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Abstract 
 
Dyadic/triadic life course sequences can be more associated within the dyad/triad than between 

them and other sequences, theoretically known as the life course principle of linked lives. In this 

paper, I propose a method for measuring and assessing the degree of linked life course 

trajectories in sequence data. Specifically, the distance between the members in an observed 

dyad/triad is compared against a set of randomly generated dyads/triads by assuming a particular 

random generation mechanisms. The proportion of such distance differences provides the degree 

of linked life courses in such dyadic/triadic sequence data. I present a simulation study and two 

empirical examples—an analysis of dyadic family formation using the Longitudinal Study of 

Generations data and an analysis of triadic employment history using the Panel Study of Income 

Dynamics data, to assess the performance of the method. The simulation study and the two 

applications demonstrate the usefulness of the proposed method. 

 
 

Acknowledgements: The author wishes to acknowledge the benefits of the Discovery Project 

funded by the Australian Research Council and awarded to Irma Mooi-Reci, Mark Wooden, and 

Tim Liao. Working on the project initiated the research reported in this paper. The author would 

also like to thank Anette Fasang and Marcel Raab, who shared the data used in their 2014 

Demography publication.



1 
 

Introduction 

This paper concerns the analysis of linked lives, especially how dyadic and triadic life course 

sequences are associated between family members of the same or different generations. The 

objective is to assess such an association as a measure of the degree of linked life courses 

between members of family dyads and triads. 

 Since its introduction from biology by Abbott and Forrest over three decades ago (1986), 

sequence analysis has been widely applied in the social sciences by the second-wave sequence 

analysis researchers (e.g., Aisenbrey and Fasang 2017; Fasang and Raab 2014). It has also 

witnessed rapid and continuing methodological advances in social sequence analysis (Barban et 

al 2017; Blanchard and Bühlmann 2014; Cornwell 2015; Fasang and Liao 2014; Studer 2013; 

Raab et al 2014; Studer, Struffolino, and Fasang 2018). In this paper, I follow up on this exciting 

research tradition of developing and applying sequence analysis. 

 There are three main approaches to analyzing dyadic sequence data. First, dyadic or 

triadic sequence data can be analyzed with multichannel sequence analysis, introduced by 

Gauthier et al. (2010). Fasang and Raab (2014), among others, provided a good example of such 

an application to parent-child family formation sequence data. Second, dyadic sequence data can 

be formed into the so-called grid-sequences, based on the state space grid method, and this 

approach is called grid-sequence analysis (Brinberg et al. 2016). Typically, cluster analysis 

follows multichannel sequence analysis or grid-sequence analysis, and the clusters generated 

often become the dependent variable in a subsequent substantive analysis. Third and finally, 

Liefbroer and Elzinga (2012) proposed a sub-sequence based approach to analyzing dyadic 

sequence data by focusing on the similarities of such subsequences based on optimal matching. 

There at least three differences between the proposed method in this paper and the three 
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approaches above. While the current method also examines similarities of dyadic or triadic 

members, it is a relative kind of similarity in that the method compares the intra-dyad or intra-

triad distance against simulated intra-dyad or intra-triad distances. This first difference implies a 

second difference: The proposed method provides an informative measure of the degree of 

linked life course sequences with a value for each and every dyad or triad. Finally, the proposed 

method has the flexibility of extending to the analysis of tetrads, pentads, and hexads, and to 

even higher dimensional polyads although such an extension is beyond the scope of the current 

paper. 

 The paper proceeds as follows. I first present a brief review of the linked lives concept, 

one of the five key life course principles. Next, I introduce the new method for measuring and 

analyzing the degree of linked life courses, for members of different (or same) generations. The 

method allows us to capture the degree of linked lives between members of (parent-child or 

sibling-sibling) dyads and members of (parents-child or siblings) triads. It also allows us to 

define a measured termed “significantly linked lives” or observed dyadic/triadic sequences 

resemble one another more than randomly generated sequences at least 95% times. I then 

introduce a simulation study of the degree of linked lives measure, before presenting two 

empirical examples, one analyzing the Longitudinal Study of Generations (LSOG) Survey family 

dyadic data and the other, the US Panel Study of Income Dynamics (PSID) family triadic data. 

Finally, I draw offer some reflections on possible future directions related to the linked life 

courses measure proposed here. 

 

The Concept of Linked Lives 
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Among the five general life course principles of life-span development, agency, time and space, 

timing, and linked lives (Elder et al. 2003), the principle of linked lives is the only one that 

directly relates family members from different (or same) generations. As such, the concept of 

linked lives emphasizes the generational dimension of time in that one individual’s life can be 

and most often is embedded within the lives of their family members, including those from other 

generations (Elder 1995; Macmillan and Copher 2005). Because individuals’ lives are 

interdependent on others’ lives in a family, their life course trajectories may in a way reflect the 

effects other members’ life courses (Bengtson, Elder, and Putney, 2005). Thus, members’ lives 

from different generations are uniquely connected across their own generation’s life courses. 

As reviewed and discussed by Gilligan et al. (2018), such interdependent, linked lives can 

create serious consequences such as cumulative inequality over generations. Parental job losses, 

for example, can have immediate outcome on another family member such as child’s behavioral 

outcome. To study intergenerational dyads, the Family Transitions Project (formerly known as 

the Iowa Youth and Families Project) demonstrated how the Farm Crisis of the 1980s impacted 

parents’ stress levels as well as the quality of family relationships between parents and children 

(Conger and Elder 1994). For life course research, the issue of linked lives is really about how 

one’ life course is linked or associated with another’s. The measurement of the degree of linked 

lives as represented in life course sequences such as these across generations is our focal point 

and our topic in the later sections. 

 

Measuring Linked Life Courses 

The principle of Linked lives is one of the most important concepts in life course research. 

However, to this day, there has not been a formal way for assessing or measuring the concept at 
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the individual level (i.e., for every single dyad or triad). The proposed measure below is based on 

the principle of comparing observed and simulated dyadic and triadic life course sequences. 

Comparing observed and simulated data provides an effective statistical analysis for researchers 

in many disciplines (for application examples, see Amory et al. 2015; Furman et al. 2018). 

The only statistical attempt related to the concept of linked lives in my best knowledge is 

an R package by Nightingale (2016) that computes how clusters such as members of households 

resemble one another as compared against randomly generated data. There are two limitations of 

this approach for analyzing life course sequences: First, the program produces a single statistic 

for the sample while ideally, a measure recording how linked the members’ lives are in each 

cluster is desirable. Second and more important is the method for computing differences between 

observed and randomly generated data. It is based on differences only in the number of state 

changes whereas in sequence analysis a variety of dissimilarity or distance measures have been 

developed for analyzing life course sequences (Studner and Ritschard 2016). 

The Procedure 

The method described below overcomes both inadequacies. First, it evaluates the life 

course sequences in every linked dyad or triad against randomly generated dyad or triad based on 

a random generation assumption or mechanism (to be discussed later). Second, it computes 

distances using a particular distance measured sensitive to timing, duration, or order (Studer and 

Ritschard 2016). The method follows the principle of the permutation test or more broadly that 

of the randomization test as a nonparametric statistical method, as described in Liao (2002/2011). 

The method for analyzing both dyadic (e.g., parent and child or sibling-sibling) and triadic (e.g., 

two parents and a child or three siblings) sequence data follows the steps below: 
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1. a) Life course sequence data are collected into two (for dyadic data) or three (for triadic 

data) sets, each of which has N number of sequences, such as S1i, S2i or S1i, S2i, S3i, for i = 

1 to N; 

b) compute distances between the two or three sequences in observed sequences, using a 

user-defined dissimilarity measure, such as, for dyads: 

  Di = d(S1i, S2i)      (1) 

where d(·) is a user-chosen distance function. 

2. The generation of randomly chosen dyadic or triadic sequences:  

a) A randomly generated dyad or triad such as S1t, S2t or S1t, S2t, S3t, for the tth simulation 

with length s by assuming a particular random generation mechanism is produced; 

b) compute distances between the two or three sequences in the randomly generated 

sequences in the same dyad or triad, using a user-defined dissimilarity measure, such as, 

for dyads: 

  Dt = d(S1t, S2t)      (2) 

where d(·) is the user-chosen distance function as in (1); 

c) repeat a) and b) T number of times, with T being a number typically ≥ 100; 

3.  Compute the difference Fit between each observed Di and Dt, for t=1 to T, or 

  Fit = Di – Dt      (3) 

4. Record in a new vector Vi of length N the number of times out of T times that Di ≤ Dt, 

producing a value in [0, 1].  

5. Additionally, for each Vi in Step 4, if it is greater than 0.95, a value of 1 is recorded in a 

new vector of length N, otherwise, 0 is recorded. 
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The result from Step 4 can be bimodal, depending on the random generation assumption, and the 

construction of a dichotomous variable in Step 5 can thus be useful. Either variables from Step 4 

or 5 can be applied in further regression analysis. The variable from Step 5 can also be regarded 

as a test statistic because it is based on the 95% confidence that the observed distance for a given 

dyadic or triadic sequence set is no greater than randomly generated hypothetical distances. The 

computation of Steps 1 to 3 involves two loops, a loop of T times and a second loop of N times. 

An R package linkedSeqs, available upon request, is prepared for performing these 

computations. See Appendices A and B for the documentation for the two functions for 

computing degree of linked lives of dyadic and triadic sequence data.  

The R packages contains two functions, linked2seqs and linked3seqs, for 

computing the degree of linked life course sequences and a few other associated statistics. In 

addition to supplying dyadic or triadic sequence data defined by seqdef of TraMineR, the 

user can choose a distance measure and its associated parameters, a random generation 

mechanism (see below), a random seed number (for starting the simulated dyadic or triadic data 

generation), and the number of simulated dyadic or triadic sequences. For linked3seqs, the 

user can additionally choose a weight for assigning to the distance between member 1 and 2, 1 

and 3, and 2 and 3 of the triad, respectively. 

Random Sequence Generation Mechanisms 

I have included three random sequence generation mechanisms for performing Step 2.a as 

discussed below. 

1. Complete random generation: By making this assumption, sequences of length s is 

randomly drawn from the observed alphabet (i.e., qualitative states) with replacement, 
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with no regard to the observed proportion of each state or to the meaningful order of 

states. 

2. State-conditional random generation: By making this assumption, sequences of length s 

is randomly drawn from the observed alphabet (i.e., qualitative states) with replacement, 

with a probability proportional to the observed proportion of each state of the observed 

set of dyadic or triadic members (e.g., set of fathers’ states, set of mothers’ states, or set 

of children’s states) but with no regard to the meaningful order of states. 

3. Sequence-conditional random generation: By making this assumption, sequences of 

length s is randomly drawn from the observed set of dyadic or triadic members (e.g., set 

of fathers’ sequences, set of mothers’ sequences, or set of children’s sequences). Using 

this assumption preserves the meaningful order of states and is useful when certain states 

cannot precede certain other states, such as divorce cannot precedes first marriage. 

The choice of a random sequence generation mechanism depends on the nature of sequences and 

the substantive need of the research. 

 

A Simulation Study 

To assess the statistical properties of the proposed method introduced in the previous section, I 

conducted a simulation study of randomly generated sequences of 100 spells that belong to a 

dyadic data set of size N, containing Subset 1 and Subset 2 for the paired dyadic sequence data. 

The paired sequences are generated one pair at a time, and are entered into Subset 1 and Subset 2. 

Two sequences with no common state are maximally dissimilar (Dijkstra and Taris 1995; 

Elzinga 2003). For simulating the two subsets, I randomly generated, with replacement, a 

varying proportion of distinctive states. To test how the two members of a dyadic pair differ, I 
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randomly assigned 100% of the alphabet of A, B, and C into a sequence of Subset 1, and 

randomly allocated 10%, 20%, …, 90% of the alphabet of D, E, and F into the counterpart 

sequence in Subset 2. That is, this allocated percentage increased from 10% to 90% by 10% 

increment. Note that 0% and 100% are trivial cases that need no simulation. At one extreme 

(10%), the paired sequences resemble each other little; at the other extreme (90%), the paired 

sequences resemble each other extremely well in terms of the alphabet contained. I performed 

this operation with N=100, 200, 500, 1,000, and 2,000 for the nine shared percentages. The 

simulation, using the procedure described in the previous section with T=1,000 for simulating T 

number of simulated dyads, is to be repeated Z times. (Note that for this version of the paper, I 

could complete only 30 paths of the simulation, due to its computational intensity. Ideally, 

Z=1,000 is desired, and will be attempted at a later time. However, there is no difference in the 

patterns between the results from just 1 path and 30 paths of the simulation.) 

During each execution of the simulation situations (defined by sample size and percent 

shared states), the program linked2seqs (documented in Appendix A) is called. To focus on 

the difference of distinctive states (without the possible interference by differences in timing, 

duration, or order of states), I chose for running the program a particular distance measure, 

OMspell with an expansion cost of 0.5 and an indel cost of 2. This distance measure with the 

specified parameters is the most neutral in terms of sensitivity to timing, duration, and order 

(located nearest to the center of Figure 1 in Studer and Ritschard 2016). Using this distance 

measure in the simulation to minimize the influences of timing, duration, and order, the 

difference between two sets of sequences would be driven almost entirely by their distinctive 

states. Figure 1 presents the simulation results. The first random generation assumption is used 
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because the simulated sequence data contain simply differing proportions of qualitative states, 

with no particular logical order of the states imposed. 

---Figure 1: Boxplots Assessing Difference between “Observed” and 1,000 Simulated Dyadic 

Sequences— 

 The figure contains five panels of boxplots, each of which for a specific sample size, 

from 50 to 1,000 dyadic paired sequences. In each panel, nine sets of simulations are reported, 

from 10% to 90% shared states in the paired dyadic sequences. The plotted values are the output 

from the program linked2seqs, or the proportion of hypothetical or simulated dyadic 

sequences each of the current “observed” dyadic sequences outperforms, or having no greater 

distance than, the simulated dyadic sequences (the word “observed” is in quotes because in the 

simulation study, these “observed” dyadic sequences are also simulated). 

We can make several general observations about the simulation results in Figure 1. First, 

the performance of the proposed method is not linear. That is, the proportion of simulated 

sequences outperformed does not correspond exactly to the proportion of shared states in the 

paired dyadic sequences. I will hold off offering a definitive explanation until a much large 

number of paths of the simulation is conducted. Second, the method is more sensitive to the 

changes in the middle range of percent shared states, from 50% to 70%, as seen in the current 

simulation results. The 60% of shared states provides the widest spread in the comparison of the 

“observed” and simulated dyadic sequences. Third and finally, the method is robust with regard 

to sample size. As is obvious from the figure, the shape of the distribution of the boxplots is 

almost identical across all sample sizes, with the larger sample sizes having a noticeable wider 

spread for those of 50% to 70% percent shared states.  

 I also plan to do a simulation of triadic sequences at a later time. 
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Empirical Application 1 

In the first empirical application, I focus on the dyadic life course data from the U.S., using data 

from the Longitudinal Study of Generations (LSOG) as in Fasang and Raab’s (2014) study. The 

LSOG sequences record family trajectories of middle-class parents born around 1920 to 1930 

whose family formation took place roughly between 1935 and 1960 and their children whose 

family formation took place between 1955 and 1990. 

 The LSOG combines prospective and retrospective features, thus providing complete 

family formation sequences of parents and their children between ages 15 and 40. Fasang and 

Raab’s (2014) research represents a first attempt to fully exploit the unique intergenerational and 

longitudinal information on family formation in the LSOG. Like them, I here use data for two 

generations: (1) the parent generation, the so-called silent generation born in the 1920s and 

1930s, and (2) their children, the Baby Boom generation born in the late 1940s and 1950s. After 

data cleaning and preparation, they had 226 families with 342 parents and 305 children, resulting 

in 461 parent-child dyads in their study. Sixty-four families (or 98 parents) have more than one 

child. These parents appear 

in more than one parent-child dyad. On the other hand, there are 156 children forming both the 

mother-child dyad and the father-child dyad. Therefore, these children enter the analysis sample 

twice. The remaining children belong to the one parent-child dyad. The majority (66.4 %) of the 

single-parent dyads are mother-child dyads. For further details on the data, see Fasang and Raab 

(2014). 

The dyadic sequence data contain nine family formation states: single, no child; single, 

one or more children; married, no child; married, one child; married, two children; married, three  
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children; married, four or more children; divorced, no children; and divorced, one or more 

children. Note that there is a logical order to these nine family formations states. For example, 

the single state always happens first, and either of the two divorced states cannot precede any of 

the married states. Furthermore, the states with children are also ordered such that a state with a 

higher number of children always succeeds a state with a lower number of children or no child. 

Because of such logical orders of the sequence data, I chose random generation mechanism 3 for 

analyzing the data. 

Another feature of such typical family formation sequences is the three distinctive 

characteristics of timing, duration, and sequence (order). They represent the onset of a particular 

state, the time a person spends in that particular state, and the sequencing of this and another 

state or other states, respectively. Because of these characteristics, I employed four different 

distance measures, with three of them more sensitive to one of the characteristics and the last one, 

equally insensitive to all three. These are the Hamming distance (for timing), the SVRspell 

distance (for duration), the OMspell distance with an expansion cost of 0.4 and a substitution 

matrix of INDELS (for order), and the OMspell distance with an expansion cost of 0.5 and an 

indel cost of 2 as the choice relatively neutral to timing, duration, and order. I analyzed the 

LSOG data of 461 dyadic sequence pairs, and present in Figure 2 the density plots of the degree 

of linked life courses according to these four dissimilarity measures. 

---Figure 2: Density Plots of Degree of the LSOG Linked Life Courses, Using 1,000 Simulated 

Dyads by Random Generation Mechanism 3 (N=461)— 

The X-axis measures the degree of linked life courses, or how much paired dyadic sequences are 

associated compared against randomly chosen sequences from the same subsets of data (i.e., the 

parent sequence or the child sequence subset). It appears that these LSOG dyads resemble each 
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other more in terms of sequencing, followed by timing, then duration. The neutral distance 

measure (with a degree of linked life courses μ=0.547) appears to be a summary measure of the 

other three (timing focused, μ=0.569; duration focused, μ=0.515; and order focused, μ=0.591), 

locating itself among the other curves in a middle position. To visualize the actual sequence data, 

I present the LSOG sequence index plots in Figure 3, sorted by the neutral focused degree of 

linked life courses measure from above. 

---Figure 3: Sequence Index Plots of the LSOG Parent-Child Dyads, Sorted by Degree of the 

Neutral Focused Linked Life Courses (N=461)— 

The colored lines in the two plots at the same level are paired dyads. Therefore, it is obvious that 

those with a high degree of linked life courses gravitate toward the bottom of the plots, and those 

with a low degree, the top. Moving from the bottom to the top of the plots, we see that similarity 

between the dyadic members gradually decreases, until they are almost entirely dissimilar (other 

than the initial short duration of being single). 

 To apply the degree of linked life courses variable in a serious substantive study is 

beyond the scope of the current paper. However, to illustrate how this variable may be associated 

with some typical socioeconomic covariates, I stratify the analysis by children’s education and 

present below the same set of density and sequence index plots as those above. Figure 4 contains 

two panels of density plots, the top panel for those children with at least a college education and 

the bottom, those without such an education. 

---Figure 4: Density Plots of Degree of the LSOG Linked Life Courses by Children’s Education, 

Using 1,000 Simulated Dyads by Random Generation Mechanism 3 (N1=251; N2=210)— 

Two general comments are in order. First, those with higher education (N2=210) tend to have a 

higher degree of linked sequencing or order. Their more linked life courses overall between the 
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parent and the offspring generation is summarized by the purple curve representing the neutral 

focused approach (μ=0.598). On the other hand, the less educated (N1=251), in comparison, tend 

to have less linked life courses overall, especially in terms of duration (the green curve), and 

even their neutral focused measure produced a much lower degree of linked life courses 

(μ=0.504). To visualize their actual life course sequences, I present the corresponding sequence 

index plots in Figure 5. 

---Figure 5: Sequence Index Plots of the LSOG Parent-Child Dyads by Children’s Education, 

Sorted by Degree of Linked Life Courses of the Neutral Focus (N1=251; N2=210)— 

In addition to the greater degree of overall resemblance of the life course sequences among the 

dyads with highly educated children, another clear distinction is in the duration of certain states. 

For example, the dyads with less educated children in the bottom panels have much longer single 

duration among the children than their parents and much shorter married with children states. By 

contrast, the highly educated dyads have quite similar lengths in the single state between the two 

generations. These intergenerational educational effects are largely consistent with those 

reported in Fasang and Raab (2014) although their study also examined the question of 

educational mobility. 

 

Empirical Application 2 

To illustrate an analysis of the degree of linked life courses among triads, I use the data from the 

2001-2015 waves of the U.S. Panel Study of Income Dynamics (PSID) and its Transition into 

Adulthood Supplement (TAS). The PSID, a longitudinal panel study, began in 1968, though 

complete labor force calendar data only exists for 2000 and afterward. The PSID collects 

information on all individuals in the household, but the most detailed employment information is 
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only collected on the primary adult(s) in the household. This design might potentially omit 

detailed employment information for young adult household members who do not yet head their 

own households. To remedy this, the PSID also conducts the TAS, which collects more detailed 

information on topics including education and employment of respondents who were born 

between 1985 and 1997 and participated in the Child Development Supplement of the PSID. The 

TAS, first conducted in 2005 and designed as a supplement to the rich economic information 

collected on economically independent household heads, has been carried out biennially for 

those respondents who were aged over 18, were not attending high school at the time of the 

survey, had previously participated in a Child Development Supplement interview, and were part 

of a family that participated in the given year’s main PSID interview. It contains both young 

adults living as heads of households and those who still live with their parents or other PSID 

heads of households.  

The PSID contains information on a wide variety of topics, but its employment history 

data are analysed in this paper. The PSID also allows for linkage of monthly employment 

histories between children and their parents because of the household panel design. Furthermore, 

the PSID asks whether respondents were out of the labor force or unemployed for at least one 

week during each calendar month, but the exact start or end dates of employment spells are not 

given. Respondents who report being unemployed for at least a week during the month are 

considered unemployed for the entire unit. Likewise, respondents who reported being out of the 

labor force are similarly considered though priority is given to unemployment if respondents 

report both states in the same spell.  

The PSID sample analyzed covers a period from January 2000 to December 2014, 

corresponding to the first 30 months of the parents’ data when the children were early teenagers 
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and the last 30 months of the children’s data when they were eligible for labor force participation. 

I applied the proposed method to the PSID data for computing the degree of linked life courses 

among the triadic sequence data.  

Because there is no particular logical order to the sequencing of three “employment,” 

“unemployed,” and “out of labor force” states, I applied random generation mechanisms 1 and 2. 

The distance measure of choice is OMloc with an expansion cost of 0.4 (Figure 1, Studer and 

Ritschard 2016) as the main concern here is with the duration of states. In addition, weighting the 

resulting distances between sequences can be necessary because we now have triadic sequence 

data. Each triad in the PISD data contains two parents and a child. The distance between the 

parents, between father and child, and between mother and child can be weighted differentially 

in the calculation by using W1, W2, and W3. I first applied equal weights of W1=W2=W3 

before using a set of unequal weights of 2W1=W2=W3, where the weight of W1, the weight for 

the distance between the two parents, is half as important as W2 or W3, the weight for the 

distance between a parent and the child. Figure 6 reports the density plots of the degree of linked 

life courses in the PSID triads. 

---Figure 6: Density Plots of Degree of Linked Life Courses, PSID, Using 1,000 Simulated 

Triads by Random Generation Mechanisms 1 and 2 with Equal Weights and Unequal Weights 

(N=439)— 

 Random generation mechanism 1 of complete randomness tends to produce a lower 

degree of linked lives measure, equally weighted or unequally weighted. In contrast, the 

conditional random assumption of generation mechanism 2 tends to result in a higher degree of 

linked life courses, especially by assigning a weight to the parent-child distance twice of that 

between the two parents (the blue curve). Because the conditional random assumption as well as 
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the unequal weighting is more reasonable, I generated sequence index plots for the triadic 

sequence data (Figure 7). 

---Figure 7: Sequence Index Plots of Parent-Child Dyads, Sorted by Degree of Linked Life 

Courses of the Duration Focus (N=439)— 

 Once again, each thin line going through the three panels represents a particular triad. 

Toward the lower end of the plots we find those triads with all three members employed the 

entire 30 months, though in different years for the parents versus the children. Moving to the top, 

we find gradually more triads whose members’ life courses are not linked, showing different 

durations, different states, or both. Thus, parents’ and children’s employed, unemployed and out 

of labor force spells tend to be rather linked. It is obvious from the plots as well that overall 

parents and children’s lives are interdependent or linked to a good degree. The measure of linked 

life courses shown here in the figure has a mean of 0.750.  

 As in the first empirical application, I continue the analysis one step further by adding 

race as a covariate. This is a dichotomous variable containing the two categories of “whites” and 

“nonwhites.” Figure 8 presents density plots of the degree of linked life courses measure of the 

four scenarios by assuming random generation mechanisms 1 and 2 with both a set of equal as 

well as a set of unequal weights, as previously defined. 

---Figure 8: Density Plots of Degree of Linked Life Courses by Race, PSID, Using 1,000 

Simulated Triads by Random Generation Mechanisms 1 and 2 with Equal Weights and Unequal 

Weights  (N1=271; N2=168)— 

 As in Figure 6, the curves based on random generation mechanism 1 is flatter than those 

based on random generation mechanism 2. The two density curves based on random generation 

mechanism 2 (red and blue) indicate a much higher degree of linked life courses among whites 
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than among nonwhites. As before, I use the results based on random generation mechanism 2 

with unequal weights to produce further sequence index plots (Figure 9). 

--- Figure 9: Sequence Index Plots of Parent-Child Dyads by Race, PSID, Sorted by Degree of 

Linked Life Courses of the Duration Focus (N1=271; N2=168): Top Row: Whites; Bottom Row: 

Nonwhites— 

 Judged by the sequence index plots, we can conclude that the white triads have a much 

higher degree of linked lives than their nonwhite counterparts. This is indicated primarily by the 

much greater area of shared employed spells, and, to a smaller degree, by the relative 

correspondence among the members of the other two states as well, with an overall mean of the 

degree of linked lives measure of 0.796. In contrast, the association of the state spells is 

noticeably weaker for the nonwhite triads, with the mean of the degree of linked lives measure of 

0.675, an 18% difference from their white counterparts. 

  

Future Directions 

I do not plan to draw further general conclusions about the proposed method because its 

performance is as expected and because its interpretation is straightforward even though further 

simulation is yet to be conducted. Instead, I would like to offer some brief reflections on possible 

extensions to the current paper. 

 First, as mentioned in the introduction, the proposed method of linked life courses has the 

flexibility of extending to the analysis of tetrads, pentads, and hexads, or even of higher 

dimensional polyads. How can this goal be accomplished? The main procedure discussed in an 

earlier section should still apply. The only place that needs further adjustments is how distance 

weighting is handled. Just like with triads, unequal weighting can be appropriate, depending on 
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the actual substantive meaning of the relationships between members of the polyad. However, 

the number of weights increases with the number of members in a polyad in the series of 1, 3, 6, 

10, 15, 21, etc. Similarly, the difficulty with assigning meaningful unequal weights also increases. 

 Another extension of the proposed method is in its application. Obviously, the degree of 

linked life course measure can be used as an outcome variable or as an explanatory variable in 

substantive analyses. This would amount to extending the stratified analysis by education or by 

race to a full-blown analysis with a meaningful number of covariates. Another related possibility, 

as in the situations where random generation mechanism 1 or 2 is reasonable, is that we can 

further analyze the degree of linked lives as a dichotomous variable even without going through 

a cluster analysis, as suggested by Figures 6 and 8, as long as we make a decision about where 

the cut-off point is, a decision related to the next issue. 

 An interesting question to consider is to what degree a polyad’s life courses can be 

regarded as linked. This is really up to the researcher to decide. If one is rigorous about the 

selection criterion, one can use the 95% rule, that is, an observed polyad should not have 

distances greater than the distances for those for the 95% of the simulated polyadic counterparts. 

The current R package outputs this result as a byproduct. The question that I have not considered 

is to what degree a polyad’s life courses can be regarded as not linked at all. This, again, is an 

issue left for the data analyst. 
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Appendix A 

linked2seqs {linkedSeqs} R Documentation 

Degree of linked dyadic sequences 

Description 

The function computes the degree of linkedness of dyadic sequence data against random sequences, assuming one of 
the three random sequence generation mechanisms. It returns a list of five objects for user to perform further 
analysis of linked lives. 

Usage 
linked2seqs(p1.seq, p2.seq, a=1, m="HAM", sm=NULL, expcost=0.5, 
indel=1.0, tpow=1.0, s=36963, T=1000) 

Arguments 
p1.seq First State Sequence Object generated by the seqdef function of the TraMineR package.  
p2.seq Second State Sequence Object generated by the seqdef function of the TraMineR package.  
a Integer. Default 1. Random sequence generation mechanism.  

1: Random pairs of sequences generated using just the alphabet.  

2: Random pairs of sequences generated using the alphabet proportional to p1.seq and to p2.seq, 
respectively.  

3: Random pairs of sequences generated using the observed p1.seq and p2.seq sequence data.  
m String. Default "HAM". Method for computing sequence distances. See documentation for seqdist.  
sm Matrix, Array, or String. Default NULL. Substitution matrix. See documentation for seqdist.  
expcost Double. Default 0.5. The cost of spell length transformation. See documentation for seqdist.  
indel Double. Default 1.0. Insertion/deletion cost. See documentation for seqdist.  
tpow Double. Default 1.0. The exponential weight of spell length. See documentation for seqdist.  
s Integer. Default 36963. Seed for random sequence generation.  
T Integer. Default 1000. Number of random sequences to compute.  

Value 

The function outputs five objects, prop.LinkedSeqs, degree.linkedSeqs, sig.linked.Seqs, observed.dist, and 
random.dist.  

prop.LinkedSeqs This scalar in [0,1] gives the overall proportion of linkedness in the entire dataset, based 
on degree.linkedSeqs.  

degree.linkedSeqs This [0,1] variable defines for each pair of sequences the proportion of randomly 
generated sequences the observed pair outperforms, i.e., with a distance no greater than 
the randomly generated distances.  

sig.linked.Seqs This 0-1 variable recodes prop.LinkedSeqs by assigning a value of "1" if the observed 
distance outperforms 95 percent of the random distances for the dyad, "0" otherwise.  
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observed.dist It contains the observed distances between the paired data.  
random.dist It contains the random distances for all the random pairs.  

Examples 
dyads.results1 <- linked2seqs(ma.seq,child.seq,a=2,s=123,T=10000) 
dyads.results2 <- 
linked2seqs(sib1.seq,sib2.seq,a=3,m="OM",sm="CONSTANT",s=123,T=50000) 

 
[Package linkedSeqs version 1.0.0 Index] 

http://127.0.0.1:21666/library/linkedSeqs/html/00Index.html
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Appendix B 

linked3seqs {linkedSeqs} R Documentation 

Degree of linked sequences 

Description 

The function computes the degree of linkedness of triadic sequence data against random sequences, assuming one of 
the three random sequence generation mechanisms. It returns a list of five objects for user to perform further 
analysis of linked lives. 

Usage 
linked3seqs(p1.seq, p2.seq, p3.seq, a=1, m="HAM", sm=NULL, expcost=0.5, 
indel=1.0, tpow=1.0, w=c(1,1,1), s=36963, T=1000) 

Arguments 
p1.seq First State Sequence Object generated by the seqdef function of the TraMineR package.  
p2.seq Second State Sequence Object generated by the seqdef function of the TraMineR package.  
p3.seq Third State Sequence Object generated by the seqdef function of the TraMineR package.  
a Integer. Default 1. Random sequence generation mechanism.  

1: Random triads of sequences generated using just the alphabet.  

2: Random triads of sequences generated using the alphabet proportional to p1.seq and p2.seq together 
and to p3.seq, respectively.  

3: Random triads of sequences generated using the observed p1.seq, p2.seq, and p3.seq sequence data.  
m String. Default "HAM". Method for computing sequence distances. see documentation for seqdist.  
sm String. Default NULL. Substitution matrix. see documentation for seqdist.  
expcost Double. Default 0.5. The cost of spell length transformation. See documentation for seqdist.  
indel Double. Default 1.0. Insertion/deletion cost. See documentation for seqdist.  
tpow Double. Default 1.0. The exponential weight of spell length. See documentation for seqdist.  
w Vector. Default c(1,1,1). The weights applied to the distances between the first and the second, the first 

and the third, and the second and the third members of the triad.  
s Integer. Default 36963. Seed for random sequence generation.  
T Integer. Default 1000. Number of random sequences to compute.  

Value 

The function outputs five objects, prop.LinkedSeqs, degree.linkedSeqs, sig.linked.Seqs, observed.dist, and 
random.dist.  

prop.LinkedSeqs This scalar in [0,1] gives the overall proportion of linkedness in the entire dataset, based 
on degree.linkedSeqs.  

degree.linkedSeqs This [0,1] variable defines for each triad of sequences the proportion of randomly 
generated sequences the observed triad outperforms, i.e., with a distance no greater than 
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the randomly generated distances.  
sig.linked.Seqs This 0-1 variable recodes prop.LinkedSeqs by assigning a value of "1" if the observed 

distance outperforms 95 percent of the random distances for the triad, "0" otherwise.  
observed.dist It contains the average observed distances between the triadic sequences.  
random.dist It contains the average random distances for all the random triads.  

Examples 
triads.results1 <- linked3seqs(pa.seq,ma.seq,child.seq,a=2,s=123,T=10000) 
triads.results2 <- linked3seqs(sib1.seq,sib2.seq,sib3.seq,a=3,s=123,T=50000) 
triads.results3 <- 
linked3seqs(pa.seq,ma.seq,child.seq,a=3,m="OM",sm="CONSTANT",w=c(2,0.5,1),s=1
23,T=10000) 

 
[Package linkedSeqs version 1.0.0 Index] 

 

http://127.0.0.1:21666/library/linkedSeqs/html/00Index.html


 
 

Figure 1: Boxplots Assessing Difference between “Observed” and 1,000 Simulated Dyadic Sequences with Spell Length=100 and 
Sample Size=50, 100, 200, 500, and 1,000 for Percent Shared States=10% to 90%, 30 Paths of the Simulation 

 



 
 
 

Figure 2: Density Plots of Degree of the LSOG Linked Life Courses, Using 1,000 
simulated Dyads by Random Generation Mechanism 3 (N=461) 

 



 
 
 

 
Figure 3: Sequence Index Plots of the LSOG Parent-Child Dyads, Sorted by Degree of the 
Neutral Focused Linked Life Courses (N=461) 

 



 
 
 

 
Figure 4: Density Plots of Degree of the LSOG Linked Life Courses by Children 
Education, Using 1,000 Simulated Dyads by Random Generation Mechanism 3 (N1=251; 
N2=210) 

 



 
 
 

 
Figure 5: Sequence Index Plots of the LSOG Parent-Child Dyads by Children’s Education, 
Sorted by Degree of Linked Life Courses of the Neutral Focus (N1=251; N2=210): Top 
Row: Education ≥ College; Bottom Row: Education ≤ College 

 



 
 
 

 
Figure 6: Density Plots of Degree of Linked Life Courses, PSID, Using 1,000 Simulated 
Triads by Random Generation Mechanisms 1 and 2 with Equal Weights and Unequal 
Weights (N=439) 

 



 
 
 

 
Figure 7: Sequence Index Plots of Parent-Child Dyads, Sorted by Degree of Linked Life 
Courses of the Duration Focus (N=439) 

 



 
 
 

 
Figure 8: Density Plots of Degree of Linked Life Courses by Race, PSID, Using 1,000 
Simulated Triads by Random Generation Mechanisms 1 and 2 with Equal Weights and 
Unequal Weights  (N1=271; N2=168) 

 



 
 
 

 
Figure 9: Sequence Index Plots of Parent-Child Dyads by Race, PSID, Sorted by Degree 
of Linked Life Courses of the Duration Focus (N1=271; N2=168): Top Row: Whites; 
Bottom Row: Nonwhites 
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