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Abstract: The American Community Survey (ACS) summary file data provide rolling 5-

year estimates of demographic and socioeconomic indicator data for small geographies 

throughout the United States. These estimates are commonly used as indicators for 

regression models to measure conditions in communities. The Margins of Error (MOE) in 

the ACS estimates for small geographic areas can often be very large, and without taking 

them into account, regression analyses using them can be mis-specified, leading to bias in 

regression coefficients and model standard errors. This paper directly compares 

measurement error model specifications to naive model specifications for a mortality 

outcome in Texas Census tracts using Bayesian model specializations. The results show 

that there is bias in the naive regression model results. We urge users of the ACS 

summary file data to be aware of such bias as it can potentially impact interpretation of 

model results and hypothesis tests.  

 

 

 

 

 



Introduction 

When the American Community Survey (ACS) first began in 2001, the program was 

greeted with a mixture of excitement and skepticism. Those who were excited thought of 

the value of (eventual) yearly or rolling averages of hundreds of different demographic, 

social and economic indicators the survey would provide in areas as small as block 

groups, without having to wait for the decennial census. The skeptics thought of the 

difficulties in coverage that test cases of the survey faced, and the validity of the 

estimates produced by the survey (Census Bureau 2012; Citro et al. 2007; Herman 2008; 

McLaughlin et al. 2000). Since the initial publication of the ACS 2009 5-year summary 

file, it has been used repeatedly in demographic research, both to portray population 

changes, geographic variation in socioeconomic conditions, and as predictors in various 

regression models of health and economic behavior both at the individual and aggregate 

levels of analysis. It is with the latter of these uses that this paper is concerned. The 

concern arises based not upon the ACS survey itself, nor necessarily with the published 

estimates, but in the margins of error reported alongside the published estimates. These 

margins of error contain valuable information as to the stability and information content 

of the published estimates, however these margins of error (MOEs) are rarely if ever 

formally incorporated into statistical analysis using the ACS. This is done, despite 

decades of work by statisticians on the use of measurement error model specifications 

that incorporate errors in measurement directly into the statistical models.  

 The purpose of this paper is to examine the effect of incorporating measurement 

errors from the ACS summary file directly in a statistical analysis, and compare the 



results to a naive analysis, which excludes the MOEs. To accomplish this, we use as an 

example recent small area estimates of mortality within the state of Texas and a variety of 

demographic and socioeconomic variables from the ACS summary file.  

 

Measurement error in the ACS 

Researchers often employ ACS estimates in models as counts with no accounting for 

measurement (sampling and non-response) error. When using geographic areas (such as 

census tracts) as the unit of analysis, the size of measurement error will vary, potentially 

quite dramatically, from one area to the next. Thus, two estimates may appear to be 

substantially different, yet statistically, when we consider measurement error, we may not 

be able to say they are different.  

 The Census bureau produces numerous guides to using ACS data. These guides 

typically focus on the construction of demographic or economic estimates from the data. 

They also specify how the Margins of Error (MOEs) should be used when describing the 

estimates. These MOEs are a measure of how imprecise a particular estimate is. As 

documented in other studies (Bazuin and Fraser 2013; Jurjevich et al. 2018; Spielman et 

al. 2014, 2015) the errors in estimates grow in relative magnitude as the size of the 

geographic area under estimation decreases (i.e. state level estimates are more stable than 

counties, and counties are more stable than census tracts, with census block group 

estimates being the least stable of all estimates). This is an effect of the ACS survey 

sample size used to estimate the quantity of interest in the area of interest. For example, 

estimating the minority population in a small rural county with a small minority 



population would produce a higher variance estimate, because the sample size used 

would be smaller than a larger population area. Additionally, in areas with harder to reach 

populations, the ACS errors can also increase because sample sizes suffer due to non-

response in the survey. With the smallest geographies present in the ACS summary file, 

block groups have the largest margins of error.  

 

Measurement error models in statistics 

 There is a well-documented literature on the effects of measurement error in 

predictors on inference in linear and generalized linear models. In short, measurement 

error in predictor variables lead to bias in parameter estimates and on estimated errors in 

these parameters (Buonaccorsi 2010). Typically, model intercepts are over-estimated, and 

the regression effects are under estimated in such situations. In addition, the variance 

covariance matrices of these models are also incorrect, which leads to incorrect standard 

errors for all model parameters, and ultimately to errors in the statistical tests which 

depend on these estimates.  

 One model for accounting for measurement error in covariates is the Berkson 

additive error model (Berkson 1950). This model states that if a predictor xobs is observed 

with error ex then a model can be specified so the random variable Xtrue can be modeled as: 

Xtrue = xobs + ex, with ex having mean 0 and variance σ2
u. Specifically, this model assumes 

that the true value of the variable and the error in the observed variable are independent 

of one another. This model is used when aggregate or group-level characteristics are 

assigned to individuals, in order to provide proxies for the individual-level variables that 



are unmeasured. For example, using the median household income in a Census tract to 

proxy the income of an individual residing within that tract.  

 The second common measurement error model is the classical measurement error 

model. This model, in contrast to the Berkson error model, includes error in the 

predictors themselves, versus the use of a group -level variable to proxy an individual-

level measurement. This model assumes that the error in the measurement and the true 

value are independent of one another, meaning that the measurements themselves have 

error. When using ACS data in an aggregate analysis, the classical error model seems 

most appropriate, because we are not assigning group-level characteristics to individuals, 

we are instead using the estimates and the MOEs measured for areas. Szpiro et al (2011) 

describe in a very effective fashion how errors in measurement affect the inference in a 

regression model. If we are using a simple linear regression model, the model is 

originally: 

𝑦 ൌ β଴ ൅ βଵ𝑥ଵ ൅ 𝑒 

But with measurement error in x, the model become: 

𝑦 ൌ β଴ ൅ βଵ𝑥௘௥௥ ൅ ሺ𝑒 ൅ 𝑢ሻ 

Which now has error from the original model, plus error from the covariate, u. By 

assuming the predictors in a model have no error, then the standard errors in a regression 

model are estimated as  

s.e.൫β෠൯ ൌ σଶ෢ሺ𝑋ᇱ𝑋ሻିଵ 

which only depends on the error in the outcome, σଶ෢, implied by the model. When 

measurement error in the X’s is introduced, this formula is then incorrect. The exact 



details of the addition of measurement error into the calculation of model standard errors 

can be found in texts on the subject (Buonaccorsi 2010), but can best be seen by the 

inclusion of the reliability ratio for the model parameter. The reliability ratio, λ, is the 

ratio of the variability in the true X’s, over the variance in their errors.  

λ ൌ
σ௫

σ௫ ൅ σ௨
 

In general, the bias in the regression coefficients themselves can be estimated as λ*β, the 

bias then attenuates the regression effects by the value λ. In terms of the errors in the 

model parameters, the standard errors should now be: 

s.e.൫β෠൯ ൌ ൫σ௘
ଶ෢ ൅ σ௨

ଶ෢൯ሺ𝑋ᇱ𝑋ሻିଵ 

if one X is measured with error, while if all X’s are measured with error, the equation 

become more complex, with the measurement errors being a variance covariance matrix 

instead of a scalar.  

 In general, the exclusion of measurement errors will bias the hypothesis tests 

based on the bias introduced in the regression effects themselves, as well as the bias in 

the uncorrected standard errors. This will lead to incorrect tests of model parameters and 

incorrect interpretation of the model itself. Methods for correcting measurement error 

have been described by other authors in the statistical and econometric literature (Arima 

et al. 2016; Buonaccorsi 2010; R. J. Carroll et al. 2011; R. Carroll et al. 2006; Fuller 

1987), and various methods of correction have been described including the SIMEX 

method (R. J. Carroll et al. 1996; Wang et al. 1998). 

 Despite the availability of various models for measurement error, little has been 

done on how the errors in ACS estimates influence findings in social science settings, a 



recent publication by Orndahl and Wheeler (2018) have noted how the errors influence 

the substantive interpretation of model results. In their article, Orndahl and Wheeler 

describe that by ignoring the errors in the ACS variables included at the county level, 

there were areas that appeared to cluster spatially in their analysis of suicide mortality. 

After taking account of the errors in measurement, several of these areas were no longer 

spatial clusters. While this finding is significant from an epidemiological standpoint, it 

does not address the larger concerns that using predictor variables with errors 

incorporates into any modeling strategy that uses the ACS. Another study by Napierala 

and Denton (2017) shows how the index of dissimilarity used in segregation studies can 

be sensitive to the errors in ACS estimates used to compute it. They describe that in areas 

with smaller populations, or in areas with smaller populations of minorities, the index of 

dissimilarity shows marked variation from its point estimate, and the confidence intervals 

for the index are very wide in such places.  

 

Purpose 

The purpose of this paper is to illustrate the effects of ignoring ACS measurement error 

on the interpretation of regression coefficients. This paper fills a gap in the literature, 

where no attention has been paid to the repercussions of using ACS estimates within 

models and ignoring the measurement error in the estimates. Based on research from the 

measurement error literature, we propose a relatively simple model that incorporates the 

errors in all ACS estimates included in a model and show how the results of the 

measurement error model compares to that of a naïve analysis, which ignores the errors 



in measurement. The strategy for this analysis uses Bayesian modeling specifications, 

which can accommodate measurement errors very directly (Orndahl and Wheeler 2018). 

We use a model that does not incorporate measurement error (naïve) and a second that 

incorporates measurement errors directly into the model. Through the Bayesian modeling 

strategy, we can compare model parameter point estimates, standard errors and coverage 

intervals for all parameters between the two approaches. This will allow us to measure 

the relative bias in the naïve model. To illustrate these ideas, data on age and sex specific 

mortality in Texas census tracts and counties are used, along with several ACS estimates 

as predictor variables in the analysis. Two different levels of geography are used in order 

to ascertain the relative bias in using small versus larger geographic areas, which have 

been described elsewhere (Spielman et al. 2014; Sun and Wong 2010) as being a natural 

source of larger errors in ACS estimates. 

Two different levels of analysis are used in order to determine how much bias is 

introduced by the errors in the ACS variables at small and larger geographic areas. 

Spielman et. al. (2014) describe how census tracts in the ACS have much smaller sample 

sizes on average than the 2000 Census summary file 3 samples, and this would also be 

true for counties, but since counties are larger areas, the sample sizes will be larger as a 

result. Thus, the errors in measurement at the tract level are expected to be greater in the 

analysis of tracts than in the analysis of counties, but since both levels of analysis are 

common in the health literature (Gant et al. 2014; Mode et al. 2016; Yang et al. 2015; 

Yang and Jensen 2015), the authors believe that it is worthwhile to describe the bias 

introduced at both levels of analysis.  



Data 

To illustrate the effects of measurement error on regression results, we use the 2015 5-

year ACS summary file measured at the census tract and county level for the state of 

Texas. Following protocols for small area mortality rate estimation, we limit the tracts in 

the analysis to those with at least 5,000 residents, and with non-zero populations at risk at 

each age group. The outcome considered in this analysis is age and sex specific all-cause 

mortality. Data on individual death certificates were obtained from the Texas Department 

of State Health Services (DSHS) from the years 2011 to 2015. These data are geocoded to 

2010 census tracts and aggregated over the 5-year period by 10-year age intervals and sex 

of the deceased. This generates a total of 20 rates for each tract and a total of 70,871 rates 

for the state for the tract-level analysis and 4568 rates for the 254 counties in the state. 

For each respective level of the analysis, the observation unit is either the tract-specific 

age and sex count of deaths, or for the county-level analysis, each observation is the 

county-specific age and sex count of deaths.  

This paper is not trying to test a theoretical perspective, per se, so predictor variables are 

chosen to be representative of other ecological analyses of mortality in the United States 

(Dwyer-Lindgren et al. 2016; Sparks et al. 2009; Sparks and Sparks 2010; Yang and 

Jensen 2015). We use data from the 2015 ACS summary file demographic profile tables, 

which overlaps the period when the mortality data are observed. The demographic profile 

tables combine information from multiple ACS detailed tables and provide pre-calculated 

percentages and rates with associated margins of error. For predictors in the regression 

models, we use the home vacancy rate, the proportion of the population over age 25 with 



a college degree, the proportion of the population that is non-Hispanic black, the 

proportion of households below the poverty line and the proportion of the population that 

is insured. All variables are expressed as proportions with the margins of error expressed 

as 90% margins of error for each proportion.  

 

  

Methods 

We estimate two types of regression models to document the effects of incorporating 

measurement error on the regression results. All models are specified as a Negative 

Binomial regression model for the age and sex specific mortality rates, with a population 

offset (n), as: 

𝑦௜௝ ∼ NBሺ𝜂ሻ 

𝑙𝑜𝑔ሺ𝜂ሻ ൌ 𝑙𝑜𝑔ሺ𝑛ሻ ൅ 𝛽଴ ൅ 𝜓 ∗ 𝑆𝑒𝑥௜ ൅ 𝛾 ∗ 𝐴𝑔𝑒௝ ൅ ෍ 𝛽௞

௞

𝑥௞௜ 

 We first consider a naïve regression model, where no measurement error is incorporated. 

This naïve approach represents the standard/traditional approach most researchers would 

apply when using the ACS - derived estimates as predictors in a regression model, where 

no uncertainty in the estimates is incorporated into the analysis. The second model is a 

Classical measurement error model implementation, with measurement errors in all the 

ACS - derived predictors are included directly in the model. This model uses a Bayesian 

measurement error specification of the additive Classical error model. This strategy 

assumes the true value of the ACS estimates can be modeled using a latent variable from 



a Normal distribution, with a mean equal to the observed point estimate and a standard 

deviation equal to the estimated standard error of the ACS point estimate (s.e.(ACS 

estimate) = MOE/1.645)). 

𝑦௜௝ ∼ NBሺ𝜂ሻ 

𝑙𝑜𝑔ሺ𝜂ሻ ൌ 𝑙𝑜𝑔ሺ𝑛ሻ ൅ 𝛽଴ ൅ 𝜓 ∗ 𝑆𝑒𝑥௜ ൅ 𝛾 ∗ 𝐴𝑔𝑒௝ ൅ ෍ 𝛽௞

௞

𝑥௞ ୲୰୳ୣ 

𝑥௞ ୲୰୳ୣ ∼ Normalሺ𝑥௢௕௦, 𝜎௢௕௦ሻ 

Models are estimated using Bayesian model specifications using the brms package 

(Bürkner 2017) and the Stan modeling language (Carpenter et al. 2017; Gelman et al. 

2015) for R 3.5.2 (R Core Team and R Development Core Team 2018).  

 Since a Bayesian modeling strategy is used, all model parameters are given prior 

distributions according to recommended best practices (Burkner, 2017; Gelman 2004; 

Gelman et al., 2015; Gelman et al., 2017). Flat priors are assigned to all the population 

level parameters (β, γ, 𝜓 ). Two independent Markov chains were used, and models were 

burned in for 3.000 iterations, followed by another 3,000 iterations for sampling of the 

parameters. Models showed signs of convergence with all model parameters having Rhat 

values of 1 (Gelman and Rubin, 1992). Models are summarized in terms of the posterior 

means of the parameters and 95% Bayesian credible intervals. 

Results 

Table 1 shows the descriptive statistics for the outcome variable, and the ACS predictors, 

and their associated standard errors for both the county and tract levels of analysis. As 

expected, the level of error in the county-level estimates is much lower than that of the 

tract-level analysis. The average number of deaths is much higher for counties than tracts, 



with only 2 deaths on average in each tract during the period. There are also noticeable 

differences in the means of several of the estimates between the two levels of analysis, 

with the % Non-Hispanic black, the % with a college education and the poverty rate all 

being lower in the county-level data, and the vacancy rate being higher on average in 

counties. 

Table 1. Descriptive statistics 

Descriptive Statistics for County-Level Analysis 
 

Statistic Mean St. Dev. Min Max 
 

Deaths 37.081 173.924 0 4,931 
Population Size 8,881.414 51,804.640 2 2,203,545 

Male (1) 0.500 0.500 0 1 
%NH Black 6.262 6.613 0.000 33.300 

%NH Black Error 0.863 1.942 0.100 26.900 
% Vacant housing units 21.364 10.244 4.600 56.400 

% Vacant housing units Error 3.041 1.777 0.200 11.800 
%Age 25+ w/College Edu 18.105 7.343 1.900 49.800 

%Age 25+ w/College Edu Error 2.526 1.610 0.200 8.700 
Poverty Rate 13.065 5.540 0.000 37.200 

Poverty Rate Error 3.570 4.492 0.200 75.100 
% Insured 79.594 4.857 62.400 94.500 

% Insured Error 3.084 2.146 0.200 15.900 
 

 

 

 

 



 

Table 1. Descriptive Statistics (Cont’d) 

Descriptive Statistics for Tract-Level Analysis 
 

Statistic Mean St. Dev. Min Max 
 

Deaths 2.043 3.105 0 58 
Population Size 506.251 738.567 11 27,366 
Male (1) 0.501 0.500 0 1 
%NH Black 11.214 14.757 0.000 92.100 
%NH Black Error 3.505 2.422 0.100 17.500 
% Vacant housing units 10.168 7.267 0.000 58.600 
% Vacant housing units Error 4.841 1.716 0.300 47.500 
%Age 25+ w/College Edu 26.419 18.969 0.300 93.500 
%Age 25+ w/College Edu Error 5.173 1.762 1 20 
Poverty Rate 14.522 11.668 0.000 73.500 
Poverty Rate Error 6.467 3.174 0.400 48.600 
% Insured 79.195 10.561 36 100 
% Insured Error 5.572 1.803 0 30 

 

Turning to the county-level regression analysis, Table 2 presents the results from the 

Bayesian analysis. Results are summarized in terms of their posterior means, posterior 

standard errors and 95% Bayesian credible intervals for all regression model parameter 

estimates. Also presented are the between group variances for the age groups and the 

Negative Binomial dispersion parameters.  

 

 

 



Table 2. Bayesian regression models for Naïve and Classical Measurement Error Models 

– County Level Analysis. 

 Naive Model ME Model 

 Estimate Est.Error l-95% CI u-95% CI Estimate Est.Error l-95% CI u-95% CI 

Intercept -7.29 0.04 -7.37 -7.2 -7.2989 0.0445 -7.38621 -7.21115 

Sex – Male (Ref= Female) -0.0094 0.0217 -0.0525 0.0339 -0.00861 0.02169 -0.05124 0.0339 

Age_grp10_19 -0.6113 0.0675 -0.7447 -0.4774 -0.6104 0.06738 -0.74185 -0.47992 

Age_grp20_29 0.1992 0.0577 0.0906 0.3164 0.19922 0.05799 0.08735 0.31193 

Age_grp30_39 0.6618 0.0558 0.5535 0.7692 0.66206 0.05583 0.55472 0.77108 

Age_grp40_49 1.3558 0.0532 1.2521 1.4638 1.35676 0.05313 1.25181 1.46178 

Age_grp50_59 2.4129 0.0498 2.3184 2.513 2.41365 0.04996 2.31613 2.51107 

Age_grp60_69 2.8563 0.0489 2.7609 2.9532 2.85549 0.04921 2.75903 2.95094 

Age_grp70_79 3.8383 0.0484 3.744 3.9336 3.83796 0.04876 3.74215 3.9322 

Age_grp80plus 2.7838 0.0491 2.6886 2.8815 2.7788 0.04869 2.68269 2.87479 

%NH Black 0.0054 0.0016 0.0024 0.0085 0.00553 0.00171 0.00223 0.00886 

% Vacant housing units -0.005 0.0013 -0.0075 -0.0025 -0.00623 0.00154 -0.00922 -0.00326 

%Age 25+ w/College Edu -0.0133 0.0016 -0.0165 -0.0101 -0.01462 0.0019 -0.01836 -0.01093 

Poverty Rate 0.003 0.0027 -0.0022 0.0084 0.00711 0.00869 -0.00987 0.02406 

% Insured 0.0134 0.0033 0.007 0.0198 0.01906 0.01014 -0.00087 0.03876 

 

The results of the analysis are summarized again in Figure 1, which presents the posterior 

marginal distributions for each of the regression parameters in the analysis. The visual 

interpretation of the model results is perhaps easier to discuss. The effects of the various 

regressors are presented for both the naïve and the measurement error models. The red, 

solid lines represent the marginal for the measurement error model parameters, and the 



solid, green lines represent the marginal for the naïve model. In most case, the marginals 

are similar, but some parameters indicate some degree of bias in the naïve models. Bias is 

typically thought to decrease the effect size for a predictor, but bias can also inflate the 

effect sizes (Loken and Gelman 2017).  



 
Figure 1. Posterior marginal distributions of the Naïve and Measurement Error model 
parameter estimates from the county-level analysis.  
 



The credible intervals for each parameter, from Table 1 and the marginals from Figure 1, 

combine to show the differences between the two models. The %Non-Hispanic black 

parameter is significant in both models, and the marginals are nearly identical. In the 

measurement error model the point estimate for the parameter is larger 2.35% larger and 

the standard error of the estimate is 6.435 larger. The effect of the vacancy rate is 19% 

larger in the ME model than in the naïve model and the error is nearly 16% larger, while 

both suggest the effect is negative and significant. The education variable shows strong 

similarity between both models, with the ME model having a point estimate that is 9% 

larger and a standard error that is 15.8% larger than the naïve model. The effect of the 

poverty rate in the both models model suggests there is no significant relationships 

between poverty and mortality, while the ME model’s point estimate is 58% larger than 

the naïve model, and the standard error is 68.9% larger. The effect of the rate of insurance 

coverage is positive and significant in the naïve model, while the ME model is not 

significant at the 95% level, also the parameter estimate is 29% larger in the ME model 

than the naïve model and the standard error is 67% larger in the ME model. Finally, the 

“fixed” effect of the difference between males and females is not significant in either 

model, and the ME model has a 9% lower estimate than the naïve model, with very little 

difference in the standard errors. While not plotted, the marginals for the age pattern of 

mortality are very consistent across the two models, in both the point estimates and the 

errors in the parameter estimates. Overall, the results from the models including 

measurement error show higher variation in the parameter estimates, larger effect sizes 



and a tendency towards bias in the naïve model estimates, which agrees with the 

measurement error model literature. 

<Tract level analysis still in progress> 

Discussion 

Results from the analysis presented here show two main effects. First, when using ACS 

data as point estimates only, the naïve model underestimates the standard errors of the 

regression parameters, leading to significant effects for some predictors considered in 

these models. This confirms what is suggested in the measurement error model literature, 

where the standard errors and ultimately point-estimate based hypothesis tests for the 

regression effects are biased in such models. This presents a dangerous situation, as 

inference from these models would be incorrect. The third result indicates that the model 

including measurement error properly produces consistent effects for the covariates in the 

model, while directly incorporating measurement error as recommended by the statistical 

literature on the subject. In this analysis, the results from the naïve model, in terms of the 

significance of the model effects is preserved in the measurement error model for all but 

one parameter (% insured), even though the measurement error model produced larger 

standard errors for all parameters.  

In conclusion, based on this analysis, we would recommend that those using the 

ACS point estimates in a regression model setting seriously consider incorporating 

measurement error into their analysis, because the estimates of the parameters tend to be 

downwardly biased and the standard errors of the estimates too small, which could 

conflate point-estimate based hypothesis tests.  
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