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The disease burden from ambient fine particulate (PM2.5) exposure in India has been 17 

estimated so far using risk functions based on studies done elsewhere. Here we provide the 18 

first direct evidence of the impact of ambient PM2.5 exposure on child health in India using 19 

measurements from nationally-representative anthropometric data matched to satellite-20 

based exposure data. We apply fixed effect regression with child height-for-age as the 21 

dependent variable and district-month-level early-life exposure to ambient PM2.5 as the 22 

independent variable. We show that a 100 𝝁g/m3 increase in ambient PM2.5 exposure leads 23 

to a 0.05 standard deviation decrease in height-for-age after controlling for district-specific 24 

seasonality, household properties, and other confounding factors. We find effects on both 25 

rural and urban children, and cannot reject that the shape of the concentration-response 26 

curve is linear. Because average exposure to ambient particulate pollution is high in India, 27 

our results recommend ambient air pollution as public health policy priority.     28 

Ambient and household PM2.5 exposure have been linked causally to various child health outcomes 29 

such as lower respiratory infection (LRI)1, sudden infant death syndrome2, low birth weight 3,4, 30 

intrauterine growth retardation5,6 and reduced size7. The recent Disease Burden of India (DBI) 31 

study8 attributes 5.1 (4.1-6.3) million disability adjusted life years (DALY) and 0.06 (0.04-0.07) 32 

million deaths of children (<5 years) to LRI, due to ambient PM2.5 exposure in India. The child 33 

mortality burden due to household PM2.5 exposure in India is estimated to be equally large at 0.05 34 

(0.03-0.06) million. However, these estimates relied on exposure-risk functions that were 35 

developed from epidemiological studies carried out in developed countries. Direct evidence of the 36 

impact of ambient PM2.5 exposure on child health in India is lacking so far.  37 

One widely-studied marker of early-life health insults in India is the average height of children9. 38 

Children in India are unusually short in international comparison, on average. Many correlates and 39 

causes of India’s mean child height deficit (or stunting), a clinically extreme height defecit, have 40 

been documented in the demographic, epidemiological, and econometric literatures10-12. Intra-41 

household exposure to particulate matter has also been found to impact child growth. Prevalence 42 

of stunting was significantly higher (relative risk ratio RRR = 1.84, 95% uncertainty interval (UI) 43 

1.44-2.36) amongst children living in the households that use solid fuel compared to the children 44 

living in the households using clean fuel5. Using data from the 2005-2006 National Family Health 45 

Survey (NFHS), a recent study6 has shown strong evidence that household solid fuel exposure 46 

increases the risk of stunting and reduces the height-for-age measure of the Indian children. More 47 

recently, ambient air pollution is also identified as a factor to impact child growth. Another study7 48 

observed significant increases in the relative risk of child stunting and wasting in Bangladesh 49 

associated with higher levels of in utero exposure to ambient air pollution. Ambient PM2.5 exposure 50 

in India is quite large and varies in the range 3.7 to 148 𝜇g/m3 at annual scale 8,9. To our knowledge, 51 

no study has ever been carried out to examine the impact of early-age ambient PM2.5 exposure on 52 

child height-for-age in India. 53 

To address this question in a sample representative of the population of children under five in India 54 

– a population exposed to a large range of ambient PM2.5 – here we report an observational analysis 55 

of India’s 2015-2016 Demographic and Health Survey (DHS), matched to district-month level air 56 

pollution, as measured by satellite remote sensing. The association between child height-for-age 57 
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and early-life exposure to air pollution is estimated using a fixed effects econometric strategy that 58 

accounts for fixed differences across villages, for secular trends over time, and for district-specific 59 

seasonal patterns. The resulting association between childheight outcomes and exposure to 60 

ambient PM2.5 is identified off of unpredictable deviations from these trends. We show that 61 

ambient PM2.5 exposure reduces child growth in India across rural and urban areas. The rate of 62 

decrease of child height-for-age with an increase in ambient PM2.5 exposure at their month of births 63 

is consistently similar across the seasons and other confounding factors. We also show evidence 64 

for a linear shape of the exposure-response function. These results are the first direct confirmation 65 

of the impact of early-age ambient PM2.5 exposure on child growth in India (or anywhere in the 66 

world). We hope that our results might help formulate policy to curb ambient PM2.5 exposure at 67 

regional scale. 68 

Results 69 

Summary and descriptive statistics. Figure 1 describes the study population and sample. Height 70 

is measured for 225,002 children under 5 in the DHS. We are able to match air pollution data to 71 

children born before January 2016, who are 97% of those with measured height, resulting in a final 72 

sample of 218,152 children. Summary statistics for these children are presented in Table 1. As 73 

Table 1 shows, the DHS is also a rich source of further information on children and their 74 

households, which we exploit in robustness checks as regression controls.Table 1 presents sample 75 

means that summarize our data. By separating the sample by quintiles of ambient PM2.5 exposure, 76 

the table describes the correlates of the independent variable, and therefore some potential omitted 77 

variable bias threats. Children who are exposed to higher ambient PM2.5 also tend to be 78 

disadvantaged in other ways. They come from larger families, have shorter mothers, live in 79 

households that are more likely to defecate in the open, use traditional fuel, and live in the poorer 80 

northern plains states of Uttar Pradesh and Bihar. However, much of these correlations are 81 

absorbed by our controls and by our primary sampling units (PSU; Figure 1) and seasonality fixed 82 

effects. 83 

Non-parametric analysis. Before proceeding to our main regression results, we use non-84 

parametric methods to illustrate the relationship between ambient PM2.5 exposure and subsequent 85 

child height. Figures 2, 3, and 4 use locally-weighted polynomial regression; all three show 86 

evidence of a robust association. Figure 2 reveals a negative gradient between ambient PM2.5 87 

exposure and child height for both rural and urban children. Overall, rural children are shorter, on 88 

average, because they are more exposed to other factors associated with growth faltering10,11; this 89 

is visible in the fact that the rural line is below the urban line. The principal results of Figure 2, 90 

however, are that both lines have an apparently linear downwards gradient, and that they are 91 

parallel, which is consistent with a comparable gradient for rural and urban children. 92 

The seasonality of exposure to ambient PM2.5 in India is reflected in Figure 3. Here, each season-93 

of-birth is plotted separately, to ensure that season of birth is not a biasing omitted variable. 94 

Ambient PM2.5 levels reach the highest levels in the winter months of November through January, 95 

which is visible in the fact that this line extends the furthest to the right. However, Figure 3 96 

provides evidence that the pattern in Figure 2 does not merely reflect a seasonal trend in height, 97 

because similarly-steep downward gradients are present in all four seasons. In other words, the 98 
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season of birth may matter for a child’s outcomes, but it is not a confounder in the gradient that 99 

we document.  100 

Finally, by splitting the sample by decile of mother’s height, Figure 4 speaks to the possibility that 101 

the gradient on Figure 2 merely reflects confounding heterogeneity across household environments 102 

or among children’s genetic endowments. Each line is separately computed for children of mothers 103 

with similar heights. The lines are approximately parallel: within each decile, children exposed to 104 

more ambient PM2.5 in their month of birth are shorter, on average.  Mothers’ height (and its 105 

correlates) does not appear to be a potentially biasing omitted variable for our results. 106 

Effect of month-of-birth exposure. Table 2 presents our main results: fixed effect regression 107 

results following equation 1 (see Methods for more details). Ambient PM2.5 exposure is divided 108 

by 100 for ease of interpretation of the coefficients. Across the alternative specifications in 109 

columns 1 through 5, a 100 𝜇g/m3 increase in ambient PM2.5 exposure is associated with an 110 

approximately 0.05 standard deviation decrease in child height-for-age. Column 4 verifies that the 111 

result is unchanged after controlling for household fuel use. Column 5 is a falsification test. 112 

Ambient PM2.5 exposure two years before the child is born does not predict height and does not 113 

change the coefficient of interest. Columns 7 and 8 find similar results when state-month or PSU-114 

month fixed effects for seasonality are used instead of district-months. 115 

Although not reported in the table, we conducted a further robustness check that our result is not 116 

driven by the January height pattern documented in the DHS literature. Omitting children born in 117 

January results in an essentially unchanged estimate of -0.052 (standard error = 0.023; p = 0.024). 118 

Additionally replacing year of birth fixed effects with a larger set of state-specific year of birth 119 

fixed effects reduces precision by consuming degrees of freedom, but does not qualitatively change 120 

the estimate (-0.069, standard error = 0.030, p = 0.022 in the most fully controlled specification). 121 

Figure 5 presents seven estimates of equation 2 (see the Methods section), each for ambient PM2.5 122 

exposure in a separate three-month age range. Only the early-life period at and immediately after 123 

birth shows a coefficient that is statistically distinguishable from zero. Most of the other 124 

coefficients are close to zero, and none is as large in absolute value as the one for ages 0-2 months. 125 

These results are consistent with evidence in the literature12 that early-life is a critical period for 126 

the determination of child height. Some prior literature has documented evidence for effects on 127 

health of in utero exposure13; although we do not detect in utero effects, the confidence intervals 128 

on pre-birth exposure cannot rule out effects about half as large as the effect that we find for 129 

exposure in the first months of life.   130 

Shape of concentration-response function. Three tests for non-linear concentration-response 131 

functions each fail to reject that a linear shape fits the data. Moreover, each approach suggests that, 132 

if anything, effects are steeper at higher concentration levels. Table 2 includes non-linear candidate 133 

function shapes. As column 6 shows, a natural log functional form – which would be consistent 134 

with the hypothesis that the concentration-response function shows diminishing marginal costs – 135 

has a coefficient that is statistically distinguishable from zero, but fits the data less well (as 136 

measured by a t-statistic) than a linear form. Column 9 includes a linear spline that allows a 137 

different slope at above-median levels of ambient PM2.5. Although the two PM2.5 terms are jointly 138 
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statistically significant (F = 2.99; p = 0.051), neither is individually statistically significantly 139 

different from zero. The coefficient on the spline term is negative, indicating that, although this 140 

model does not fit the data better than a simple linear concentration-response function, the sign 141 

suggests a steeper concentration-response function at higher levels of exposure.  142 

Finally, Figures 6 and 7 present two further ways of investigating whether the concentration-143 

response function has evidence of a non-linear shape. Figure 6 investigates higher-order 144 

polynomials, beyond linear. It presents results for quadratic, cubic, quartic, and quintic polynomial 145 

forms. Of these, only the quadratic form is jointly statistically significant, and its fit does not 146 

improve on a linear functional form. The coefficient estimates for higher-order polynomials 147 

suggest, in each case, effects that are, if anything, steeper at higher levels of exposure. Figure 7 148 

graphically presents the results of a Cox-Box transformation, a standard parameterization of a 149 

curved relationship, detailed in the Methods section. It presents log-likelihoods for a range of 150 

power transformations of PM2.5, estimated with and without the full set of controls. The likelihood 151 

of the model is maximized at or just above an exponent of 1, indicating that a linear model (or 152 

perhaps one with slightly increasing marginal effects) best fits these data. 153 

Discussion 154 

This paper reports an ecological analysis of variation in remotely-sensed ambient PM2.5 exposure 155 

data at the district-month level. Ecological analysis is often used to generate hypotheses for further 156 

investigation using more rigorous methods. In this instance, there are inherent limits to the possible 157 

study design: ambient air pollution is an important topic of study, but it must vary at a geographic 158 

level, and is not amenable to experimental manipulation. Although place, time, and season fixed 159 

effects limit the role of residual confounding, we are unable to use an econometric design that 160 

exploits a specific, known source of variation in PM2.5 exposure, such as a policy change. 161 

Nevertheless, measurement error could, in principle, be improved by a study that records child-162 

level exposure to ambient PM2.5 with a system of mobile child-level personal monitors. 163 

This is the first direct evidence of the ambient PM2.5 exposure impact on child health at a country 164 

level. Although child height has traditionally been interpreted as a measure of “malnutrition,” it is 165 

increasingly recognized that anthropometric outcomes such as height reflect the totality of early-166 

life net available nutrition, including losses due to diseases 14, and including growth effects of lung 167 

function. Our data do not allow us to observe disease directly; indeed our health data reflect only 168 

conditions at the time of the survey, and not during the critical period of the child’s birth. However, 169 

mechanisms in the literature are consistent with the effect that we document7. For example, lung 170 

function growth has been linked to children’s exposure to particulate matter15.  More generally, 171 

child growth is highly correlated, at the population level, with early-life mortality, which has been 172 

interpreted as a consequence of the role of infectious disease. Mortality is correlated with average 173 

child height because survivors’ growth is “scarred” by its early-life disease16. This could plausibly 174 

include respiratory disease. 175 

Many studies in the air pollution literature use mortality as a dependent variable, typically from 176 

census or vital registration data. But India does not have a vital registration system, like many 177 

other developing countries. As Setel and colleagues17 explains: “Most people in Africa and Asia 178 
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are born and die without leaving a trace in any legal record or official statistic.”  Therefore, we 179 

study height-for-age as a dependent variable, because it is a summary of early-life health that is a 180 

continuous variable, and therefore offers high statistical power even in a survey sample, relative 181 

to dichotomized outcomes such as stunting or infant mortality 18. 182 

We document an effect of early-life exposure to ambient PM2.5 on subsequent height-for-age in 183 

later childhood, using India’s most recent DHS, which measures the children under five years old 184 

of a nationally representative sample of reproductive age women. The effect size we estimate is 185 

plausibly small for any one child, but many children are exposed to it. Moreover, ambient PM2.5 186 

concentrations in India are higher than World Health Organization guideline. With an effect size 187 

of 0.05 associated with a linear difference of 100, the average child in India is about 0.027 height-188 

for-age standard deviations shorter than he or she would be if exposed to very low levels of air 189 

pollution, an effect multiplied by almost 30 million births per year. Because the ambient PM2.5 190 

exposure is projected to increase in India in near future under climate change scenarios 19, the 191 

health burden that we quantify here could potentially increase unless appropriate policy is taken 192 

to reduce air pollution throughout India. In particular, although policy conversations often focus 193 

on Delhi (and, to a lesser extent, other big cities), we find results throughout India for rural and 194 

urban children, suggesting that the policy challenges are significantly broader than is commonly 195 

understood. Because child height has lasting consequences for human capital 12,20, this is a problem 196 

with ramifications throughout the Indian society and economy.       197 

Methods 198 

India’s 2015-2016 Demographic and Health Survey.  The dependent variable and regression 199 

controls are taken from India’s most recent Demographic and Health Survey (hereafter DHS; in 200 

India, the DHS is also known as the National Family Health Survey). These data were collected 201 

from a nationally-representative sample of women of reproductive age.  In particular, the sample 202 

was constructed to permit district-level estimates for all 640 districts in India at the time of the 203 

2011 census. These data were collected between January 2015 and November 2016. 204 

Our dependent variable of interest is a child’s height-for-age z-score, scaled according to the World 205 

Health Organization 2006 reference population mean and standard deviation by sex and age-in-206 

months (WHO 2006). In the DHS, height is measured for children less than five years old at the 207 

time of the survey.  The sex and month of birth (e.g. August 2011) is also recorded for each child 208 

with measured height. 209 

Air pollution data by district-month. Each child is matched to average ambient PM2.5 exposure 210 

in his or her district of residence, during the month in which he or she was born. This matching 211 

implicitly assumes that the district where children live at the time of the survey is the same as the 212 

district where children lived when they were born.   213 

The absence of systematic ground-based PM2.5 measurements at desirable spatial resolution 214 

prompted us to use satellite-derived PM2.5 for this study. We use the Multiangle Imaging 215 

SpecroRadiometer (MISR) retrieved daily aerosol optical depth (AOD) V22 product at 17.6 km 216 

spatial resolution to estimate the PM2.5 with the help of a spatially and temporally varying 217 

conversion factor (ƞ). ƞ is derived from of GEOS-Chem chemical transport model simulations and 218 
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depends on aerosol vertical distribution, emission and meteorological factors like temperature, 219 

relative humidity and precipitation. Details about the conversion factor ƞ are discussed 220 

elsewhere9,21,22. MISR AOD product was earlier extensively evaluated for the Indian subcontinent 221 
23. The satellite-retrieved PM2.5 was bias-corrected using coincident ground-based quality 222 

controlled measurements following our earlier study8,9. The district-level statistics are extracted 223 

using the shape files of the district boundaries in ArcGIS. We generate a monthly PM2.5 exposure 224 

database for 15 years (2001-2015), although because height is only measured in the DHS for 225 

children under 5, no child in our sample was born before 2010. 226 

Fixed effects econometric strategy. The central empirical strategy of this paper is fixed effects 227 

regression, with child height-for-age as the dependent variable, and early-life district-month-level 228 

exposure to ambient PM2.5 as the independent variable of interest. The DHS is a cross-sectional 229 

survey that measured children under five at different ages; because age is predictably correlated 230 

with height-for-age24, each regression therefore controls for 119 age-in-months-by-sex indicators. 231 

Each regression also controls for fixed effects for place, season, and year, as detailed in ‘Results’ 232 

section. We first present the econometric strategy for the main result followed by further 233 

investigation of exposure at other ages and robustness checks in which we allow the concentration-234 

response function to take non-linear shapes. All analysis in the paper is computed with Stata 12.1. 235 

Non-parametric descriptive regression. Exposure to ambient PM2.5 is not randomly allocated 236 

across children. This fact raises the possibility that any apparent association between air pollution 237 

and child outcomes could, in fact, reflect omitted variables such as seasonality of births or 238 

geographic heterogeneity across India. Graphs of non-parametric regressions in split samples can 239 

be a method to investigate whether the variable over which the sample is split confounds the 240 

relationship of interest25. In particular, in Figures 2, 3, and 4 we plot locally-weighted kernel 241 

regressions, computed in Stata with the default Epanechnikov kernel function. Each figure uses, 242 

as the independent variable, ambient PM2.5 in the district month of birth and, as the dependent 243 

variable, height-for-age residuals after regression on 119 age-in-months-times-sex fixed effects, 244 

to account for the fact that children were measured at different ages. 245 

Figure 2 splits the sample by rural and urban. Although much of the discussion of air pollution in 246 

India focuses on urban places, this permits us to see if there is a gradient for rural children.  Figure 247 

3 splits the sample by season of birth; within each season, only observations in the 5th to 95th 248 

percentiles of PM2.5 exposure are plotted (because non-parametric statistics of this sort require an 249 

adequate sample size). This split permits us to investigate whether any gradient is present within 250 

seasons, and not merely a reflection of omitted seasonality. Finally, in recognition of the fact that 251 

PM2.5 exposure is high in the poorer regions of India, where other factors also constrain child 252 

growth, Figure 5 splits the sample into ten partitions, according to deciles of mothers’ height; 253 

within each decile of mother’s height, only observations in the 5th to 95th percentiles of PM2.5 254 

exposure are plotted. If a gradient is visible within each decile, then it is evidence that the 255 

association between air pollution exposure and child height is not fully driven by the omitted 256 

variables that are correlated with mothers’ height. 257 
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Main strategy. Our main analysis estimates fixed effects regressions of the following form: 258 

                    ℎ𝑖𝑝𝑑𝑚𝑦 = 𝛽𝑥𝑑𝑚𝑦 + 𝜶𝑝𝑑 + 𝜸𝑑𝑚 + 𝜹𝑦 + 𝑋𝑖𝑝𝑑𝑚𝑦𝜽 + 𝜀𝑖𝑝𝑑𝑚𝑦                                (1)  259 

where i indexes individual children, p places (survey PSUs, such as urban blocks or rural villages), 260 

d districts, m calendar months (such as February), and y calendar years, such as 2008.  The 261 

dependent variable, h, is child i’s height-for-age z-score.  The independent variable of interest, 262 

𝑥𝑑𝑚𝑦, is PM2.5 in district d in month m of year y, corresponding to child i’s birth month.  Fixed 263 

effects are 𝜶𝑝𝑑, 27,266 local places (PSUs); 𝜸𝑑𝑚, 7,679 categories of district-month (such as for 264 

Februarys in Sitapur district, or Aprils in Kanpur district); and 𝜹𝑦, 6 calendar years, to capture any 265 

secular time trend. Child-level covariates 𝑋𝑖𝑝𝑑𝑚𝑦 include the age-by-sex fixed effects and a vector 266 

of extended controls. 267 

We add fixed effects and controls in stages to verify that the main effect estimate, �̂�, is robust to 268 

respecification.  In particular, we first estimate the model without PSU fixed effects.  PSU fixed 269 

effects would account for any fixed geographic heterogeneity such as market 26, local open 270 

defecation 10, or the religious composition of the neighborhood27. We then add a set of extended 271 

regression controls, intended to control for other known determinants of child height: the height 272 

of the child’s mother, the child’s birth order, the number of siblings born to its mother by the time 273 

of the survey, household open defecation, the caste and religion of the child’s household 11, the 274 

and child’s mother’s relationship to the head of the household. We further add indicators for the 275 

household’s cooking fuel type, as a proxy for household PM2.5 exposure. 276 

Our main specifications control for district-month fixed effects28. This strategy allows each district 277 

to have any distinct seasonality pattern, and identifies effects off of deviations from each district’s 278 

seasonal patterns. Fertility is known to be predicted by seasonal patterns 29, but parents would not 279 

be able to make fertility decisions (nine months in advance) based on the realized deviation from 280 

seasonal trends.  Therefore, predictable seasonality does not confound our results. We include 281 

robustness checks with coarser (state-month) and finer (PSU-month) controls for seasonality. 282 

Finally, we conduct several additional robustness tests.  As a falsification test, we control for 283 

ambient PM2.5 in the same district-month, two years before the month of birth; if our identification 284 

strategy is credible, this control should not predict height nor change our estimate. Few studies30,31 285 

both document a pattern in DHS data of a drop in child height of children born in January, relative 286 

to children born in December; they note that this pattern could bias studies that identify effects on 287 

height from child season of birth. This is not what our work does. We control for seasonality and 288 

identify off of deviations from it, and we control non-parametrically for age-in-months-times-sex. 289 

However, to verify that this pattern is not a threat to our conclusion, we compute a robustness 290 

check omitting children reported to be born in January. 291 

Standard errors are clustered by 640 districts, to permit arbitrary correlation of error terms over 292 

space and time within districts 32.  DHS data include sampling weights; although we use weights 293 

for our summary statistics in Table 1, sampling weights are not appropriate for estimating 294 

relationships 33, so we do not use weights in any of our regression results. 295 
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Age of exposure. Our main specification only investigates the effect of exposure to ambient PM2.5 296 

in the month of birth. In an extension, we consider exposure at other ages. We average over three-297 

month age ranges, from -9 to -7 months (first trimester of pregnancy) to 9 to 11 months (the last 298 

quarter of the first year of life).  Average PM2.5 in each age of exposure is used as the independent 299 

variable in a separate regression: 300 

ℎ𝑖𝑝𝑑𝑚𝑦 = 𝛽 (
𝑥𝑑𝑚𝑦

+0 + 𝑥𝑑𝑚𝑦
+1 + 𝑥𝑑𝑚𝑦

+2

3
) + 𝜶𝑝𝑑 + 𝜸𝑑𝑚 + 𝜹𝑦 + 𝑋𝑖𝑝𝑑𝑚𝑦𝜽 + 𝜀𝑖𝑝𝑑𝑚𝑦                         (2)  301 

where indices and fixed effects are as in regression equation (1), but the controls X include only 302 

the age-in-months-by-sex indicators, and not the full set of extended controls. Coefficient 303 

estimates and 95% confidence intervals are presented in Figure 5. 304 

Robustness of shape of the concentration-response function. The shape of the concentration-305 

response function has been a focus of the air pollution literature, in light of its importance for 306 

policy responses (Pope et al. 2015). Although the prior literature has emphasized the possibility of 307 

diminishing marginal costs (such that the extra damages from extra exposure decline at higher 308 

levels of exposure), there is little well-identified evidence on exposure to PM2.5 at levels as high 309 

as in India during the period studied. 310 

Therefore, we perform three robustness checks in which we allow the shape of the concentration-311 

response function to differ from the linear form in equation (1): 312 

ℎ𝑖𝑝𝑑𝑚𝑦 = 𝑓(𝑥𝑑𝑚𝑦) + 𝜶𝑝𝑑 + 𝜸𝑑𝑚 + 𝜹𝑦 + 𝑋𝑖𝑝𝑑𝑚𝑦𝜽 + 𝜀𝑖𝑝𝑑𝑚𝑦. (3) 313 

First, in Table 2, we substitute in the natural log of PM2.5 in one specification, and a linear spline 314 

at the median of PM2.5 in another. Then, in Figure 6, we allow polynomial shapes of the 315 

concentration-response curve, of degree 1 through 5.  Finally, in Figure 7, we implement a Box-316 

Cox power transformation of the form 𝑓(𝑥) = 𝑥𝜆, for coefficients 𝜆 in steps of 0.1 from 0.1 to 2.0.  317 

We implement each power transformation in a separate regression, and plot the resulting log-318 

likelihoods.  If likelihood is maximized near 𝜆 = 1, then this procedure would suggest that a linear 319 

concentration-response function fits these data. 320 
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 410 

Table 1.  Summary statistics describing height-for-age sample from India’s 2015-16 DHS. 411 

  PM2.5 district-month of birth quintiles 

 full sample 1 2 3 4 5 

PM2.5 in birth month 54.9 15.3 30.1 45.7 65.2 118.2 

height-for-age -1.50 -1.35 -1.45 -1.52 -1.59 -1.60 

age in months 30.7 31.9 31.2 30.7 30.4 29.1 

girl 0.48 0.49 0.48 0.48 0.47 0.48 

rural 0.72 0.67 0.71 0.72 0.74 0.76 

mother's height (cm) 151.7 152.2 151.9 151.6 151.4 151.2 

uses LPG 0.33 0.42 0.36 0.33 0.28 0.25 

uses traditional fuel 0.63 0.53 0.60 0.63 0.68 0.72 

open defecation 0.47 0.40 0.47 0.49 0.51 0.49 

birth order 2.18 1.97 2.09 2.18 2.30 2.38 

sibsize 2.46 2.23 2.37 2.46 2.59 2.67 

in UP or Bihar 0.31 0.09 0.18 0.29 0.41 0.57 

       

n (children under 5) 218,152 52,947 43,942 40,831 40,551 39,881 

 412 

Note: Each number, other than sample sizes in the bottom row, is a sample mean.  Girl, rural, uses 413 

LPG, uses traditional fuel, open defecation and in Uttar Pradesh (UP) or Bihar are each indicators 414 

(1 or 0) for that property of the child or household.  Sibsize is a measure of fertility: the number of 415 

children born to the child’s mother at the time of the survey.    Sample means and quintiles are 416 

computed with DHS sampling weights (which is why n is not constant across quintiles).417 
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Table 2. Regression results: Child height-for-age z-score regressed on district-level PM2.5 in month of birth, with fixed effects and 418 

covariate controls 419 

 420 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

PM2.5 ÷ 100 -0.0546** -0.0494* -0.0488* -0.0477* -0.0502*  -0.0352* -0.0734* -0.0286 

 (0.0201) (0.0210) (0.0207) (0.0206) (0.0216)  (0.0178) (0.0309) (0.0555) 

PM2.5 ÷ 100     -0.0107     
   24 months earlier     (0.0209)     
ln(PM2.5)      -0.0171†    

      (0.00987)    
mother's height (cm)   0.0470** 0.0467** 0.0467** 0.0467**    

   (0.000932) (0.000925) (0.000925) (0.000925)    
PM2.5 ÷ 100         -0.0281 

   above median spline         (0.0668) 

age-in-months × sex yes yes yes yes yes yes yes yes yes 

district-month FEs yes yes yes yes yes yes   yes 

year of birth FEs yes yes yes yes yes yes yes yes yes 

PSU FEs  yes yes yes yes yes yes  yes 

extended controls   yes yes yes yes    
household fuel    yes yes yes    
state-month FEs       yes   
PSU-month FEs        yes  
n (children under 5) 218,152 217,285 216,745 216,745 216,745 216,745 217,286 115,586 217,285 

Note:  All columns present ordinary least squares fixed effects regressions with the child’s height-for-age z-score as the dependent 421 

variable.  FE = fixed effect; PSU = primary sampling unit (urban block or rural village).  Standard errors clustered by 640 districts in 422 

parentheses. † p  < 0.10; * p < 0.05; ** p < 0.01.  In column 9, the spline variable is zero below the median PM2.5 and is identical to 423 

PM2.5 above the median.  Sample sizes vary because some fixed effects categories lack within-category variation in the independent 424 

variable (resulting in that category being dropped), and because not all children’s mothers’ height was measured.425 
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 427 

 428 

 429 

Figure 1. Study sample with excluded or missing observations.  In Table 2, some samples are 430 

smaller than 217,616 because fixed effects regression ignores categories within which there is no 431 

variation in the independent variable. 432 

 433 

 434 

 435 

 436 

  437 
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 440 

Figure 2. Non-parametric association between child height and exposure to PM2.5 in the month of 441 

birth.  Curves are kernel-weighted local regressions.  The vertical axis is the residual of child 442 

height-for-age on 120 age-in-months by sex indicators. 443 

  444 
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 449 

Figure 3. Child height and exposure to PM2.5 in the month of birth, by season of birth.  Curves are 450 

non-parametric kernel-weighted local regressions.  The vertical axis is the residual of child height-451 

for-age on 120 age-in-months by sex indicators. 452 

 453 

  454 
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 458 

Figure 4. Child height and exposure to PM2.5 in the month of birth, by decile of mother’s height.  459 

Curves are non-parametric kernel-weighted local regressions. Each separate curve includes only 460 

children born to mothers in one of ten height deciles. The vertical axis is the residual of child 461 

height-for-age on 120 age-in-months by sex indicators. 462 
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 467 

Figure 5. Effects of PM2.5 exposure at various ages.  Each dot is a coefficient and each range is a 468 

95% confidence interval from a separate fixed effects regression of child height-for-age on the 469 

average exposure to PM2.5 in the months, relative to birth, specified along the horizontal axis. 470 

 471 

 472 

 473 

 474 

 475 
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 481 

Figure 6. Projected effects of PM2.5 of child height-for-age, at increasing non-linearity.  Each 482 

curve is the projected effect from a separate fixed effects regression where PM2.5 in the month of 483 

birth is specified as a polynomial of degree 1 through 5. p-values report joint F tests that all PM2.5 484 

terms are zero. 485 
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 489 

Figure 7. Box-Cox transformation of PM2.5 in month of birth: Log likelihood.  Each point plots 490 

the log likelihood of a separate fixed effects regression of PM2.5 transformed according to the 491 

coefficient on the horizontal axis. 492 


