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Summary 
Educational attainment is a key social determinant of maternal and child health and is a large 

component of human capital1–3. Understanding relevant inequalities in educational attainment by area 

and between sexes is required to effectively pursue Sustainable Development Goal (SDG) 4: to ensure 

inclusive and equitable education for all. In addition to well-studied links between maternal education 5 

and child mortality4–6, girls who achieve at least primary school have been shown to have higher 

earnings, increased agency and social capital, and increased health and well-being7, making education a 

relevant tool for cross-cutting progress. Building on previous mapping of child health8,9, and education10, 

here we present subnational variation in educational attainment by predicting mean years of education 

and percent achievement of key schooling thresholds at a 5x5 km resolution for males and females in 10 

121 low- and middle-income countries (LMICs) from 2000 to 2017. We show that while mean 

educational attainment has increased and disparities between sexes and geographies have improved 

over the duration, many women do not finish primary school, and a large proportion never start school. 

In many areas, this is despite men finishing school at a high rate. Pinpointing where this disadvantage is 

concentrated within countries serves as a tool for policy makers to understand where localized efforts to 15 

improve access to education should be implemented to change the landscape of opportunity, and its 

health implications, around the world. 

 

Educational attainment, particularly for women of reproductive age, is a critical component of human 

capital and an important social determinant of maternal and child health1,2. Education is closely linked to 20 

several of the Sustainable Development Goals (SDGs) established by the United Nations in 20152. 

Beyond SDG4, which explicitly focuses on education, a diverse body of research has documented the 

close association between increased schooling and improved gender equality (SDG5) and maternal and 

child health (SDG3)3–5. In a 2018 report focusing on the negative impacts of low educational attainment 

for girls, the World Bank stresses the multifaceted benefit of investment in education6. Drawing on data 25 

from a variety of low- and middle-income settings, numerous studies suggest that improving educational 

attainment boosts earnings and standards of living, reduces child marriage and early childbearing, and 

improves child health and well-being. 

 

In 2016, aid to education reached its highest level since 2002, increasing by 13% since 20157. Two-thirds 30 

of this increase was the result of a dramatic increase in aid to basic education. After years of de-

prioritization in the global aid portfolio, the relative share of total aid attributable to education 

increased for the first time since 2009. Despite huge gaps in basic education being identified across 

Africa, however, the share of aid specifically allocated to countries in Sub-Saharan Africa continues to 

trend downward. Overall, only 22% of aid to basic education went to low-income countries in 2016 35 

compared to 36% in 20028. These trends suggest a continued problem with the distribution of aid not 

aligning with the distribution of need, even at the national level. 

 

Policy and intervention research has called for an increased focus on mapping the relationships between 

the different SDGs, such as the effect of educational levels and equity on the goals related to child 40 

growth failure and mortality9,10. In determining risks to development during childhood, the educational 
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attainment of mothers has been repeatedly identified as a critical determinant of the quality of child 

care, survival, and healthy growth trajectories3–5,11–13. This effect operates both on the quality of care 

sought and attained during pregnancy and post-partum, but also on the quality of care for children 

through the duration of breastfeeding and healthcare-seeking when children are ill14,15. Beyond an 45 

individual’s education, a comprehensive multi-level study demonstrated that increases in the average 

educational attainment within communities can lead to improved nutrition and survival for all children 

in that community16. The relationship with health indicators is highly cyclical. Stunting, a common 

indicator of child growth failure, is linked to human capital formation through cognitive and learning 

outcomes, and new cohorts of children exposed to high rates of growth failure are less likely to attend 50 

and complete the level of schooling aspired to in SDG417. Gender inequality is also recognized for its 

impact on child undernutrition through women’s control of their time, household income, and mental 

health. UNESCO reports that around the world, girls are less likely than boys to attend and finish primary 

school18. Several studies from the World Bank also argue that gender inequality in education inhibits 

national economic growth19–21. This robust body of evidence, and a pattern of inequitable distribution of 55 

aid, suggests that precision estimates of educational attainment and inequality therein will provide a 

powerful tool for advocates and policymakers to achieve cross-cutting progress towards the SDGs. 

 

Precision mapping and equity in education 
The SDGs related to education, child mortality, and child nutrition are all framed around the importance 60 

of equity in progress towards targets across dimensions such as geography and gender2,22. Indicators 

such as under-5 mortality and stunting have seen dramatic improvement over the past few decades, but 

recent geospatial analyses find persistent disadvantage remains subnationally23,24. The global health 

agenda is increasingly focused on precision public health evidence illustrating the subnational 

distribution of disease and illness, but an agenda focused on equity for the future must integrate 65 

comparable evidence on the distribution of social determinants of health24–26. 

 

The present study seeks to expand on this body of precision evidence for benchmarking and targeting 

SDG programs by estimating the subnational distribution of educational attainment across all low- and 

middle-income countries (LMICs) from 2000-2017. Previous analyses have focused on geographic 70 

disparities in average attainment across Africa or for specific countries, but no analysis to our knowledge 

has examined the individual distribution of attainment across this panel at a high spatial resolution27–29. 

Synthesizing and geolocating subnational data sources on educational attainment, this analysis identifies 

precise inequalities across geography as well as within populations by estimating the proportion of men 

and women who have completed key levels of schooling. We further examine measures of gender parity 75 

to inform the SDG and UNESCO framework for gender equality in education. 

 

Inequalities in attainment across region and gender 
Figure 1 illustrates the mean years of attainment for men and women of reproductive age (15-49) in 

2000 and 2017, as well as the difference between estimates across sex. Average educational attainment 80 

remains low in this age group across much of the Sahel region of Sub-Saharan Africa as shown 
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previously29, while we observe marked improvement across wide areas of South America and Asia, 

including India. In 2017 there is a large disparity between sexes in many regions, however, with men 

attaining higher average education across Central and Western Sub-Saharan Africa and South Asia. 

There also remains significant variation in 2017 between the highest- and lowest-performing 85 

administrative units within countries for average education among women of reproductive age. In 

Uganda, average attainment ranged from 1.1 (95% Uncertainty Interval 0.5-1.6) in rural Kotido to 10.9 

(10.6-11.3) in Kampala, the capital city. A similar discrepancy is observed in Nigeria, where the average 

ranges from 1.9 (0.9-2.7) in Sokoto, a rural state in the northwest, to 10.7 (9.8-11.7) in Imo, an urban 

state in the southeast Niger Delta. By also examining the mean annualized rate of change in this 90 

indicator, we show that countries such as Ethiopia and Madagascar have experienced significant 

improvement in almost all subnational regions. However, the subnational discrepancies noted in 2017 

within countries like Nigeria and Kenya have been very slow to change. 

 

Figure 2 displays the proportion of men and women age 15-49 who have not completed primary school. 95 

By considering variation within population in different locations, these maps help to identify areas with 

large numbers of individuals in the vulnerable lower end of the attainment distribution. We observe 

large improvements in the proportion of men and women of reproductive age completing primary 

school in Mexico and China, but across much of the world women in this age group fail to complete 

primary school at a much higher rate than their male counterparts. There has been tremendous 100 

progress in subnational areas that had very high proportions failing to complete primary school in 2000. 

In the Xizang Zizhiqu province of China, part of the Tibetan Plateau, this proportion improved from 0.8 

(0.8-0.8) in 2000 to 0.1 (0.1-0.3) in 2017. The Awdal province, the most westerly province of Somalia 

bordering Djibouti and Ethiopia, improved from 0.8 (0.7 – 1.0) to 0.4 (0.2-0.6). In the annualized rate of 

change we see extremely fast improvements since 2000 in southern sub-Saharan Africa and Western 105 

China. Across much of the world, trends in the proportion of men and women completing primary 

school have improved largely in parallel, meaning that the gap between genders on this indicator in 

2000 is fairly similar to the gap observed in 2017. 

 

Figure 3 further examines the population distribution by illustrating parity between genders (the ratio of 110 

proportions between men and women). This figure also highlights two additional advantages of this 

analytic framework. First, here we examine a smaller age group of 20-24 years. Though educational 

indicators in this age group are less directly relevant for maternal and child health than women in the 

full reproductive age range, this group allows us to capture how the landscape of education is shifting 

over time in successive cohorts and is thus more likely to pick up improvements to access and retention 115 

in education made since 2000. Second, we illustrate the probability that this estimated ratio is credibly 

different from 1 (parity between genders) given the full uncertainty estimated in our data and model (a 

more detailed explanation is provided in the Supplementary Information). We observe large variation in 

this indicator, with men achieving at a higher rate than women across much of the world (i.e. the 

probability that the parity ratio is greater than 1 is over 95%). This is largely true for both primary 120 

completion and secondary completion, but especially so in countries such as Burundi, Angola, Uganda, 

and Afghanistan. 
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In Figure 4 we summarize the number of women age 20-24 who have never attended school by 

multiplying our proportion estimates with high-resolution population estimates.30 This provides a 125 

further perspective on the geographic distribution of this vulnerable population by focusing on the total 

individuals who have never attended school in an area rather than the rate. This map highlights the 

magnitude of women who aren’t receiving any schooling and focuses on a younger population so as to 

more quickly pick up changes in successive generations due to new initiatives and programs to improve 

access to schooling. We find that many large subnational regions still have many women ages 20-24 130 

receiving no education, especially in large population countries such as India, Ethiopia, and Nigeria. 

There is also significant concentration of this population geographically within these countries. In India, 

45% of women receiving no education in 2016 live in Bihar, Uttar Pradesh, and Rajasthan. In Ethiopia, 

61% of this population lives in Oromia or Amhara. While this total population is much smaller in other 

countries as a function of total population size, the geographic concentration can be extreme and is 135 

indicative of a specific type of marginalization. For example, in Cameroon 50% of young women in the 

country who are estimated to have completed no schooling in 2016 live in the Far North region. The 

same is true for the Southern region of Malawi (50%) and the Northern region of Ghana (40%). 

 

Discussion and limitations 140 

Here we present a comprehensive, comparable database of educational attainment estimates across all 

LMICs from 2000-2017. We have significantly built on previous modelling efforts that focused on the 

geographic distribution of education29 by extending our estimation to the population distribution, 

highlighting not only average educational attainment but also disparities across the proportions of men 

and women completing specific levels of schooling that are central to policy efforts. By focusing on 145 

parity between new groups of young men and women over this period, our estimates will allow policy-

makers and advocates to more closely track changes and whether improvements to education systems 

are being experienced equitably. As our estimates here demonstrate, throughout much of the world 

women still lag behind their male counterparts, and there is significant heterogeneity within subnational 

regions which may suggest unique social, economic, and cultural obstacles requiring further rigorous 150 

inquiry. 

 

As we demonstrate in Figure 4, many young women across the world still face obstacles to attaining a 

basic level of education. Especially as larger proportions finish secondary school, as in South Africa, Peru, 

and Colombia, it will be important to focus on learning outcomes and quality of education. Many 155 

women across the world lack even basic attainment. The represents a critical missed opportunity for the 

global health agenda to reap the benefits of a well-studied determinant of maternal and child health. 

Even if there are only marginal returns to health in the short-term, particularly in places with extremely 

porous healthcare systems, at the very least communities will see on average increased social mobility, 

higher earnings, and less engagement in child marriage or early childbearing. 160 

 

In terms of possible ways to intervene on these obstacles to basic attainment, a comprehensive 2018 

World Bank report summarizes the most common reasons young girls drop out of school. These include 

poor learning outcomes and costs, failure at examinations, lack of nearby secondary school for rural 
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communities, forced withdrawal from public school of married adolescents, never enrolling in school or 165 

enrolling late, and the influence of relatives concerning the demands on first daughters30,3. As stressed 

in the Commission on Social Determinants of Health, a critical step is acknowledging that 

commercialization in the area of education typically leads to higher inequity. Treating public education 

as a societal good by increasing access and removing fees, particularly in underserved rural 

communities, is a necessary step in the right direction, but generally there are no quick solutions. As the 170 

Commission states in their concluding report, that is the essence of investment in broader social 

determinants of health. Identifying areas that are stagnating or getting worse, particularly in the realm 

of basic education for young women across the world, is a first important step to targeted, long-term 

reform efforts that will ultimately have cross-cutting benefits within the SDG agenda for health and 

development. 175 

 

Our analysis is not without several important limitations. First, it is extremely difficult to quantify quality 

of education on this scale in a comparable way. Quality is ultimately a large part of the SDG agenda and 

of utmost importance to achieving equity in opportunity for social mobility. However, many studies 

across diverse low- and middle-income settings have linked attainment, even very low levels, to 180 

measurable improvement in maternal and child health. As our analysis highlights with the proportional 

indicators, there are still many subnational regions across the world where large proportions do not 

complete primary school. A second limitation is that we are unable to measure or account for migration. 

A concept note released from the forthcoming GEMS Report 2019 focuses on how migration and 

displacement impacts schooling33. It’s possible that geographic disparities reflect changes in population 185 

composition rather than changes in the underlying infrastructure or education system. Pathways for this 

change are complex and may be voluntary, such as those who do manage to receive an education in a 

low-attainment area having an increased ability to migrate and choosing to do so. They may also be 

involuntary, particularly in politically unstable areas where displacement may make geographic changes 

over time difficult to estimate. A shifting population composition is a general limitation of many 190 

longitudinal ecological analyses, but the spatially granular nature of the analyses employed here may be 

more sensitive to the effects of mobile populations. Lastly, our estimates cannot be seen as a 

replacement for proper surveillance systems, especially for tracking contemporaneous change. Our 

analysis of uncertainty at a high-resolution may be used to inform investment in more robust data 

systems and collection efforts, especially if the ultimate goal is to measure and track progress in the 195 

quality of schooling. 

 

In 2008, the WHO Commission on Social Determinants of Health released their final report on what can 

be done globally to promote health equity34. The Commission had a large focus on early childhood 

development and conditions, noting the importance of education particularly among women of 200 

reproductive age. They also state that measurement of inequity within countries is critical to 

understanding and tracking the problem, and that geography is an increasingly important dimension of 

equity. Where people are born and raised greatly determines their life chances, and continuing to 

consider development and human capital formation on a national level is insufficient34. 

 205 
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Looking forward to the next decade of the SDG agenda, it will be important to maintain the progress 

that has been made to reprioritize global investment in basic education systems. UNESCO notes that the 

recent increase in aid to education needs to be sustained for many years to make up for the stagnation 

since 2009. Despite recent progress, there also remains the problem of distributional accountability in 

aid, especially to basic education, where most funding is not going to the countries that need it most. 210 

Leaders in global health have noted the crucial need to invest in precise data systems and eliminate data 

gaps in order to continue effectively targeting resources, developing equitable policy, and tracking 

accountability.35 Our analysis strives to provide the most robust evidence base possible for such 

decision-making and advocacy, as even if a country seems on track nationally there may be local 

communities that have seen no improvement. Decades of research on the role of basic education on 215 

maternal and child health outcomes in a diverse pool of low- and middle-income settings places this 

issue squarely in the purview of the global health agenda. Moving forward, it will be critical within the 

global health community to invest in long-term, sustainable improvement in the underlying distribution 

of human capital, as this is the only way to truly impact health equity across generations. 

 220 
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Methods 
Overview 225 

Employing a Bayesian model-based geostatistical framework and synthesizing geolocated data from 503 

household and census datasets, this analysis provides 5x5 km estimates of mean years of education and 

proportion of the population attaining key levels of education for women of reproductive age (15-49), 

women age 20-24, and equivalent male age-bins between 2000-2016 in low- and middle-income 

countries. This includes 121 countries across all low- and middle-income countries. Countries were 230 

selected for inclusion in this analysis using the Socio-demographic Index (SDI) published in the GBD. The 

SDI is a measure of development that combines education, fertility, and poverty. All countries in the 

Middle, Lower-Middle, or Low SDI quintiles were included. Albania, Bosnia, and Moldova were excluded 

despite Middle SDI status due to geographic discontinuity with other included countries and lack of 

available survey data. Libya, Malaysia, Panama, and Turkmenistan were included despite Higher-Middle 235 

SDI status to create better geographic continuity. We do not estimate for American Samoa, Federated 

States of Micronesia, Fiji, Kiribati, Marshall Islands, Samoa, Solomon Islands, or Tonga, where no 

available survey data could be sourced. Analytical steps are described below and additional detail can be 

found in the Supplementary Information. 

 240 

Data 

We compiled a database of survey and census datasets in Africa that contained geocoding of 

subnational administrative boundaries or precise coordinates for sampled clusters. These included 

datasets from 503 sources (see Supplementary Table 2). We extracted demographic, education, and 

sample design variables. The coding of educational attainment varies across survey families. In many 245 

surveys, respondents can indicate their level of attainment on a continuous year scale. In others, 

respondents may only have several aggregate categories such as “Secondary completion”, “Primary 

completion”, or “less than primary”. When all that is known is that an individual completed a particular 

level of education, but it is not known if they continued onto the next level, a theoretical level of 

completion must be assigned to the individual in order to estimate summary statistics for the population 250 

such as mean years of educational attainment. For example, if the option “Primary completion” (6 years) 

is followed by “Secondary completion” (12 years), it can be assumed that an individual who selects the 

former has attained between 6 and 12 years of education. In previous literature examining trends in 

mean years of education, the assumption is made that all of these individuals have 6 years, or 

sometimes the midpoint of the feasible range (9)32,3. Trends in the single-year data demonstrate that 255 

this assumption introduces compositional bias in the estimation of attainment trends over time and 

space, as differences in true drop-out patterns or binning schema could lead to biased mean estimates. 

 

For this analysis, we employed a recently developed method that selects a training subset of similar 

surveys across time and space to estimate the true single-year distribution of binned datasets3. This 260 

algorithmic approach significantly reduces bias in summary statistics estimated from datasets with 

binned coding schemes. The years in all coding schemes were mapped to the country- and year-specific 

references in the UNESCO International Standard Classification of Education (ISCED) for comparability39. 

We used a top coding of 18 years on all data; this is a common threshold in many surveys that have a 
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cap and it is reasonable to assume that the importance of education for health outcomes (and other 265 

related SDGs) greatly diminishes after what is the equivalent of 2 to 3 years of graduate education in 

most systems. 

 

Data were aggregated to mean years of education attained and the proportions achieving key levels of 

education. The levels chosen were proportion with zero years, proportion with less than primary school 270 

(1-5 years), proportion with at least primary school (6 – 11 years), and proportion achieving secondary 

school or higher (12 or more years). A subset of the data for a smaller age-bin (20-24) were also 

examined to more closely track temporal shifts. Equivalent age-bins were aggregated for both women 

and men in order to examine disparities in mean years of attainment by sex. Where precise coordinates 

were available, data were aggregated to a specific latitude/longitude assuming a simple-random-275 

sample, as the cluster is the primary sampling unit for the stratified design survey families such as DHS 

and MICS. Where only geography information was available at the level of administrative units, data 

were aggregated according to their sample design. For aggregation to administrative units for which the 

survey was not sampled to be representative, design effects were re-estimated using a package for 

analyzing complex survey data in R3. 280 

 

Spatial covariates 

In order to leverage strength from locations with observations to the entire spatial-temporal domain, 

we compiled several 5x5 km raster layers of possible socioeconomic and environmental correlates of 

education in Africa (see Supplementary Table 3 and Figure 5). Acquisition of temporally dynamic 285 

datasets, where possible, was prioritized in order to best match our observations and thus predict the 

changing dynamics of educational attainment. Of the 9 covariates included, 6 were temporally dynamic. 

The remaining 3 covariate layers were temporally static and were applied uniformly across all modelling 

years. More information, including plots of all covariates, can be found in the Supplementary 

Information. 290 

 

Our primary goal is to provide educational attainment predictions across LMICs at a high (local) 

resolution and we have used methods to provide the best out-of-sample predictive performance at the 

sacrifice of inferential understanding. In order to select covariates and capture possible non-linear 

effects and complex interactions between them, an ensemble covariate modeling method was 295 

implemented3. For each region, three sub-models were fit to our dataset using all of our covariate data 

as explanatory predictors: generalized additive models, boosted regression trees, and lasso regression. 

Each sub-model was fit using five-fold cross validation to avoid overfitting and the out-of-sample 

predictions from across the five holdouts are compiled into a single comprehensive set of predictions 

from that model. Additionally, the same sub-models were also run using 100% of the data and a full set 300 

of in-sample predictions were created. The five sets of out-of-sample sub-model predictions were fed 

into the full geostatistical model as the explanatory covariates when performing the model fit. The in-

sample predictions from the sub-models were used as the covariates when generating predictions using 

the fitted full geostatistical model. This methodology maximizes out-of-sample predictive performance 

at the expense of no longer being able to provide statistical inference on the relationships between the 305 

predictors and the outcome. A recent study has shown that this ensemble approach can improve 
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predictive validity by up to 25% over an individual model41. More details on this approach can be found 

in the Supplementary Information. 

 

Analysis 310 

Geostatistical model 

Gaussian and binomial data are modeled within a Bayesian hierarchical modeling framework using a 

spatially and temporally explicit hierarchical generalized linear regression model to fit mean years of 

education attainment and proportion of population achieving key bins of school in 14 regions across all 

LMICs as defined in the GBD study (see Extended Data Figure 3)3. This means we fit 14 independent 315 

models for each indicator (i.e., the proportion of women with zero years of schooling). GBD study design 

sought to create regions on the basis of two primary criteria: epidemiological homogeneity and 

geographic contiguity42. For each indicator (mean attainment, 𝑒𝑑𝑢𝑖 as Gaussian or the number of 

individuals attaining a certain level, 𝐶𝑖, as binomial) and GBD region we approximated the posterior 

distribution of our Bayesian model: 320 

 

𝑒𝑑𝑢𝑖|𝜇𝑖 , 𝜏𝑖, 𝑠𝑖 ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑖 , 𝜏𝑖, 𝑠𝑖) 

𝑓𝑒𝑑𝑢𝑖|𝜇𝑖,𝜏𝑖,𝑠𝑖
(𝑒𝑑𝑢𝑖) =  

√𝜏 𝑠𝑖

√2𝜋
exp (−

1

2
𝜏 𝑠𝑖(𝑒𝑑𝑢𝑖 − 𝜇𝑖)2) 

𝜇𝑖 =  𝛽0 +  𝑿𝒊𝜷 + 𝜖𝐺𝑃𝒊
+ 𝜖𝑐𝑡𝑟𝑦𝑖

 𝜖𝑖  

𝐶𝑖|𝑝𝑖 ,  𝑁𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,  𝑁𝑖) 325 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛽0 + 𝜷𝑿𝒊 + 𝜖𝐺𝑃𝑖
+ 𝜖𝑐𝑡𝑟𝑦𝑖

+ 𝜖𝑖 

 
𝜖𝑖  ~ 𝑁(0, 𝜎𝑛𝑢𝑔

2 ) 

𝜖𝐺𝑃|Σ𝑠𝑝𝑎𝑐𝑒 , Σ𝑡𝑖𝑚𝑒  ~ 𝐺𝑃(0, Σ𝑠𝑝𝑎𝑐𝑒 ⊗ Σ𝑡𝑖𝑚𝑒) 

Σ𝑠𝑝𝑎𝑐𝑒 =  
21−𝑣

𝜏 × Γ(𝑣)
 × (𝜅𝑫)𝑣  ×  Κ𝑣(𝜅𝑫) 330 

Σ𝑡𝑖𝑚𝑒𝑗,𝑘
=  𝜌|𝑡𝑘−𝑡𝑗| 

 

We model the mean years of attainment at cluster 𝑖 as Gaussian data given precision 𝜏 and a fixed 

scaling parameter 𝑠𝑖. To account for the ordinal data structure of the binomial indicators and ensure all 

proportions sum to 1, we used a continuation-ratio modelling approach43. To do this, the proportion of 335 

population with zero years of education was modelled using a binomial model. The proportion with less 

than primary education was modelling as those with less than primary education of those that have 

more than zero years of education. The same method followed for the proportion of population 

completing primary education. The proportion achieving secondary school or higher was estimated as 

the complement of sum of the three binomial models. For each of three binomial indicators and for 14 340 

regions, we modelled the number of people at cluster i, among a sample size, Ni, who are subject to the 

indicator as binomial count data. We use the sample size in each cluster as our scaling parameter. We 

have suppressed the notation, but the means, 𝑒𝑑𝑢𝑖, scaling parameters, 𝑠𝑖, predictions from the three 

submodels 𝑿𝒊, and residual terms 𝜖∗ are all indexed at a space-time coordinate. The means, 𝑒𝑑𝑢𝑖 
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represent an individual’s expected educational attainment given that they live at that particular 345 

location. Mean attainment and logit proportional attainment were modeled as a linear combination of 

the three sub-models (GAM, BRT, and lasso), 𝑿𝒊, a correlated spatiotemporal error term, 𝜖𝐺𝑃𝑖, and an 

independent nugget effect, 𝜖𝑖. Coefficients, 𝜷, on the sub-models represent their respective predictive 

weighting in the mean, while the joint error term, 𝜖𝐺𝑃, accounts for residual spatiotemporal 

autocorrelation between individual data points that remains after accounting for the predictive effect of 350 

the sub-model covariates and the nugget, 𝜖𝑖, an independent error term. The residuals, 𝜖𝐺𝑃, are 

modeled as a three-dimensional Gaussian process in space-time centered at zero and with a covariance 

matrix constructed from a Kroenecker product of spatial and temporal covariance kernels. The spatial 

covariance, Σspace, is modeled using an isotropic and stationary Matérn function3, and temporal 

covariance, Σtime, as an annual autoregressive (AR1) function over the 16 years represented in the 355 

model. This approach leveraged the data’s residual correlation structure to more accurately predict 

prevalence estimates for locations with no data, while also propagating the dependence in the data 

through to uncertainty estimates45. The posterior distributions were fit using computationally efficient 

and accurate approximations in R-INLA (integrated nested Laplace approximation) with the stochastic 

partial differential equations (SPDE) approximation to the Gaussian process residuals46. Pixel-level 360 

uncertainty intervals (UIs) were generated from 1,000 draws (i.e., statistically plausible candidate 

maps)47 created from the posterior-estimated distributions of modelled parameters. 

 

To transform pixel level estimates into a range of information useful to a wide constituency of potential 

users, these estimates were aggregated from the 1,000 candidate maps up to district, provincial, and 365 

national levels using 5x5 km population data4. This aggregation also allowed for calibration of estimates 

to national GBD estimates for 2000-2016. This was achieved by calculating the ratio of the posterior 

mean national-level estimate from each candidate map draw in the analysis to the posterior mean 

national estimates from GBD, and then multiplying each cell in the posterior sample by this ratio. This 

method also enabled incorporating the calibration into the pixel level uncertainties and thus to the 370 

uncertainties at the different levels of aggregation. The median raking factors for mean attainment in 

women 15-49, men 15-49, women 20-24, and men 20-24 were 0.996 (interquartile range: 0.928-1.078), 

0.973 (IQR: 0.900-1.032), 1.024 (interquartile range: 0.969-1.113), 1.028 (IQR: 0.973-1.090) respectively, 

indicating close agreement with GBD estimates. Scatter plots comparing national level estimates from 

this analysis with GBD estimates can be found in Supplementary Figures 24-27. 375 

 

Although the model can predict at all locations covered by available raster covariates, all final model 

outputs for which land cover was classified as “barren or sparsely vegetated” were masked, on the basis 

of the most recently available MODIS satellite data (2013), as well as areas where the total population 

density was less than ten individuals per 1x1 km pixel in 2015. This step has led to improved 380 

understanding when communicating with data specialists and policy makers. 

 

Model validation 

Models were validated using spatially-stratified five-fold out-of-sample cross validation. In order to offer 

a more stringent analysis by respecting some of the spatial correlation in the data, holdout sets were 385 

created by combining sets of spatially contiguous data. Validation was performed by calculating bias 
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(mean error), total variance (root-mean-square error), and 95% data coverage within prediction 

intervals, and correlation between observed data and predictions. All validation metrics were calculated 

on the out-of-sample predictions from the five-fold cross-validation. Where possible, estimates from 

these models were compared against other existing estimates. Furthermore, measures of spatial and 390 

temporal autocorrelation pre- and post-modeling were examined to verify correct recognition, fitting, 

and accounting for the complex spatiotemporal correlation structure in the data. All validation 

procedures and corresponding results are provided in the Supplementary Information. 

 

Code Availability 395 

Our study follows the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). All 

code used for these analyses is available online at http://ghdx.healthdata.org/. 

 

Data Availability 

The findings of this study are supported by data available in public online repositories, data publicly 400 

available upon request of the data provider, and data not publicly available due to restrictions by the 

data provider, which were used under license for the current study, but may be available from the 

authors upon reasonable request and permission of the data provider. A detailed table of data sources 

and availability can be found in Supplementary Table 2. 

Administrative boundaries were retrieved from the Global Administrative Unit Layers (GAUL) 405 

dataset, implemented by FAO within the CountrySTAT and Agricultural Market Information System 

(AMIS) projects48. Land cover was retrieved from the online Data Pool, courtesy of the NASA EOSDIS 

Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and 

Science (EROS) Center, Sioux Falls, South Dakota49. Lakes were retrieved from the Global Lakes and 

Wetlands Database (GLWD), courtesy of the World Wildlife Fund and the Center for Environmental 410 

Systems Research, University of Kassel50,51. Populations were retrieved from WorldPop30,52. 

  

http://ghdx.healthdata.org/
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End Notes 
Supplementary Information is available in the online version of the paper. 525 
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Figures 

 
Figure 1. Average educational attainment for and absolute difference between women and men aged 540 

15-49 in 2000 and 2017. 

a-d, Average educational attainment for women (a, b) and men (c, d) aged 15–49 in 2000 (a, c) and 2017 

(b, d). e, f, The absolute difference in average educational attainment between men and women aged 

15-49 in 2000 (e) and 2017 (f). Maps reflect administrative boundaries, land cover, lakes and population; 

pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely vegetated” are 545 

colored in grey.  

 

Figure 2. Proportion with no primary school and difference in proportions between women and men 

aged 15-49 in 2000 and 2017. 550 

a–d, Proportion with no primary school for women (a, b) and men (c, d) aged 15–49 in 2000 (a, c) and 

2017 (b, d). e, f, The absolute difference in proportion with no primary school between men and women 

aged 15–49 in 2000 (e) and 2017 (f). Maps reflect administrative boundaries, land cover, lakes and 

population; pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely 

vegetated” are colored in grey. 555 
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Figure 3. Probability that ratio of men and women aged 20-24 attaining primary and secondary 

education is >1 in 2000 and 2017. 

a–d, Ratio of men to women aged 15-49 attaining primary education (a, b) and secondary education 560 

(c, d) in 2000 (a, c) and 2017 (b, d). Maps reflect administrative boundaries, land cover, lakes and 

population; pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely 

vegetated” are colored in grey. 

 

 565 
Figure 4: Number of individuals with no primary education by first administrative units for men and 

women aged 20-24 in 2000 and 2017, male/female, sex difference. 

a–d, Number of individuals aged 20-24 with no primary education among women (a, b) and men (c, d) in 

2000 (a, c) and 2017 (b, d). Maps reflect administrative boundaries, land cover, lakes and population; 

pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely vegetated” are 570 

colored in grey. 
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Extended Data 575 

 

Figure 1: Modelling regions based on geographical and Socio-Demographic Index (SDI) regions from 

the Global Burden of Disease.  

Minor changes were made to preserve geographic contiguity. 

 580 

 

 
Figure 2. Average educational attainment for and absolute difference between women and men aged 

20-24 in 2000 and 2017. 

a-d, Average educational attainment for women (a, b) and men (c, d) aged 20-24 in 2000 (a, c) and 2017 585 

(b, d). e, f, The absolute difference in average educational attainment between men and women aged 

15-49 in 2000 (e) and 2017 (f). Maps reflect administrative boundaries, land cover, lakes and population; 

pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely vegetated” are 

colored in grey. Interactive visualization tools containing all results are available at 

https://vizhub.healthdata.org/lbd/education. 590 

 

https://vizhub.healthdata.org/lbd/education
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Figure 3. Proportion with no primary school and difference in proportions between women and men 

aged 20-24 in 2000 and 2017. 

a–d, Proportion with no primary school for women (a, b) and men (c, d) aged 20–24 in 2000 (a, c) and 595 

2017 (b, d). e, f, The absolute difference in proportion with no primary school between men and women 

aged 15–49 in 2000 (e) and 2017 (f). Maps reflect administrative boundaries, land cover, lakes and 

population; pixels with fewer than ten people per 1 × 1 km and classified as “barren or sparsely 

vegetated” are colored in grey. 

 600 


