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Extended Abstract

Background

In 2015, an estimated 5.9 million children worldwide died before age 5 years.1 As the US govern-
ment and international community increase their investment in developing and implementing age-
targeted, disease-specific childhood interventions and policy,2–4 their effectiveness requires knowl-
edge of the patterns of child deaths across multiple age groups and causes over time. The majority
of these deaths, however, occur in low and middle-income countries (LMICs) without high quality
vital registration (VR),1 creating massive uncertainty about the cause-profiles of child deaths. De-
velopment of sample vital registration systems in LMICs is rapidly progressing, requiring statistical
modeling developments to utilize this data source.5

Limited work in this area (i) uses broad age groups which mask important heterogeneity,1

(ii) estimates all-cause and cause-specific mortality in two separate frameworks,1,6,7 (iii) produces
estimates separately and independently in each age group,1,8 and/or (iv) does not account for
empirically observed correlations between causes.1,6

Previous methods

The two main methods in the literature use a multinomial approach1 or a squeezing approach.7

The multinomial approach estimates cause-specific mortality fractions using multinomial regression.
Then, these cause-fractions are multiplied to previously estimated all-cause mortality rates from
a separate framework8 to produce cause-specific mortality rates. This is done using a bootstrap-
like approach in which all-cause mortality rates are sampled from the posterior distribution, the
cause fractions are simulated from the modeling step, and these are combined at the draw level.
The squeezing approach models all-cause mortality using a complex regression model and simulates
draws from the final stage in order to produce uncertainty. Separately, each cause-specific mortality
rate is estimated using an ensemble of regression models. Posterior samples are drawn, each draw
is paired with a draw from the previously estimated all-cause mortality rates, and the cause-specific
rates are proportionately “squeezed” to add up to the all-cause rate.

These methods have two main shortcomings. First, separate estimation of all-cause and cause-
specific mortality actually reuses data in both stages, though this is not explicit, which leads to
anti-conservative uncertainty estimation. Second, these models induce a negative correlation be-
tween cause-specific mortality due to the constraint that cause fractions must sum to 1. However,
cause-specific correlations exist beyond this implied negative correlation, e.g. causes that share an
environmental factor such as typhoid and diarrheal diseases which both relate to poor water sani-
tation. In sample registration data from Bangladesh in the years 2013, 2014, and 2016,9 empirical
covariances between cause-specific death counts range from -157 to 418, whereas a multinomial
distribution parametrically estimates covariances ranging between -161 and 0.

To illustrate the severity of this problem, we simulate data with correlated cause-specific mortal-
ity rates via a multivariate lognormal distribution, simulate death counts with Poisson distributions,
fit a multinomial model, and calculate the bias and uncertainty interval coverage. To set feasible
parameters, we calculate the marginal means, variances, and covariances from Bangladesh sample
registration data in years 2013, 2014, and 2016,9 then translate these to the parameters of the log-
normal distribution. We find that the estimates from the multinomial model are unbiased, however,
the coverage of 95% CIs calculated using the delta method are too narrow (Figure 1).
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Figure 1: Coverage of 95% CI in each simulation for 3 causes. Variances and covariances are set
according to values found empirically in Bangladesh sample registration data.

Theoretical justification for our model

We aim to model cause- and age-specific mortality rates over time. The natural foundation for this
work is individual-level failure time analysis with competing risks proposed in Prentice (1978).10

Suppose we have data yi = {yi1, . . . , yim}, where yij is the indicator that individual i ∈ {1, . . . , n}
dies of cause j ∈ {1, . . . ,m}, and ti the time of death/observation. Defining zi the vector of
individual-level covariates and defining cause-specific mortality rates λj(ti; zi) = lim∆ti→0 P

(
ti ≤

T < ti + ∆t, J = j|T ≥ ti; zi)
)
/∆t, the data likelihood is

L =
n∏

i=1

m∏
j=1

(
[λj(ti; zi)]

yij exp

[
−
∫ ti

0
λj(u; zi)du

])
.

Since data from sample registration systems is commonly only available in tabulated form, we
combine the above likelihood with the work of Holford (1980)11 and Laird and Olivier (1981)12 for
modeling tabulated single-cause survival data. Assume the time axis is partitioned into K time
periods and assume individuals fall into H strata with common covariate vectors zh within each
strata. Suppose we now have data yhkj , the number of individuals in strata h and time period k
who die from cause j. We assume a constant hazard given zh, λkj(zh), in each time period. Thus,
we can rewrite and summarize the likelihood, with Thk the total exposure time in strata h and time
period k, as

L∗ =

H∏
h=1

K∏
k=1

m∏
j=1

[(
λkj(zh)

)yhkj exp
(
− Thkλkj(zh)

)]
.

The likelihood factors into a component for each cause j, and the cause-specific likelihoods are
identical to the ones in a single-cause survival model. The kernel is identical to that which arises
if each yhkj ∼ Poisson

(
λkj(zh)Thk

)
, so we can perform likelihood-based inference using Poisson

distributions for each cause where we treat the number of deaths due to each cause as the outcome
and the exposure to all causes as the offset. We extend this to age-time-cause tabulations by
partitioning the age-time Lexis surface into K tabulation groups and assuming constant hazard in
these groups. The above likelihood holds with k now indexing age-time tabulations.
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Model description

We propose a novel Bayesian hierarchical model that (1) simultaneously and coherently estimates
all-cause and cause-specific under-five mortality rates across multiple age groups in one framework;
(2) propagates uncertainty considering correlations across causes; and (3) provides full transparency
and reproducibility.

Statistical modeling based on our theoretical justification provides the flexibility to choose a
model for the cause-specific mortality rates that is driven by specific data. As a working example,
we assume proportional constant cause-specific hazards, which is common in the literature,11,12 in
each age-time group such that

λkj(zh) = λ̄kj exp(Zhθ).

Zh is a model matrix for each subgroup and θ a vector of corresponding covariates. To account
for variation in age, time, and cause, we model the cause-specific hazards as

log(λ̄kj) = Xkγ + bjk, bk ∼ Normal(0,Σ).

Xk is a model matrix for each age-time group, γ is a vector of corresponding covariates, and
bjk is an intercept for each age-time-cause. To account for correlations between causes, we specify
a multivariate Normal distribution on the age-time-specific vector bk = {b1k, . . . , bmk}, similar to
that used in Chib and Winkelmann (2001).13 This formulation can be simplified by combining Xh

and Zk into one matrix and θ and γ into one vector of covariates, leading to

ykhj ∼ Poisson
(

exp(X̃hkβ + bjk)Tkh
)
.

This is one choice of mean model. The flexibility of our modeling framework allows for more
specialized models as data allow.

We fit this as a Bayesian hierarchical model, parameterizing Σ by its standard deviation and
correlation as σΩσ′ and placing an LKJ(1) prior14 on Ω, diffuse half-Cauchy(0, 5) priors on σ,
and diffuse Normal(0, 10) priors on β. We can choose informative priors depending on available
information. The model is fit using STAN15 interfaced with R version 3.5.0 using the rstan package
version 2.17.3 for fast, accurate Bayesian inference based on Hamiltonian Monte Carlo.16

Simulation study

As a simulation study to examine properties of the model, we fit it to 1000 data sets generated
from the above model and calculate bias and coverage of 95% credible intervals. We do this with a
simple example with m = 2 causes, K = 25 age-time groups, H = 200 strata, β = −1, σ = (1, 2),

and Ω =

[
1 0.2

0.2 1

]
. We then perform a complex simulation study with parameter dimensionality

equal to that found in sample registration data from China17 described below and parameter values
set to various scenarios in plausible ranges from the observed data.

In the simple simulation, we find that parameter estimates are unbiased with nominal coverage
of the 95% credible intervals for all parameters and also for the predicted age-time-cause-strata-
specific mortality rates. In the complex simulation study, we expect results to remain unbiased
with coverage of credible intervals less than 95% due to high dimensionality of age-time groups and
low number of strata.
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Figure 2: Predicted mortality rate with 95% credible interval over time for acute repiratory infec-
tions in rural middle region vs. observed mortality rates.

CASM-Child in China

We fit our model to tabulated death counts and exposure time from China’s sample registration
system for single years between 1996-2015, six age groups (0-6d, 7-27d, 1-5m, 6-11m, 12-23m, 24-
59m), eight mutually exclusive and collectively exhaustive causes of death, and six strata (three
regions split into urban/rural). This data is described in detail in He et. al. (2017).17

We fit the above model with the model matrix having a linear time trend, an indicator for each
age group, an indicator for urban/rural, and an indicator for region. This simple mean model is a
proof of concept that will be expanded upon in future work.

Figure 2 shows results for acute respiratory infections in China’s rural middle region. Standard
diagnostic plots (trace, R̂, effective sample size, and acceptance probabilities) showed no issues.
Predicted mortality rates exhibit both positive and negative bias in certain time periods for some
causes. More work on smoothing the mean model is necessary as year-to-year fluctuations can be
extreme, though estimates are generally plausible. These results are quite promising for a simple
mean model and covariates. Further work will develop a sophisticated mean model to estimate
age and time trends more accurately. Possible routes include splines6 or singular value decomposi-
tion.18 We will also explore copula modeling19 as a potential way to model cause-correlations more
efficiently and flexibly.
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