimal length of schooling S∗ = Si satisfies:

rhi (S∗) = r̄i(S
∗, Ri) +

ηi − αiv(`(S∗))

U ′(ci(S∗))Wi(S∗, Ri)
. (31)

See the derivation of (31) in Appendix B.2. Eq. (31) states that the return to
education at the S∗th unit of schooling is equal to the sum of the marginal
cost of the S∗th unit of schooling expressed in terms of foregone earnings and
the nonpecuniary cost/benefit of schooling.11 rhi (S∗i ) is the return to education
at age S∗i for an individual of type i

rhi (S∗) =
1

hi(S∗)

∂hi(S
∗)

∂S
. (32)

11See Sánchez-Romero et al. (2016) for a detailed explanation of the influence of the
nonpecuniary cost of schooling on the optimal decision making process of the individual.
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r̄i(S
∗, Ri) is the rate of return lost from an additional S∗th unit of schooling,

which is given by

r̄i(S
∗, Ri) =

∫ Ri

S∗

1

w̄(t− S∗)
∂w̄(t− S∗)

∂t
ψis(t)dt+ ψis(S

∗), (33)

and where

ψis(t) =
D(t;x0,−σ`) (wτis(t))

1+σ`∫ Ri
S∗
D(u;x0,−σ`) (wτis(u))1+σ` du

. (34)

The first term in (33) accounts for the rate of return lost from not accumu-
lating further labor experience, while the second term in (33) accounts for the
foregone returns that the individual would have generated from the additional
savings at age S∗. Eq. (34) represents the weight of the (net) income earned
at age t relative to the (net) human capital wealth at age S∗. The last term in
(31) is the nonpecuniary cost/benefit of schooling. For expositional simplicity,
if we assume that σc = 1 and ρ = 0, we can rewrite (31) as

pi(S
∗)

pi(x0)
ηi

ei(x0)

∫ Ri
S∗
D(t;x0,−σ`)wtis(t)(wτis(t))σ`dt∫ Ri

S∗
D(t;x0,−σ`)wτis(t)(wτis(t))σ`dt

− σ`
1 + σ`

ψis(S
∗). (35)

The first component is the schooling effort measured in monetary terms, while
the second component accounts for additional utility the individual gets by
not being working at age S∗.

Fig. 5 illustrates the equilibrium condition for the optimal length of school-
ing that results from (31). The black solid curve represents the rate of return
to Sth years of education rhi (S), which is a decreasing function with respect to
S. The black dashed curve represents the marginal pecuniary cost of schooling
r̄i(S,Ri), which is an increasing function with respect to S. While the gray
solid curve is the sum of the marginal pecuniary and non-pecuniary costs of
schooling. Thus, due to the existence of non-pecuniary costs of schooling, in-
dividuals do not maximize the returns to education, which occurs at S̃i, and
instead decide to have S∗ < S̃i years of schooling. Some of the underlying
mechanisms explaining the gap between S̃i and S∗ have been explained by
Oreopoulos and Savanes (2011).

How does each pension system impact on the length of schooling across the
different individual types? Looking at (31), we can observe that the returns to
schooling do not depend on the pension system, whereas the marginal cost of
education is influenced by the evolution of the marginal implicit tax/subsidy
rate, τis, throughout (34). Recalling that the evolution of τis is given by (12)
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Figure 5: Optimal length of schooling decision.

and assuming σc = 1, we have that pension systems reduce (resp. increase) the
marginal pecuniary costs of schooling when Pis increase (resp. decrease) with
age. This is equivalent to a downward (resp. upward) shift of the gray curve
in Fig. 5. The intuition is simple. The monetary lost of paying contributions
to the system is compensated with higher wage rates, which are only possible
through longer investments in education. When the pension replacement rate
is progressive, however, the decline in the marginal pecuniary cost of schooling
is offset by an increase in the marginal non-pecuniary cost of schooling —see
Eq. (35). Hence, in DB-II and DB-III plans the net effect of the pension system
is a priori ambiguous when pp ∈ (y

6
, 2y). In the special case that τis = 0, which

occurs in DB-II and DB-III plans when pp > 2y, the pension system does not
have an impact on schooling.

Optimal retirement age. Consider now that the length of schooling is
fixed. Under this setting the optimal retirement age R∗ = Ri satisfies the
following condition

U ′(ci(R
∗))wi(R

∗, Si)`i(R
∗)
(
1− τGWis (R∗)

)
= αiv (`i(R

∗)) + ϕ(R∗). (36)

See the proof in Appendix B.3. Eq. (36) states the standard optimal retirement
age condition in which the marginal benefit of continue working (left-hand
side) must be equal to the marginal cost of continue working (right-hand side).
The new term, τGWis (R∗), located on the left-hand side of (36) is the effective
tax/subsidy rate on work calculated in Gruber and Wise (1999). The marginal
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cost of continue working is given by the sum of the marginal cost of continue
working, which depends on the disutility of labor (or the lost of current leisure
time)

αiv (`i(R
∗)) =

σ`
1 + σ`

wτis(R
∗, Si)`i(R

∗)U ′(ci(R
∗)), (37)

plus the lost of utility of leisure from retirement, ϕ(R∗). Plugging (37) in (36)
notice that without the marginal utility of leisure from retirement, individuals
would only retire when the marginal implicit tax/subsidy rate on work would
be null.

In our general pension setting, the effective tax/subsidy rate on work,
τGWis (R∗), is given by

τis(R
∗) +

(
1

Ai(R∗, r)
− (r + µs(R

∗))(1− εis)−
1

fis

∂fis
∂R∗

∣∣∣∣
pp

)
Pis(R

∗)ppis(R
∗)

φ

wi(R∗, S)`i(R∗)
.

(38)
The first term in (38) is the marginal implicit tax/subsidy rate on labor income.
The second term is the ratio of pension benefits to labor income. The third
term, or the sum of the negative terms, is the increase in social security wealth
from delaying retirement, which is a function of the increase in pension points
and the increase in the value of one dollar of social contribution through the
percentage change in replacement rate for each year of delayed retirement.
To explain the difference in retirement age across the pension plans analyzed,
the percentage change in replacement rate for each year of delayed retirement

is key; i.e., 1
fis

∂fis
∂R

∣∣∣
pp

. Thus, we show in Figure 6 the percentage change in

replacement rate for each year of delayed retirement for the six pension plans
under both mortality regimes. For the NDC-II, NDC-III, and DB-III cases,

which correct for differences in mortality, we only plot the value of 1
fis

∂fis
∂R

∣∣∣
pp

for the top (q5) and bottom (q1) quintiles. All other cases lie within the top
and bottom quintiles. The most important result from Fig. 6 is that DB plans,
which use the credits for delayed retirement of the actual US system, provide
different retirement age incentives than NDC plans. In particular, under the
mortality regime of the 1930 birth cohort, DB plans give a higher incentive
to delay the retirement age than the NDC plans when the optimal retirement
age is below age 65. Under the mortality regime of the 1960 birth cohort, DB
plans give a higher incentive to delay the retirement age than NDC plans.

To conclude this section, we should bear in mind that we have studied the
effect of each pension system on each variable independently. However, in re-
ality, a delay in the retirement age will change the optimal length of schooling.
Since the the length of schooling and the retirement age are interweaved. The
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Figure 6: Percentage change in replacement rate for each year of delayed

retirement by pension system and mortality regime; i.e., 1
fis

∂fis
∂R

∣∣∣
pp

.

Note: Calculations for the NDC plans are based on a notional interest rate of 2%.

sign of the relationship between the length of schooling and the retirement de-
pends on the risk aversion coefficient and the effort from attending schooling
(see Sánchez-Romero et al., 2016).

5 Parametrization

We impose the following set of assumptions with respect to the economic
variables. First, we assume a risk-free market discount factor (r) of 3%. This
market interest rate coincides with that assumed in the report by the National
Academies of Science (NASEM, 2015). Second, the population is assumed
to grow at an annual constant rate (n) of 0.5% and the growth rate of labor
productivity (g) is set at 1.5% per year. Third, the annual capitalization
factor of the unfunded pension system (r) is set at 2%(=n+ g), which is lower
than the market discount factor. Therefore, since a return of 1%(=3%-2%) is
lost annually, contributions to the pension system are implicitly considered by
individuals as a tax on labor income. From (12) we know that this assumption
implies that the marginal value of a unit of social contribution is an increasing
function with respect to age and, as a consequence, all pension systems will
provide an incentive to supply more labor early in the working life and to
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reduce labor before retirement. Moreover, since all pension systems have a
similar increase in Pis, pension systems will have a similar direct impact on
the length of schooling. Fourth, unless otherwise indicated, we assume that
the social security system uses the average survival probability to calculate the
pension benefits; i.e, ps(x) := p(x) =

∑
i∈I pi(x)/I. Fifth, we assume for the

NDC systems a minimum retirement age of 55 and a maximum retirement age
of 70 for all i ∈ I. For the DB systems, we restrict the minimum retirement
age to 62 and the maximum to 70, similar to the US pension system. Sixth,
the social security budget is balanced12

∑
i∈I

∫ Ri

Si

e−ntpi(t)τwi(t, Si)`i(t)dt =

=
∑
i∈I

e−nRi
∫ ω

Ri

e−(n+g)(t−Ri)pi(t)bis(Ri, ppis(Ri; r))dt. (39)

Using Eq. (39) we adjust in the DB systems the social contribution rate in order
to support all pension benefits claimed by the surviving retirees, while in the
NDC systems we adjust the overall pension replacement rate, or generosity of
the pension system. For the sake of comparison across the alternative pension
systems, we use for all the NDC systems the social contribution rate obtained
for the US pension system (DB-II). In particular, we obtain that the necessary
social contribution rate to balance the US pension system with our assumed
population structure is 10.43%, under the hypothetical assumption that the
population face the survival probabilities of the cohort born in 1930. While
τ must be set at 10.87% in the case of using the survival probabilities of the
cohort born in 1960.

In addition, we assume all individuals have similar preferences, except for
the disutility of labor (αi) that is specific to the income quintile of the indi-
vidual. This assumption reflects the fact that individuals in different quintiles
have different health and labor market trajectories. The instantaneous utility
of consumption is assumed to be logarithmic (σc = 1), as found empirically by
Chetty (2006), the intertemporal elasticity of substitution on labor (σ`) is set
at 0.33, so that workers supply on average thirty five percent of their available
time for labor (excluding sleep time), and the subjective discount factor (ρ)
is set at 0.005. As a result, the cross-sectional consumption profile increases
with age by one percent, similar to the consumption pattern reported in the

12Note in Eq. (39) that similar to the US pension system, we assume that pension ben-
efits are held constant (in real terms) after retirement and thus they do not increase with
productivity.
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NTA accounts for the US in 2003 (see www.ntaccounts.org). The marginal
utility of leisure during retirement ϕ(·) is assumed to be constant across in-
come groups and monotonically increasing with age. Similar to Bloom et al.
(2014) we proxy ϕ(·) to the mortality rate in 1930. To match the wage rate
per unit of human capital for the cohort born in 1930, we take the parameters
of the Mincerian equation reported in Table 2 in Heckman et al. (2006). Nev-
ertheless, the parameter β0 is adjusted in order to take into account the effect
of productivity growth. As in Cervellati and Sunde (2013) we fix the returns
to scale in education (γ) at 0.65. Finally, the weight of disability cost (αi)
and the learning ability (θi) for each income quintile group are simultaneously
calculated in order to replicate the length of schooling and the retirement age
from the Health and Retirement Survey (HRS) and the present value of life-
time benefits reported in NASEM (2015) for the cohort born in 1930.13 See
Table 6 in Appendix B.3.

Table 2 reports the optimal length of schooling Si and the optimal retire-
ment age Ri for the benchmark scenario (US males born in 1930, US pension
system). In Appendix B.3 tables 4 and 5 report the optimal length of school-
ing and retirement ages for all pension scenarios. Life expectancy and total
years-worked are calculated using the specific mortality rates for each income
quintile. The last column in Tab. 2 shows how, in our model, individuals in
higher income quintiles spend a longer period of time in retirement relative to
the total number of years worked.

Table 2: Optimal length of schooling (Si) and retirement age (Ri) and by
income quintile. US males born in 1930, US pension system (DB-II)

Inc. quintile Schooling Retirement Life expectancy at Si + 7 Years-worked

i Si Ri ei(Si + 7) (YWi)
ei(Si)−YWi

YWi

1 12 62 55,5 41,8 0.33
2 12 63 56,3 42,8 0.31
3 12 63 57,4 43,1 0.33
4 13 63 58,2 42,3 0.37
5 16 64 58,2 41,1 0.42

Table 3 summarizes the model economy parameters.

13Data from the HRS on length of schooling and retirement age for males born in 1930
was provided by Arda Aktas and Miguel Poblete-Cazenave.
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Table 3: Model parameters

Parameter Symbol Value Parameter Symbol Value

Demographics Preferences
First age at entrance x0 14 Subjective discount factor ρ 0,005
Maximum age ω 115 Utility cost of not being retired ϕ(x) 92e−8.7+0.073x

Annual population growth n 0,005 Labor elasticity of substitution σ` 0,33
Minimum length of schooling S 10 Utility weight of labor α(q1) 140
Maximum length of schooling S̄ 20 α(q2) 120

α(q3) 80
Technology α(q4) 50
Market interest rate r 0,030 α(q5) 85
Labor-augmenting technologi-
cal progress growth rate

g 0,015

Education
Social security system Returns of scale in education γ 0,65
Minimum retirement age R NDC=55, DB=62 Disutility of schooling η 3
Maximum retirement age R 70 Mincerian eq. β0 0,07
Capitalization factor r 0,02 β1 0.0011
Accrual rate in DB systems φ 1/45 Learning ability θ(q1) 0,113
Avg. replacement rate in DB
systems

f(pp) 0,4167 θ(q2) 0,113

Social contribution rate θ(q3) 0,113
Cohort 1930 τ1930 0,1043 θ(q4) 0,114
Cohort 1960 τ1960 0,1087 θ(q5) 0,124

6 Redistributive effects of each pension sys-

tem

The results presented in this section are based on a small-open economy with a
stable population. The pension and economic models, introduced in Sections 3
and 4, have been parametrized in order to replicate for the mortality of the
1930 birth cohort the present value of lifetime benefits at age 50 reported
in the NASEM (2015) as well as the length of schooling and the retirement
age by income quintile from HRS. To account for the redistributive effects
of each pension scheme when the heterogeneity in life expectancy increases,
we compare the results obtained using the survival probabilities of the cohort
born in 1930 to those obtained using the survival probabilities of the cohort
born in 1960.

6.1 Internal rate of return (irr).

One measure to analyze the redistributive characteristics of a pension system,
which is not affected by the scale of contributions (i.e., ppis), is the internal
rate of return. Thus, we report in Figure 7 the internal rate of return values
of each pension system by income quintile and birth cohort. The differences
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in irr across income quintiles, shown in Fig. 7, are explained by the fact that
a pension point earned by an individual with low life expectancy has a lower
value than a pension point earned by an individual with higher life expectancy
(see Eq. (10) and Table 1).
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Figure 7: Internal rate of return of each pension system by income quintile (in
percentage). US males, birth cohorts 1930 (Panel a) and 1960 (Panel b)

In a stable, mature PAYG pension system, the implicit rate of return equals
the rate of growth of the population plus the rate of growth of productivity,
or in this case 2.0% per year. In Fig. 7 we see that this rate of return is
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achieved by all income groups and mortality regimes under NDC-III —see
black diamonds— in which both point accumulation and the annuity rate are
adjusted for the mortality of each group. This is the benchmark against which
we can assess the rate of return for the groups under the other pension systems.
For the NDC-I and NDC-II cases, we see that the lower income quintiles q1,
q2 and q3 have irr<2 —see the numbers in red on top of each bar— and there-
fore are redistributing income to the higher income q4 and q5 who have irr>2,
and this redistribution is greater for the mortality regime of the 1960 birth
cohort. The situation is more complicated for the DB systems. The actual
US system, corresponding quite closely to DB-II, is explicitly designed to be
redistributive from rich to poor through explicit differences in the replacement
rates by income. However, we see that because of differential mortality, DB-II
fails in this goal, and instead redistributes from q1 and q2 to q3 and q5 under
both mortality regimes, but particularly with more unequal mortality. The q4
group does redistribute to others, at least slightly, under the 1930 mortality
regime and becomes a net receiver under the more unequal mortality. In other
words, the differential mortality completely undoes and mostly reverses the
intended progressivity of the DB-II system (Sánchez-Romero and Prskawetz,
2017). Under DB-III, which both has progressive benefit levels and makes ad-
ditional adjustments to benefits for differential mortality, there is a significant
improvement, but the degree of progressivity is also weakened with the more
unequal mortality regime.

6.2 Marginal value of one dollar of social contribution
(Pis).

Another method to measure the redistributive effects of a pension system is to
look at the value of Pis. We showed in sections 3.2 and 4.2 how Pis can be used
to study at each age the redistributive effect of each pension system. Hence,
Pis complements the information provided in the previous section, since the
irr measures the redistributive effects of each pension system over the whole
life cycle, while Pis does it by age.

To understand the redistributive properties, we compare the value of Pis
for each pension system to our benchmark (NDC-III). Thus, we report in Fig-
ure 8 the difference in the evolution of Pis for each pension plan and that
in the NDC-III by income quintile and birth cohort. Vertical axes in Fig. 8
reflect whether the contribution to the system represents a subsidy (positive
values) or tax (negative values) relative to the contribution paid to the NDC-
III system. Thus, we see that NDC-I, NDC-II, and DB-I (pension plans with a
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Figure 8: Marginal value of one dollar of social contribution, Pis(x), from age
25 to 55 by income quintile relative to NDC-III. US males, birth cohorts 1930
(Panel a) and 1960 (Panel b)

flat replacement rate) redistributive income from poor (q1, q2, and q3) to rich
income groups (q4 and q5). The situation is reversed in progressive pension
systems —DB-II and DB-III—, in which we see that the higher income quin-
tiles q4 and q5 pay higher implicit taxes than lower income quintiles q1 and q2.
However, in DB-II and DB-III, the marginal value of one dollar of contribution
to the pension system is significantly lower than a dollar contributed to the
NDC-III plan. Comparing the results between the two mortality regimes (cf.
panels (a) and (b)), we see further redistribution of income from poor indi-
viduals to rich individuals under NDC-I, NDC-II and DB-I plans and similar
implicit taxes between poor and rich individuals in the more unequal mortality
regime.
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6.3 Wealth.

The fact that pension systems redistribute income across income groups leads
individuals to response in order to cope with the increase/lost of wealth. The
lifetime wealth measure gives the most comprehensive assessment of the effects
of the different pension designs on economic wellbeing, because it includes the
general equilibrium responses. These responses are reflected in the lifetime
wealth (LW) —see Eq. (19)— through changes in the social security wealth at
age x0, SSWi(x0), and through changes in the stock of human capital (HK) at
age x0 ∫ Ri

Si

e−r(t−x0) pi(t)

pi(x0)
wi(t, Si)`i(t)dt. (40)

Note that changes in the SSW have a one-to-one relation with the internal rate
of return.

To analyze the changes in lifetime wealth across pension systems by income
quintiles, we again use the NDC-III system as a benchmark against which we
can assess these changes. Figure 9 shows the percentage change in social
security wealth (light red bars) and stock of human capital (dark red bars)
by income quintile between the alternative pension systems and the NDC-III
system. We can see in Fig. 9 that the DB-I system leads to an increase in HK
for all income quintiles. Under the mortality regime of the cohort 1930 the
increase is higher for quintiles q2 and q3, while for the cohort 1960 the DB-I
system benefits mostly the higher income quintiles. In all cases the increase
is driven by the postponement in the retirement age, the additional years of
schooling, and by the higher wage rate due to further investments in human
capital. A similar rise in human capital investment under the DB-I system
is also derived in Sánchez-Romero and Prskawetz (2017). Consistent with
the results shown for irr and P , the DB-I system reduces the social security
wealth of lower income quintiles q1–q3 and increases that of higher income
quintiles q4–q5, especially under the mortality regime of 1960. Instead, the
actual US pension system reduces the stock of human capital of higher income
quintiles (see Fig. 9) due to the implicit tax on labor income, which is not
offset by an increase in human capital of the low income quintiles. Moreover,
under the mortality regime of the cohort born in 1960 the overall effect on the
social security wealth is negative for the lower income quintiles and positive for
the higher income quintiles. This is because individuals in the higher income
quintiles response through changes in schooling and retirement so as to improve
their lifetime wealth. The impact of the DB-III system on HK is similar to
that in DB-I but now the progressivity of the pension system is re-introduced.
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Figure 9: Redistributive effects of each pension system on lifetime wealth by
income quintile (measured in percentage change with respect to the results in
the NDC-III system). US males, birth cohorts 1930 and 1960.

Note: Bars are plotted in ‘stacked’ format. When bars have opposite signs, lifetime wealth

is the difference between both bars. When bars have similar signs, lifetime wealth equals

the height of the two bars.

It is striking that in DB plans the indirect effects on HK (lifetime earnings)
arising from incentives for school, work, and retirement, usually are far larger
than the direct redistributive effects through the pension system. As shown
in Fig. 6, this is because DB plans produce an incentive to retire at later
ages, which do not necessarily coincide with those of the NDC plans. As a
consequence, the increase in the retirement age leads to an increase in the
length schooling and in the number of hours worked.

Finally, we can see in Fig. 9 that the size of the impact of the NDC systems
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is small in magnitude and mainly concentrated on the social security wealth.
Under the NDC-I and NDC-II plans, lower income quintiles q1–q3 experience
a reduction in their social security wealth, whereas the social security wealth
of higher income quintiles increase. Under the mortality regime of the 1960
birth cohort, the increase in human capital under the NDC-I and NDC-II is
due to a postponement of the retirement age compared to the NDC-III plan.

6.4 Welfare.

Above we have shown that differences in lifetime wealth come with changes
in schooling and leisure time, through age at retirement and amount of labor
supplied while working. Given that our lifetime utility (see Eq. 21) includes
disutility of schooling, labor, and the utility from retirement, we can provide
a comprehensive assessment of the impact of the different pension plans on
lifetime welfare by income quintile. This exercise is key for understanding the
results in Fig. 9, which shows the impact of each pension system on lifetime
wealth.

In Figure 10 we show the impact on lifetime welfare of each pension system
by income quintile relative to the NDC-III plan.14 The first important result
can be seen by comparing in Fig. 10 the differences between the NDC plans
and DB plans. Recall looking at Fig. 6 that all DB plans are implemented with
the penalties/rewards for early/late retirement established in the US pension
system, which give individuals an incentive to retire at a later age than NDC
plans. In our particular case, under the mortality regime of the 1930 cohort,
individuals retire between ages 61 and 64 in NDC plans, whereas individuals
retire at older ages under the DB systems —see Table 5 in Appendix B.3.
This difference in the retirement age between NDC and DB plans accounts for
the strong behavioral response, its impact on the stock of human capital (see
Fig. 9), and the welfare lost through the heavy cost in leisure.

In NDC plans we do not observe significant differences in the length of
schooling and the retirement age. Thus, the sign of the redistribution across
income quintiles in the irr (Fig. 7), the P (Fig. 8), the lifetime wealth (Fig. 9),
and the lifetime welfare all coincide, which is the same as that directly induced
by the social security system. Moreover, given that the NDC-II is closer than
the NDC-I to the NDC-III, the NDC-II plan creates less welfare differences
across income quintiles than the NDC-I.

14Note that by comparing outcomes to those for the NDC-III system for each income
quintile, we isolate the impact on welfare of each pension plan relative to a non redistributive
pension system. Therefore, we can abstract from whether our baseline NDC-III is better or
worse than no program at all.
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Figure 10: Impact of each pension system on welfare by income quintile (rel-
ative to the NDC-III system). US males, birth cohorts 1930 and 1960.

Comparing the results across DB plans is slightly more complicated. First,
we know that the DB-I plan gives individuals higher incentives to retire later
—increasing their marginal benefit of education— and to stay longer in school-
ing. This explains the increase in the stock of human capital (see Fig. 9), which
is more pronounced for q1–q3 under the mortality regime of the 1930 cohort,
and for q3–q4 under the mortality regime of the 1960 cohort. However, the
increase in human capital comes at the expense of facing a higher disutility
from schooling, longer working hours, and a loss in leisure. Only those in the
highest income quintile are better off due to the strong redistribution of re-
sources from short-lived and poor individuals to long-lived and rich individuals
(see Fig. 7). Unlike the DB-I plan, the US pension system (DB-II plan) intro-
duces a high implicit tax on work to all income quintiles. As a consequence,
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individuals retire in the DB-II earlier than in DB-I, though still later than in
the NDC plans due to the penalties on early retirement. Moreover, given that
the DB-II system produces a high implicit tax on labor for q1–q3, the number
of hours worked are reduced (decreasing the marginal benefit of education),
and the length of schooling is shortened. The combination of these three be-
havioral reactions explains the reduction in human capital (see Fig 8) and the
increase in welfare to all income quintiles relative to DB-I, except for q5 that
now transfers resources to short-lived and poor individuals. DB-II corrects
for differences in life expectancy, leaving the short-lived and poor individuals
better off, compared to the DB-II, and worsens the situation for long-lived and
rich individuals.

7 Conclusion

Public pension systems are intended to provide a stable source of post re-
tirement income, given that individuals have well-known difficulties saving for
retirement. Some pension systems are also designed to redistribute income
from individuals with higher lifetime incomes to those with lower. Almost
all public pension systems are PAYGO, delivering an average rate of return to
participants equal to the rate of growth of the economy, which is typically lower
than the market rate of interest, and consequently participants may view their
contributions at least partially as a tax on labor. Pension systems modify la-
bor supply incentives in two important ways. First, the perceived tax on labor
may lead participants to work less than otherwise. Second, in DB systems the
benefit structure has often created incentives for early retirement, and built in
progressivity may provide further disincentives for labor. NDC systems were
developed to avoid the early retirement incentive effects by mimicking funded
DC programs, but they cannot avoid the “tax on labor” disincentive so long
as they are PAYGO.

It is increasingly realized that socioeconomic differences in longevity add
a regressive element on the benefit side of pensions, so long as systems use a
one-size-fits-all life table to establish actuarial tradeoffs and set the benefit rate
and normal retirement age. Researchers and policy makers are seeking policy
options to offset this regressive effect. However, it is important to keep in mind
that policy adjustments will not only have direct effects on systems and their
progressivity given the current behavior of socioeconomic groups, effects which
can be evaluated using actuarial calculations. The policy adjustments will
also alter the decisions and behavior of individuals in different socioeconomic
groups, because incentives for getting education, for hours of work, and for
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retirement age, will all be affected.
Here we have assessed the full effect of a variety of policy adjustments to

DB and NDC pension programs operating in environments of more or less
mortality heterogeneity (reflecting the mortality regimes of the 1930 vs 1960
birth cohorts), including both direct and indirect effects of these adjustments.
We do this in a general equilibrium context for a small open economy in which
wages and interest rates are set by international markets, while individuals
make optimizing choices for education, labor effort, age at retirement, and
consumption trajectories. We have a number of important findings.

1. We replicate, in our simulations, the regressive effect of socioeconomic
differences in mortality, and the large increase in regressivity moving
from the mortality regimes of the 1930 and 1960 birth cohorts, for single
life table systems, whether DB or NDC.

2. Taking an actuarial approach (no general equilibrium) we find that the
progressivity in benefits built into the US Social Security system greatly
reduces the regressivity that mortality variation imparts, under either
mortality regime. However, only when each group has its own appropri-
ate life table is that regressivity overcome, resulting in a slightly progres-
sive system as measured by the IRR (internal rate of return). Apparently
achieving progressivity in lifetime benefits would require more than the
current progressivity in annual benefits in combination with life tables
for each group.

3. If we also take into account the behavioral responses to policy adjust-
ments, policy adjustments have both direct and indirect effects. One
way to assess these is through their impact on lifetime wealth. Under
all NDC versions, the indirect effects of policy adjustments are quite
small, and the relatively small direct effects are slightly regressive. For
the DB systems, the indirect effects strongly dominate the direct ones,
which is interesting in itself. The indirect effects of adding progressive
benefits are slightly positive at lower incomes and strongly negative at
higher incomes, and these change but little when group-specific life ta-
bles are added. In general these indirect effects are quite similar in the
two mortality regimes, but not surprisingly the gains in direct effects
from moving to group-specific life tables are larger under the more het-
erogeneous mortality regime.

4. But variations in lifetime wealth may mask offsetting variations in leisure,
and the most complete assessment of policy effects emerges from compar-
isons of lifetime utility. In most pension systems, we find welfare losses
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for lower incomes and small welfare gains for higher incomes. This pat-
tern arises from harder and longer work, which comes at a heavy cost in
leisure. A reduction in welfare losses for the lower incomes and welfare
gains for richer incomes is achieved with the progressivity of benefits.
However, only when correcting the benefits using life tables for each
group, we observe similar lifetime utilities.

Besides the above mentioned findings, in this paper we also propose a general
pension framework for simultaneously analyzing existing pension systems. In
this general framework we exploit the value of one dollar of social contribution,
which can be used for studying the redistributive properties of each pension
system as well as the behavioral response on education, hours worked, retire-
ment, and consumption caused by each pension system.

It is important to note that we are comparing outcomes across programs
that are assumed to have existed over the long term. We have not yet at-
tempted to investigate transitions from one program to another, although that
is the situation that policy makers must face.
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Appendix

A Derivation of Eq. (9)

Eq. (9) can easily be derived from (8) by elementary algebraic manipulations.
Substituting (4) and (5) in (8) gives

SSWis(x) = e−r(Ri−x)pi(Ri)

pi(x)
fis(Ri, ppis(Ri))Ai(Ri, r)φ

∫ Ri

x0

er(Ri−t)
ps(t)

ps(Ri)
τyi(t)dt−

−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τyi(t)dt. (A.1)

Splitting in two the integral in the first term of the right-hand side of (A.1)
gives

SSWis(x) = e−r(Ri−x)pi(Ri)

pi(x)
fis(Ri, ppis(Ri))Ai(Ri, r)φ

∫ x

x0

er(Ri−t)
ps(t)

ps(Ri)
τyi(t)dt+

+ e−r(Ri−x)pi(Ri)

pi(x)
fis(Ri, ppis(Ri))Ai(Ri, r)φ

∫ Ri

x

er(Ri−t)
ps(t)

ps(Ri)
τyi(t)dt−

−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τyi(t)dt. (A.2)

Multiplying and dividing the first two terms on the right-hand side of (A.2)

by er(x−Ri) ps(Ri)
ps(x)

, using (4) and (10), gives

SSWis(x) = Pis(x,Ri)
ppis(x)

φ
+ Pis(x,Ri)

∫ Ri

x

er(x−t)
ps(t)

ps(x)
τyi(t)dt−

−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τyi(t)dt. (A.3)

Next, multiplying and dividing the inner part of the first integral on the right-
hand side of (A.3) by e−r(t−x) pi(t)

pi(x)
, and using the fact that Pis(t) is equal to

e(r−r)(x−t) pi(x)
pi(t)

ps(t)
ps(x)

Pis(x), we have

SSWis(x) = Pis(x,Ri)
ppis(x)

φ
+

∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τPis(t)yi(t)dt−

−
∫ Ri

x

e−r(t−x) pi(t)

pi(x)
τyi(t)dt. (A.4)

Adding both integrals on the right-hand side of (A.4) and using (13) gives
Eq. (9).
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B Economic problem

We solve the problem of maximizing the lifetime utility (21) subject to the
constraints (17)–(20) using the Hamiltonian before age Si, during the working
period (Si, Ri), and after the retirement age Ri, or periods 1, 2, and 3, re-
spectively (Tomiyama, 1985). We denote with the letter Hj the Hamiltonian
associated to period j = {1, 2, 3}.

Period 1. Given a length of schooling Si and retirement age Ri, the Hamil-
tonian of an individual type i ∈ I before working (t ≤ Si) is defined as

H1 = e−ρ(t−x0) pi(t)

pi(x0)
[U(ci(t))− ηi] + λ1

a(t) [(r + µi(t))ai(t)− ci(t)] +

+ λh[θihi(t)
γ − δhi(t)] (B.1)

where λ1
a(t) and λh(t) are the adjacent variables associated to the dynamics

of each state variable {ai(t), hi(t)} for period 1. The first-order conditions
(FOCs) for an interior consumption is:

H1
c = e−ρ(t−x0) pi(t)

pi(x0)
U ′(ci(t))− λ1

a(t) = 0. (B.2)

The dynamic laws of the adjacent variables are:

∂λ1
a(t)

∂t
= −λ1

1(t)(r + µi(t)), (B.3)

∂λ1
h(t)

∂t
= −λ1

h(t)(γθihi(t)
γ−1 − δ), (B.4)

Period 2. Given a length of schooling Si and a retirement age Ri, the Hamil-
tonian of an individual type i ∈ I during the working period (Si < t < Ri) is
defined as

H2 = e−ρ(t−x0) pi(t)

pi(x0)
[U(ci(t))− αiv(`i(t))] +

+ λ2
a(t) [(r + µi(t))ai(t) + (1− τ)hi(Si)w̄(t− Si)`i(t)− ci(t)] +

+ λ2
p(t) [(r + µs(t))ppis(t) + φτhi(Si)w̄(t− Si)`i(t)] , (B.5)
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where λ2
a(t), λ

2
h(t), and λ2

p(t) are the adjacent variables associated to the dy-
namics of each state variable {ai(t), hi(Si), ppis(t)} for period 2. The first-order
conditions (FOCs) for an interior consumption and hours worked are:

H2
c = e−ρ(t−x0) pi(t)

pi(x0)
U ′(ci(t))− λ2

a(t) = 0, (B.6)

H2
` = −e−ρ(t−x0) pi(t)

pi(x0)
αiv
′(`i(t)) + λ2

a(t)(1− τ)hi(Si)w̄(t− Si)+

+ λ2
p(t)φτhi(Si)w̄(t− Si) = 0. (B.7)

The dynamic laws of the adjacent variables are:

∂λ2
a(t)

∂t
= −λ2

a(t)(r + µi(t)), (B.8)

∂λ2
h(t)

∂t
= −λ2

a(t)(1− τ)w̄(t− Si)`i(t)− λ2
p(t)φτw̄(t− Si)`i(t), (B.9)

∂λ2
p(t)

∂t
= −λ2

p(t)(r + µs(t)). (B.10)

Period 3. Given a length of schooling Si and a retirement age Ri, the Hamil-
tonian of an individual type i ∈ I during retirement (t ≥ Ri) is defined as

H3 = e−ρ(t−x0) pi(t)

pi(x0)
[U(ci(t)) + ϕ(t)]

+ λ3
a(t) [(r + µi(t))ai(t) + fis(Ri, ppi(Ri))ppi(Ri)− ci(t)] , (B.11)

where λ3
a(t) and λ3

p(t) are the adjacent variables associated to the dynamics
of the state variables {ai(t), ppis(t)} for period 3. The first-order conditions
(FOCs) for an interior consumption and hours worked are:

H3
c = e−ρ(t−x0) pi(t)

pi(x0)
U ′(ci(t))− λ2

a(t) = 0. (B.12)

Using the definition (29), the dynamic laws of the adjacent variables are:

∂λ3
a(t)

∂t
= −λ3

a(t)(r + µi(t)), (B.13)

∂λ3
p(t)

∂t
= −λ3

a(t)fis(Ri, ppi(Ri))(1− εis). (B.14)
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Moreover, the following matching conditions hold at the switching ages Si and
Ri for the adjacent variables

λa(Si) := λ1
a(Si) = λ2

a(Si), (B.15a)

λh(Si) := λ1
h(Si) = λ2

h(Si), (B.15b)

λa(Ri) := λ2
a(Ri) = λ3

a(Ri), (B.15c)

λp(Ri) := λ2
p(Ri) = λ3

p(Ri), (B.15d)

and for the Hamiltonians

H(Si) := H1(Si) = H2(Si), (B.16a)

H(Ri) := H2(Ri) = H3(Ri). (B.16b)

Taking into account the above matching conditions, let us define the marginal
rate of substitution of assets for social contributions P(t) = φλp(t)/λa(t) for
periods {2, 3}, and the marginal rate of substitution of assets for human capital
H(t) = λh(t)/λa(t) for periods {1, 2}. Differentiating P(t) and H(t) with
respect to time t, and using the dynamics of the adjoint variables, gives

∂P(t)

∂t
=

{
P(t)(r − r + µi(t)− µs(t)) for Si < t < Ri,

P(t)(r + µi(t))− φfis(Ri, ppi(Ri))(1− εis) for t ≥ Ri

(B.17)

∂H(t)

∂t
=

{
H(t)(r + µi(t) + δ − γθihi(t)γ−1) for t ≤ Si,

H(t)(r + µi(t))− (1− τ(t)) w̄(t− Si)`i(t) for Si < t < Ri,

(B.18)

where τ(t) is the marginal implicit tax/subsidy rate on labor income defined
in (27). Solving (B.17) and (B.18) and using the fact that P(ω) = 0 and
H(Ri) = 0, the marginal rate of substitution of assets for a unit of social
contribution and the marginal rate of substitution of assets for human capital
are:

P(t) = e(r−r)(Ri−t)pi(Ri)

pi(t)

ps(t)

ps(Ri)
φfis(Ri, ppi(Ri))(1− εis)Ai(Ri; r) (B.19)

and

H(t) =
hi(t)

hi(Si)

∫ Ri

Si

e−r(x−t)
pi(x)

pi(t)
(1− τis(x))w̄(x− Si)`i(x)dx. (B.20)
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B.1 Optimal consumption (c) and hours worked (`)

Now, using the budget constraint (19) at age x0, we have∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)
ci(t)dt =

∫ Ri

Si

e−r(t−x0) pi(t)

pi(x0)
(1− ti(t))wi(t, Si)`i(t)dt.

(B.21)

Using (25)–(26) and the FOCs on consumption and labor supply along the
three periods, we have∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

(
e−ρ(t−x0) pi(t)

pi(x0)

1

λa(t)

)σc
dt =

=

∫ Ri

Si

e−r(t−x0) pi(t)

pi(x0)
wti(t)

(
1

αi

λa(t)

e−ρ(t−x0) pi(t)
pi(x0)

wτi(t)

)σ`

dt. (B.22)

Solving the dynamics of the adjoint variables for the capital stock, we have

λa(t) = λa(x0)e−r(t−x0) pi(t)

pi(x0)
. (B.23)

Using (24), substituting (B.23) in (B.22), and after rearranging terms, we
obtain that λa(x0) is given by

λa(x0) =

(
(αi)

σ`
∫ ω
x0
D(t;x0, σc)dt∫ Ri

Si
D(t;x0,−σ`)wti(t) (wτi(t))

σ` dt

) 1
σ`+σc

. (B.24)

Therefore, using the FOCs, the optimal consumption and hours worked at age
x are given by

ci(x) = eσc(r−ρ)(x−x0) 1

λa(x0)σc
, (B.25)

`i(x) = eσ`(ρ−r)(x−x0)

(
wτi(x)

αi
λa(x0)

)σ`
. (B.26)

Note that substituting (B.24) in (B.25)–(B.26) gives (22)–(23), respectively.
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B.2 Optimal length of schooling (Si)

Given an optimal retirement age Ri we first differentiate the expected utility
Vi(x0) w.r.t. S and making it equal to zero∫ ω

x0

e−ρ(t−x0) pi(t)

pi(x0)
U ′ (ci(t))

∂ci(t)

∂S
dt−

∫ Ri

S

e−ρ(t−x0) pi(t)

pi(x0)
αiv
′ (`i(t))

∂`i(t)

∂S
dt

= e−ρ(S−x0) pi(S)

pi(x0)
(ηi − αiv(`(S))) . (B.27)

Substituting the FOCs in the previous equation gives∫ ω

x0

λa(t)
∂ci(t)

∂S
dt−

∫ Ri

S

λa(t)(1− τis(t))wi(t, Si)
∂`i(t)

∂S
dt

= e−ρ(S−x0) pi(S)

pi(x0)
(ηi − αiv(`(S))) . (B.28)

Using (B.23) and rearranging terms gives∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂S
dt−

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1− τis(t))wi(t, Si)

∂`i(t)

∂S
dt

= e−ρ(S−x0) pi(S)

pi(x0)

ηi − αiv(`(S))

λa(x0)
. (B.29)

Second, we differentiate the budget constraint (19) at age x0 w.r.t. S∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂S
dt

=

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1− tis(t))wi(t, S)

∂`i(t)

∂S
dt+

+

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1− tis(t))

∂wi(t, S)

∂S
`i(t)dt−

−
∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)

∂tis(t)

∂S
wi(t, S)`i(t)dt−

− e−r(S−x0) pi(S)

pi(x0)
(1− ti(S))wi(S, S)`i(S). (B.30)

From (10), (13), and using the definition of εis in (29), we have

∂tis(t)

∂S
= τεisPis(t)

1

ppis(Ri)

∂ppis(Ri)

∂S
. (B.31)
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Substituting (B.31) on the third term on the right-hand side of Eq. (B.30),

and using Pis(t) = Pis(Ri)e
(r−r)(Ri−t) pi(Ri)

pi(t)
ps(t)
ps(Ri)

gives

1

ppis(Ri)

∂ppis(Ri)

∂S
εis

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
τPis(t)wi(t, S)`i(t)dt =

=
1

ppis(Ri)

∂ppis(Ri)

∂S
Pis(Ri)εise

−r(Ri−x0)pi(Ri)

pi(x0)

∫ Ri

S

er(Ri−t)
ps(t)

ps(Ri)
τwi(t, S)`i(t)dt =

=
∂ppis(Ri)

∂S

Pis(Ri)

φ
εise

−r(Ri−x0)pi(Ri)

pi(x0)
(B.32)

Differentiating the total pension points at age Ri with respect to S gives

∂ppis(Ri)

∂S
= φτ

∫ Ri

S

er(Ri−t)
ps(t)

ps(Ri)
wi(t, S)

∂`i(t)

∂S
dt+

+ φτ

∫ Ri

S

er(Ri−t)
ps(t)

ps(Ri)

∂wi(t, S)

∂S
`i(t)dt+

− φτer(Ri−S) ps(S)

ps(Ri)
wi(S, S)`i(S) (B.33)

Then, plugging (B.33) in (B.32), and using the fact that Pis(Ri) can be rewrit-

ten as Pis(t)e
−(r−r)(Ri−t) pi(t)

pi(Ri)
ps(Ri)
ps(t)

, gives

∂ppis(Ri)

∂S

Pis(Ri)

φ
εise

−r(Ri−x0)pi(Ri)

pi(x0)
=

=

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
τPis(t)εiswi(t, S)

∂`i(t)

∂S
dt+

+

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
τPis(t)εis

∂wi(t, S)

∂S
`i(t)dt+

− e−r(S−x0) pi(S)

pi(x0)
τPis(S)εiswi(S, S)`i(S) (B.34)

Now, substituting (B.34) in (B.30) gives∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂S
dt−

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1−τis(t))wi(t, S)

∂`i(t)

∂S
dt =

=

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1− τis(t))

∂wi(t, S)

∂S
`i(t)dt−

− e−r(S−x0) pi(S)

pi(x0)
(1− τis(S))wi(S, S)`i(S). (B.35)
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Using the fact that the left-hand side of (B.2) is equal to (B.36), then

e−ρ(S−x0) pi(S)

pi(x0)

ηi − αiv(`(S))

λa(x0)
=

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1−τis(t))

∂wi(t, S)

∂S
`i(t)dt−

− e−r(S−x0) pi(S)

pi(x0)
(1− τis(S))wi(S, S)`i(S). (B.36)

Differentiating wi(t, S) w.r.t. S gives

∂wi(t, S)

∂S
=
∂w̄(t− S)

∂S
hi(S) + w̄(t− S)

∂hi(S)

∂S

= − 1

w̄(t− S)

∂w̄(t− S)

∂t
wi(t, S) +

1

hi(S)

∂hi(S)

∂S
wi(t, S) (B.37)

Third, we use (B.37) in (B.36)

e−ρ(S−x0) pi(S)

pi(x0)

ηi − αiv(`(S))

λa(x0)
=

=
∂hi(S)
∂S

hi(S)

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)
(1− τis(t))wi(t, S)`i(t)dt+

−
∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)

∂w̄(t−S)
∂t

w̄(t− S)
(1− τis(t))wi(t, S)`i(t)dt−

− e−r(S−x0) pi(S)

pi(x0)
(1− τis(S))wi(S, S)`i(S). (B.38)

Therefore, after rearranging terms, the optimal length of schooling satisfies
the following condition

∂hi(S)
∂S

hi(S)

∫ R

S

e−r(t−x0) pi(t)

pi(x0)
(1− τis(t))wi(t, S)`i(t)dt =

=

∫ Ri

S

e−r(t−x0) pi(t)

pi(x0)

∂w̄(t−S)
∂t

w̄(t− S)
(1− τis(t))wi(t, S)`i(t)dt+

+ e−r(S−x0) pi(S)

pi(x0)
(1− τis(S))wi(S, S)`i(S)+

+ e−ρ(S−x0) pi(S)

pi(x0)

ηi − αiv(`i(S))

λa(x0)
(B.39)

Defining the net human capital wealth at age S out of effective labor income
tax of an individual of type i as

W (S,R) =

∫ R

S

e−r(t−S) pi(t)

pi(S)
(1− τis(t))wi(t, S)`i(t)dt. (B.40)
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and dividing both sides of (B.39) by W (S,Ri), multiplying by er(S−x0) pi(x0)
pi(S)

,
we obtain the optimal length of schooling condition

rhi (S) = r̄i(S,Ri) +
ηi − αiv(`i(S))

U ′(ci(S))Wi(S,Ri)
. (B.41)

rhi (S) is the return to education at age S for an individual of type i

rhi (S) =
1

hi(S)

∂hi(S)

∂S
, (B.42)

r̄i(S,R) is the rate of return lost from not working at age S or the marginal
cost of the Sth unit of schooling for an individual of type i

r̄i(S,Ri) =

∫ Ri

S

∂w̄(t−S)
∂t

w̄(t− S)
ψis(t)dt+ ψis(S), (B.43)

where

ψis(t) =
D(t;x0,−σ`) (wτis(t))

1+σ`∫ Ri
S
D(u;x0,−σ`) (wτis(u))1+σ` du

. (B.44)

Note from (B.43) and (B.44) we have
∫ Ri
S
ψis(t)dt = 1 and limS→Ri r̄i(S,Ri) =

1. The last term in (B.41), which represents the non-pecuniary cost of school-
ing, is

ηi − αiv(`i(S))

U ′(ci(S))Wi(S,Ri)
=

= e−ρ(S−x0) pi(S)

pi(x0)
ηi

(αi)
σ`λa(x0)−1−σ`∫ Ri

S
D(t;x0,−σ`)(wτis(t))1+σ`dt

− σ`
1 + σ`

ψis(S). (B.45)

Note that assuming σc = 1 and ρ = 0, we get (35).

B.3 Optimal retirement age (Ri)

Similar to the previous subsection we start assuming that the optimal length
of schooling Si is given. Then, we differentiate the expected utility Vi(x0)
w.r.t. the optimal retirement age R and equate the result to the derivative of
the lifetime budget constrain w.r.t. to the optimal retirement age.
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Proof. Given an optimal length of schooling Si we first differentiate the
expected utility Vi(x0) w.r.t. R and making it equal to zero∫ ω

x0

e−ρ(t−x0) pi(t)

pi(x0)
U ′ (ci(t))

∂ci(t)

∂R
dt− αi

∫ R

S

e−ρ(t−x0) pi(t)

pi(x0)
v′ (`i(t))

∂`i(t)

∂R
dt

= e−ρ(R−x0) pi(R)

pi(x0)
(αiv (`i(R)) + ϕ(R)) . (B.46)

Substituting the FOCs in the previous equation gives∫ ω

x0

λa(t)
∂ci(t)

∂R
dt−

∫ R

S

λa(t)(1− τis(t))wi(t, Si)
∂`i(t)

∂R
dt

= e−ρ(R−x0) pi(R)

pi(x0)
(αiv (`i(R)) + ϕ(R)) . (B.47)

Using (B.23) and rearranging terms gives∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂R
dt−

∫ R

Si

e−r(t−x0) pi(t)

pi(x0)
(1− τis(t))wi(t, Si)

∂`i(t)

∂R
dt

= e−ρ(R−x0) pi(R)

pi(x0)

αiv (`i(R)) + ϕ(R)

λa(x0)
. (B.48)

Second, we differentiate the budget constraint (19) at age x0 w.r.t. R∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂R
dt =

=

∫ R

Si

e−r(t−x0) pi(t)

pi(x0)
(1− tis(t))wi(t, S)

∂`i(t)

∂R
dt−

−
∫ R

Si

e−r(t−x0) pi(t)

pi(x0)

∂tis(t)

∂R
wi(t, S)`i(t)dt+

+ e−r(R−x0) pi(R)

pi(x0)
(1− tis(R))wi(R, S)`i(R). (B.49)

From (4), (10), (13), and using the definition of εis in (29), we have

∂tis(t)

∂R
= −τPis(t)

1

Pis(t)

∂Pis(t)

∂R
=

= −τPis(t)
(
r + µs(R) +

1

fis

∂fis
∂R
− 1

Ai(R, r)

)
+

+ τPis(t)εis
1

ppis(R)

∂ppis(R)

∂R
. (B.50)

52



Substituting (B.50) on Eq. (B.49), and using Pis(t) = Pis(Ri)e
(r−r)(Ri−t) pi(Ri)

pi(t)
ps(t)
ps(Ri)

gives∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂R
dt =

=

∫ R

Si

e−r(t−x0) pi(t)

pi(x0)
(1− tis(t))wi(t, S)

∂`i(t)

∂R
dt+

+

(
r + µs(R) +

1

fis

∂fis
∂R
− 1

Ai(R, r)

)
e−r(R−x0) pi(R)

pi(x0)
Pis(R)

ppis(R)

φ
−

− ∂ppis(R)

∂R
e−r(R−x0) pi(R)

pi(x0)

Pis(R)εis
φ

+

+ e−r(R−x0) pi(R)

pi(x0)
(1− tis(R))wi(R, S)`i(R). (B.51)

Differentiating the total pension points at age R with respect to R gives

∂ppis(R)

∂R
= φ

∫ R

Si

er(R−t)
ps(t)

ps(R)
τwi(t, S)

∂`i(t)

∂R
dt+

+ (r + µs(R))ppis(R) + φτwi(R, Si)`i(R) (B.52)

Plugging (B.52) in (B.51) gives, after rearranging terms,∫ ω

x0

e−r(t−x0) pi(t)

pi(x0)

∂ci(t)

∂R
dt−

∫ R

Si

e−r(t−x0) pi(t)

pi(x0)
(1−τis(t))wi(t, S)

∂`i(t)

∂R
dt =

=

(
(r + µs(R))(1− εis) +

1

fis

∂fis
∂R
− 1

Ai(R, r)

)
e−r(R−x0) pi(R)

pi(x0)
Pis(R)

ppis(R)

φ
+

+ e−r(R−x0) pi(R)

pi(x0)
(1− τis(R))wi(R, S)`i(R). (B.53)

Using the fact that the left-hand side of (B.3) is equal to (B.53), then

e−ρ(R−x0) pi(R)

pi(x0)

αiv (`i(R)) + ϕ(R)

λa(x0)
=

=

(
(r + µs(R))(1− εis) +

1

fis

∂fis
∂R
− 1

Ai(R, r)

)
e−r(R−x0) pi(R)

pi(x0)
Pis(R)

ppis(R)

φ
+

+ e−r(R−x0) pi(R)

pi(x0)
(1− τis(R))wi(R, S)`i(R). (B.54)
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Multiplying both sides of the equation by er(R−x0) pi(x0)
pi(R)

gives

e(r−ρ)(R−x0)αiv (`i(R)) + ϕ(R)

λa(x0)
=

=

(
(r + µs(R))(1− εis) +

1

fis

∂fis
∂R
− 1

Ai(R, r)

)
Pis(R)

ppis(R)

φ
+

+ (1− τis(R))wi(R, S)`i(R). (B.55)

Using (38) and the fact that U ′(ci(R)) = e(r−ρ)(R−x0)λa(x0) we get the optimal
retirement age condition

αiv (`i(R)) + ϕ(R) = U ′(ci(R))wi(R, S)`i(R)(1− τGWis (R)), (B.56)

which coincides with (36).

Additional simulated data

Length of schooling Si.

Table 4: Optimal length of schooling by income quintile (Si), US male birth
cohorts 1930 and 1960

Defined Contribution (NDC) Defined Benefit
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 12 12 12 12 12 12
Quintile 2 12 12 12 13 12 12
Quintile 3 13 13 13 14 12 12
Quintile 4 14 14 14 14 13 13
Quintile 5 17 17 17 17 16 16

Cohort 1960
Quintile 1 11 11 11 12 11 11
Quintile 2 13 13 13 13 13 13
Quintile 3 15 15 15 16 14 14
Quintile 4 17 17 17 18 16 16
Quintile 5 19 19 19 20 18 18

54



Retirement ages Ri.

Table 5: Optimal retirement age by income quintile (Ri), US male birth cohorts
1930 and 1960

Defined Contribution (NDC) Defined Benefit
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 61 61 61 63 62 63
Quintile 2 61 61 61 63 63 63
Quintile 3 61 61 61 64 63 63
Quintile 4 62 62 62 64 63 63
Quintile 5 64 64 64 65 64 64

Cohort 1960
Quintile 1 60 60 60 62 61 62
Quintile 2 61 61 61 63 62 63
Quintile 3 63 63 63 66 63 63
Quintile 4 65 65 64 68 65 65
Quintile 5 66 66 65 69 66 66

Present value of lifetime benefits.

Lifetime wealth.

Table 7 reports the lifetime wealth (detrended by productivity) by income
quintile relative to that obtained for the income group q3 under the mortality
regime 1930. We can see in Tab. 7 that the higher income quintiles q3–q5
experience an average increase over twenty percent in their lifetime wealth
with the more unequal mortality regime, q2 experiences an increase of seven
percent in the lifetime wealth, and q1 has five percent less wealth. Moreover,
since the NDC-III system provides the same internal rate of return across
income groups, we have that the ratio between the social security wealth and
the stock of human capital is the same across income group.
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Table 6: Present value of lifetime benefits at age 50 by income quintile and
pension system, US males, birth cohorts 1930 and 1960 (in $1.000s)

Defined Contribution (NDC) Defined Benefit (DB)
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 115 126 133 135 128 142
Quintile 2 125 134 138 145 141 148
Quintile 3 154 161 163 190 166 170
Quintile 4 210 208 205 272 193 185
Quintile 5 269 249 223 337 229 209

Cohort 1960
Quintile 1 94 124 137 97 105 134
Quintile 2 117 144 154 128 128 158
Quintile 3 186 196 197 252 188 189
Quintile 4 290 268 261 419 282 224
Quintile 5 327 293 283 525 293 259

Table 7: Distribution of the lifetime wealth (LW) at age 14 by income quintile
and mortality regime in the NDC-III system

Cohort 1930 Cohort 1960†
SSW HK LW SSW HK LW

I II III=I+II I II III=I+II

Quintile 1 -2,2 78,2 76,0 -2,2 72,1 70,0
Quintile 2 -2,5 86,5 84,0 -2,8 92,7 89,9
Quintile 3 -2,9 102,9 100,0 -3,8 124,4 120,6
Quintile 4 -3,5 125,9 122,4 -5,0 163,5 158,4
Quintile 5 -4,0 145,2 141,2 -5,2 173,1 167,9

Notes: SSW stands for the social security wealth, HK denotes the stock of human capital,

and LW is the lifetime wealth. †Values for the cohort 1960 are detrended by an annual

productivity growth of 1.5 percent.
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