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Abstract 

Sequence analysis is an established method to study the complexity of family life courses. While 

both individual and societal characteristics have been linked with the complexity of family 

trajectories, sociologists have neglected the potential role of genetic factors for family transitions 

and events across the life course. We apply retrospective life history and molecular genetic data 

from the US Health and Retirement Study (HRS) to genome-wide complex trait analysis (GCTA). 

Specifically, we estimate the genetic contribution to sequence complexity and a wide range of 

family demographic behaviors using genomic-relatedness-based restricted maximum-likelihood 

(GREML) models. This innovative methodological approach allows us to estimate the heritability 

of a composite life course outcome – sequence complexity – for the first time. Not only do we 

demonstrate that a number of family demographic indicators, such as the age at first birth and first 

marriage as well as the number of children, marriages and divorces, are heritable, but also provide 

evidence that composite life course metrics can also be influenced by genetic factors. For example, 

our results show that 12 percent of the total variation in the complexity of differentiated family 

sequences is attributable to genetic influences. Interestingly, we find little evidence that the 

heritability of family life course complexity or any other family demographic outcomes has 

increased across US birth cohorts. Therefore, our results do not substantiate claims that lower 

normative constraints on family demographic behavior increases the role of genetic 

predispositions. 
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Introduction 

Scholars and the general public alike perceive modern life courses to be more complex, unstable, 

and unpredictable than in the early and mid-20th century (Walsh 2012; Beck 1994, 2009; Sennet 

2006). Common narratives in family sociology and demography surrounding more complex family 

trajectories revolve around the decline of the modern nuclear family and pluralization of family 

forms (Bengtson 2001). Indeed, the United States experienced a decrease and postponement in 

marriage and marital fertility that coincided with an increase in nonmarital cohabitation and fertility 

as well as divorce and remarriage (Cherlin 2010). This increase in the number of family events and 

states that individuals experience over the course of their lives result in more complex family 

trajectories (Brückner and Mayer 2005). Increasing family life course complexity may have serious 

consequences for individuals and societies. For example, complexity generated by early nonmarital 

parenthood, serial cohabitation, and divorce is likely tightly intertwined with the production of 

social inequalities and their reproduction across generations (e.g., McLanahan and Percheski 

2008).  

Three meta-theoretical narratives have been applied when studying the complexity of family events 

and transitions within individual life courses (see Van Winkle 2018). First, the Second 

Demographic Transition (SDT) thesis is an ideational account, which associates more complex 

family life courses with a shift from materialist to post-materialist values (Van de Kaa 1987, 2001, 

Lesthaeghe 1995, 2010, 2014). Second, an increase in family life course complexity has been 

connected with increasing economic uncertainty following globalization and deindustrialization 

(Mills and Blossfeld 2005, 2003, 2013). Third, life course sociologists and welfare state scholars 

argue that labor market and family policies are related to the complexity of family lives (Esping-

Andersen 1990, 1999, Mayer 1997, 2004, 2009). The first two theoretical perspectives are 

generally invoked to account for change over time, while the latter is more commonly used to 

account for cross-national differences.  

However a fourth theoretical perspective on family demographic behavior is currently emerging: 

biodemography or genodemography (H. P. Kohler et al. 2006; Mills and Tropf 2015; Conley 2016). 

This approach concentrates on genetic factors that influence the components of family life course 

complexity. While the meta-theoretical perspectives discussed above are the most prominent in 

family demography and sociology, biodemographic research has gained importance in the last 

decades (see D’Onofrio and Lahey 2010 for a review; see Conley and Fletcher 2017 for an 
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introduction to socio-genomic research). Biodemography is the study of family demographic 

behavior that incorporates both economic and sociological theories with approaches from biology, 

especially behavioral and molecular genetics (H. P. Kohler et al. 2006). The first step in 

biodemographic research is the estimation of heritability, i.e. the proportion of variance that is 

attributed to genetic factors as opposed to environmental factors. 

In this study, we address two research questions: First, to what extent is the complexity of family 

life course complexity heritable? The strength of heritability gives researchers insight on the 

potential importance of sociobiological explanations and the consequence of ignoring them. 

Discounting biological and genetic accounts may lead to grossly biased results, especially if genetic 

factors are confounded with associations between social factors and life course complexity 

(D’Onofrio and Lahey 2010). Second, has the heritability of family life course complexity changed 

across US birth cohorts? It has been argued in family demography that genetic influences on family 

demographic behavior will increase in societies with low levels of social constraints (Udry 1996; 

H. P. Kohler et al. 2006) because genetic predispositions can express themselves to a greater extent 

in contexts where variation in individual behavior is high and is less restricted by formal and 

informal social norms. 

We apply retrospective life history and molecular genetic data from the US Health and Retirement 

Study (HRS) to a genome-wide complex trait analysis (GCTA). Specifically, we first reconstruct 

the family life courses of HRS respondents as sequences. A nuanced metric developed in sequences 

analysis, the sequence complexity index, is calculated for each individual trajectory (Gabadinho et 

al. 2010). The sequence complexity index does not just incorporate the number of life course 

transitions into account, but also the unpredictability across individual trajectories. Second, we 

estimate the heritability of sequence complexity using genomic-relatedness-based restricted 

maximum-likelihood (GREML) models. Most heritability estimates for family demographic 

behavior have used ACE decomposition models that compare monozygotic and dizygotic twins 

(see Boomsma, Busjahn, and Peltonen 2002 for heritability estimation with ACE models). 

However more precise heritability estimates can be determined using GCTA-GREML, which use 

genetic similarity to decompose trait variance into additive genetic and environmental components 

(Domingue, Wedow, et al. 2016; Yang et al. 2011, 2010).  
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Theoretical Background 

Family Demographic Trends in 20th Century United States 

In the following discussion, we briefly sketch trends in the occurrence of life course states and 

transitions that comprise family life course complexity: leaving the parental home, forming and 

dissolving unions, and entering parenthood. The transition to adulthood and family formation often 

begins with leaving the parental home. The age at which individuals transition out of the parental 

household declined in the early and mid-20th century, but has recently began to increase in the 

United States (Goldscheider 1997; White 1994). For example, the percentage of US women age 

18-24 living in the parental home increased from 34.9 % in 1960 to 49.2 % by 2010.1 A similar 

trend can be observed for men, although men tend to live in the parental home longer than women. 

It has become more common to return to the parental home after initially leaving, especially when 

experiencing economic hardship (Mitchell 2006; Stone, Berrington, and Falkingham 2014). In the 

United States, 36 % of young adults born 1980-1984 returned to the parental home at least once by 

age 27 (Sandberg-Thoma, Snyder, and Jang 2015). For more recent birth cohorts, individuals often 

form independent households or live in cohabiting unions after leaving the parental home rather 

than marrying (Evans 2013; Zorlu and Mulder 2011). 

Destinations after leaving the parental home have become more diverse. For the first half of the 

20th century, leaving the parental home and entering marriage were tightly coupled life course 

transitions (Buchmann and Kriesi 2011). In fact, only 5 % of unmarried US men and women lived 

outside the parental home in the early 20th century (Rosenfeld 2007). Although the median age of 

first marriage has increased in the United States, the median age of first union has remained 

constant (Manning, Brown, and Payne 2014). The stability in the age at first union is largely 

attributable to higher rates of cohabitation offsetting lower rates of marriage (Perelli-Harris and 

Lyons-Amos 2015; Kiernan 2001; Smock 2000; Goldstein and Kenney 2001). The percent of the 

US population living in non-marital cohabitation increased from 0.6 % in 1960 to 6 % in 2010, 

while the percentage living in a marital union decreased from 69 % to 54 % for men and 65 % to 

                                                           
1 U.S. Census Bureau, Current Population Survey, March and Annual Social and Economic Supplements. U. S. Bureau 
of the Census, 1980 Census of Population, PC80-2-4B, "Persons by Family Characteristics," table 4.  1970 Census of 
Population, PC(2)-4B, table 2.  1960 Census of Population, PC(2)-4B, table 2. 
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52 % for women.2 The median age of first marriage in 1960 was 22 for men and 20 for women, 

which increased to age 28 for men and 26 for women by 2010.2  

One reason for the decrease in the crude marriage rate can be found in the increase in divorce. 

Between 1960 and 1980 , the crude divorce rate in the United States more than doubled from 2.2 

to 5.2 (Amato 2010). It has since decreased to 3.6 divorces per 1,000 marriages by 2006. The US 

doesn’t just exhibit high rates of marital dissolution, but cohabiting unions in the US are often short 

and likely to end in separation (Smock 2000). However, cohabitation is not just a life course state 

for young adults. Higher rates of marital separation have not only increased remarriage rates, but 

also rates of cohabitation later in adulthood, often as an alternative to remarriage (Coleman, 

Ganong, and Fine 2000; Xu, Bartkowski, and Dalton 2011). 

The decline of fertility in the United States to near-replacement rates has concerned both scholars 

and policymakers (Balbo, Billari, and Mills 2013). Lower total fertility rates may result from 

delayed entry into parenthood, the tempo effect, as well as smaller family sizes and higher rates of 

childlessness, the quantum effect (Morgan and Taylor 2006; Zeman et al. 2018). Women’s median 

age at first birth rose from age 23 to 25 between the 1940s and 1980s birth cohorts (Finer and 

Philbin 2014). Completed fertility is comparatively high in the United States: between 2.0 to 2.2 

for women born in the 1960s (Zeman et al. 2018). After remaining low for mid-20th century birth 

cohorts, childlessness among 1970s female birth cohorts reached levels previously held by cohorts 

born during the 1920s: approximately 15 % (Sobotka 2017; Frejka 2017). Men and women 

transitioned into parenthood following their transition into marriage for most of the 20th century in 

the United States (Kiernan 2001). However, the percentage of nonmarital births among women 

under age 44 increased from 21 % in the early 1980s to 28 % in the early 1990s, only 29 % and 39 

% of which occurred to cohabiting couples (Bumpass and Lu 2000).  

The decoupling of parental home leaving and marriage as well as marriage and parenthood has 

made research on the sequencing of events during the transition to adulthood more important. 

While some scholars use multistate event history or life table modeling to study variation in life 

course origins and destinations (e.g., Schoen, Landale, and Daniels 2007; Zeng et al. 2012; Billari 

2001), sequence analysis has emerged as a popular method to describe and visualize holistic life 

course trajectories (Abbott and Tsay 2000; MacIndoe and Abbott 2004; Aisenbrey and Fasang 

                                                           
2 U.S. Census Bureau, Current Population Survey, March and Annual Social and Economic Supplements 
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2010). There are commonly three steps in sequence analysis: First, each individual trajectory is 

operationalized as a sequence by aligning the individual’s life course states in chronological order 

with their respective durations. Second, the dissimilarity of each sequence pair is estimated using 

distance measures that indicate the degree of difference between any two sequences. Finally, a 

clustering algorithm is applied to group sequences into distinct units that are maximally 

homogenous.  

Sequence analysis, combined with cluster analysis, reduces complexity in two ways. First, 

sequence analysis identifies common life course pathways within multitudes of trajectories that 

may warrant further study. Second, rather than analyzing numerous “point in time outcomes”, such 

as the age of first birth, sequence analysis enables researchers to analyze life courses that amount 

from those outcomes, a “process outcome” (Abbott 2005). A number studies have used sequence 

analysis to identify life course patterns and how they vary across countries and birth cohorts 

(Baizan, Michielin, and Billari 2002; Bras, Liefbroer, and Elzinga 2010; Hofäcker and 

Chaloupková 2014; Robette 2010; Raab et al. 2014; Aisenbrey and Fasang 2017; Van Winkle 

2018). Billari and Liefbroer (2010) concisely summarize the change in the transition to adulthood 

across birth cohorts in their study countries as a shift from an early, contracted and simple pattern 

to a late, protracted and complex pattern.  

 

Previous Research on Family Life Course Complexity 

The life course states within each of the dimensions discussed in the previous section – residence, 

unions, and parenthood – are often studied as independent spheres of the family life course (for 

example, see the reviews by Cherlin 2010; and Buchmann and Kriesi 2011). When two dimensions 

are studied simultaneously, it is generally union formation and parenthood (e.g., Thornton and 

Philipov 2009; Kiernan 2001; Hiekel and Castro-Martín 2014; Baizán, Aassve, and Billari 2004). 

However, it is important to consider the intersections of these dimensions as separate and 

qualitatively different life course states. For example, the social meaning and consequences of 

entering nonmarital parenthood within the parental home differs starkly from entering nonmarital 

parenthood outside the parental home (Kaphingst, Persky, and Lachance 2014). Naturally, this 

approach to identifying life course states increases the number of distinct states, some of which 

may be empirically scarce, e.g. divorced with children and in the parental home. 
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There is general agreement that complexity should be conceptualized in terms of life course 

differentiation (Mayer 1991; Mayer, Grunow, and Nitsche 2010; Elzinga and Liefbroer 2007; 

Biemann, Fasang, and Grunow 2011; Van Winkle and Fasang 2017; Van Winkle 2018). Brückner 

and Mayer (2005) define differentiation as an increase in the number of life course states 

experiences across the life course. Therefore, complexity has often been operationalized using a 

simple count measure of the number of life course states or transitions experienced across 

individuals’ lives. However, complexity is also associated with an increase in life course 

uncertainty (Beck 1994, 2009; Sennett 1998; 2006; Mills and Blossfeld 2013, 2003). Composite 

metrics developed in sequence analysis have been developed that incorporate both the number of 

life course states as well as the degree of unpredictability (Elzinga and Liefbroer 2007; Gabadinho 

and Studer 2010; Van Winkle 2018). Sequence based complexity measures have the advantage that 

they can incorporate a large number life course states, i.e. the intersection of different life course 

dimensions, as well as a small number of simple states. 

However, there is little research on the complexity of family trajectories using sequence-based 

complexity metrics. The bulk of studies on life course complexity are interested in the 

differentiation of education-work-retirement trajectories (Biemann, Fasang, and Grunow 2011; 

Ciganda 2015; A. Riekhoff 2016; 2018; Van Winkle and Fasang 2017). Although there are many 

studies that apply sequence and cluster analysis to family trajectories, only Elzing and Liefbroer 

(2007) studied the complexity of early family life courses in a number of countries and birth 

cohorts. They find that average early family life course complexity had only increased moderately 

across a small number of their study countries. Otherwise, average complexity had remained 

relatively stable. Van Winkle (2018) analyzed long-life family trajectories on a number of 

European countries and cohorts, and concluded that although complexity had increased across 

cohort, cross-national variation was much more substantial. 

 

The Heritability of Family Life Course Complexity 

The estimation of heritability is the first step to incorporate biodemography into the study of 

complexity. Heritability is a population level characteristic and reflects the genetic component to a 

trait or phenotype, here complexity. Specifically, heritability is the proportion of phenotypic 

variance that is attributed to genetic variance, i.e. to common genetic variants within a population, 
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as opposed to environmental variance (Domingue, Wedow, et al. 2016). The strength of heritability 

gives researchers insight on the potential importance of sociobiological explanations and the 

consequence of ignoring them. Note the important difference between the sociological concept of 

intergenerational transmission and the biodemographic concept of heritability. Intergenerational 

transmission denotes the similarity between parents and their children regardless whether this 

similarity arose through genetic or environmental factors, or a mixture of the two. Heritability in 

contrast is similarity between two individuals, related or not, attributable only to genetic factors. 

During the 20th century, twin and family studies were the gold standard for estimating the genetic 

component of a given trait (Neale and Cardon 1992; Boomsma, Busjahn, and Peltonen 2002). A 

common analytical approach, the ACE model, compares monozygotic and dizygotic twins to 

decompose variance into an additive genetic component (A)3, a component attributable to shared 

or common environmental factors, e.g. family background (C), and an environmental component 

unique to each twin (E) (see Diewald et al. 2015 for a brief discussion). Although sociologists have 

been mainly interested in quantifying the effects of social and family background (C), twin studies 

also demonstrate that many components of family life course complexity are heritable (A). The 

heritability of women’s age at first birth has been estimated to be between 0 in Denmark to 0.3 in 

the UK. This means that genetic influences account for up to 30 % of the total variation of women’s 

age at first birth in the UK, but none in the Denmark. The heritability of completed fertility has 

been estimated to be between 0.24 for Swedish and 0.43 for Danish women, and between 0.24 for 

Swedish and 0.28 for Danish men (Kohler et al. 1999; Tropf et al. 2015; Mills & Tropf 2015). 

Johnson and colleagues (2004) estimate large heritability in the propensity to marriage in the US: 

0.72 for women and 0.66 for men. Estimates for the propensity to divorce are similarly high, 

between 0.52 and 0.59 for both US men and women (McGue and Lykken 1992; Jocklin, McGue, 

and Lykken 1996). 

However, twin ACE models come with strong assumptions, which lead to biased heritability 

estimates if violated (Horwitz, Videon, and Schmitz 2003). For example, it is assumed that 

monozygotic twins do not mutually influence one another more than dizygotic twins and that 

dizygotic twins share an average of 50 percent of their genes (Conley et al. 2013). Further, 

heritability estimates from twin studies may not be generalizable if there is non-random genetic 

                                                           
3 Examples of non-additive genetic effects are epistasis, i.e. interactions between genic variants, dominance deviations, 
suppression of genetic variants through other genetic variants, and gene-environment interactions. 
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stratification, e.g. genes associated with high fertility are more common among twins (Mills and 

Tropf 2015). Recent advances in molecular genetics and low-cost DNA sequencing methods has 

enabled researchers to base heritability estimates on true genetic similarity rather than assumed 

genetic similarity (Domingue, Wedow, et al. 2016). Molecular geneticists, as opposed to 

quantitative behavioral geneticists, are primarily interested in isolating and locating genetic 

variants associated with a trait, rather than estimating the heritability of a trait (Conley 2016). 

Genome-wide association studies (GWAS) are commonly used to locate single nucleotide 

polymorphisms (SNPs), markers of genetic variation, which are associated with a trait. Complex 

traits, such as fertility or cognitive ability, are polygenic traits that are affected by multiple SNPs, 

rather than a single gene. Following GWAS, polygenic risk scores (PGS) that estimate individuals’ 

genetic predisposition for a certain trait are constructed. The variance that PGSs explain are often 

only a fraction of heritability estimates from twin models (see Eichler et al. 2010; Manolio et al. 

2009 for a discussion on the problem of missing heritability).  

Genome-wide complex trait analysis (GCTA) consists of several methodological approaches to 

estimate heritability based on all available SNPs. The genomic-relatedness-based restricted 

maximum-likelihood (GREML) model, utilizes genetic similarity to decompose the total variance 

of a trait into genetic and environmental components (Yang et al. 2011, 2010). GREML studies 

have been used to estimate the heritability of several anthropomorphic and some social 

demographic outcomes (Domingue, Wedow, et al. 2016). Tropf and colleagues (2015) recently 

estimated a 0.10 SNP heritability for completed fertility and a 0.15 SNP heritability for the age of 

first birth for a pooled sample of women from the UK and the Netherlands. SNP heritability 

estimates from GREML are generally larger than PGS heritability estimates, but still lower than 

twin based heritability estimates. A study by Yang and colleagues (2015) demonstrates that SNP 

heritability of height and BMI from GREML using the entire genome with imputed SNPs rather 

than a sample of SNPs are similar to those from twin studies. There are currently no studies that 

estimate SNP heritability for family demographic outcomes aside from fertility, such as marriage 

or divorce. However, based on the large heritability found in twin studies, it is likely that both life 

course states are highly heritable.  

Exactly how genetic factors influence social demographic traits remains largely unclear (see Udry 

1996 for an overview of early biosocial models for fertility). Kohler and colleagues (2006) argue 

that genetic predispositions affect fertility 1) directly through biological pathways, e.g. menarche, 
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2) indirectly through conscious life course decision-making, e.g. knowledge about fecundity, and 

3) indirectly through subconscious life course decision-making, e.g. personality characteristics. 

Freese (2008) contends that any genetic effect is mediated through the body, which he terms the 

phenotypic bottleneck. He discusses four pathways of how genes influence outcomes through 

intermediate phenotypes and how sociological explanations may be affected. These biosocial 

pathways are displayed in Figure 1 with a stylized example. In the upper-left panel of Figure 1, 

genetic factors, G, partially determine the intermediate phenotype cognitive ability, Z, which 

affects the timing of first birth, Y (see Davies et al. 2016; Kirkpatrick et al. 2014 for the heritability 

of cognitive ability; see Haaga 2001 for the association between cognitive ability and fertility). 

Educational attainment, X, has an independent direct effect on age at 1st birth. In panel B, cognitive 

ability moderates the association between educational attainment and fertility, while in C cognitive 

ability simply precedes educational attainment. Finally, panel D demonstrates how cognitive ability 

is confounded with education. This is an especially worrisome case for sociological research, 

because effect estimations between two social phenomena, e.g. education and fertility, will often 

be biased if genetic factors remain unobserved. 

 

Figure 1: Ideal Type Pathways for Genetic Effects on Sociological Relationships through 
Intermediate Phenotypes 

 

GCTA-GREML approaches have estimated heritability for several sociological outcomes and 

anthropomorphic traits (see Domingue, Wedow, et al. 2016 for a broader overview). Height is 

estimated to be between 35 and 56 percent heritable, while BMI estimates are slightly lower, 

between 27 and 43 percent (Conley et al. 2014; Yang et al. 2015). Davies and colleagues (2016) 

estimate heritability of 31 percent for verbal-numeric reasoning, 5 percent for memory, and 

Kirkpatrick and colleagues (2014) estimate that general cognitive is 35 percent heritable. 

Heritability estimates for educational attainment are lie between 17 and 33 percent (Boardman, 

Domingue, and Daw 2015; Conley et al. 2014), and while social deprivation and household income 

is an estimated 21 and 11 percent heritable, respectively (Hill et al. 2016). Even socioeconomic 

status across the life course has been estimated to be between 18 and 19 percent heritable (Marioni 

et al. 2014; Trzaskowski et al. 2014). Considering the consistent findings for the relevance of 

genetic influences, family life course complexity are likely affected by genetic factors both directly, 
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e.g. biologically determined fecundity, and indirectly, e.g. phenotypes that affect family 

demographic decisions. Therefore, we expect that the complexity of family trajectories will be 

heritable (H1). 

The relevance of genetic factors for family life course complexity may vary across social contexts, 

e.g. across birth cohorts. Societal norms and institutions can change the heritability of social 

outcomes by influencing the relationship between intermediate phenotypes and outcomes. As an 

example, outside of family demography, Domingue and colleagues (2016) find evidence that the 

heritability of smoking in the United States increased from roughly 0.13 to 0.32 between cohorts 

born 1939-1945 and 1947-1959. They conclude that as evidence on the dangers of smoking 

emerged during the 1960’s, the influence of genetic factors associated with nicotine addiction 

strengthened. Using historical twin data, Bras and colleagues (2013) found evidence for increasing 

heritability during the first demographic transition in 19th century. They argue that genetic 

predispositions for fertility became more important as the social control of women’s fertility 

decreased. In these examples, environmental changes, i.e. knowledge on the effects of smoking 

and decreased social control, increased the effect of genetic factors, which in turn increased the 

heritability of smoking and fertility, respectively. As environmental forces increase or decrease the 

variance of behavioral outcomes, the relative importance of genes changed accordingly.  

In family demography, the most common hypothesis is that the heritability of family demographic 

outcomes will be higher for cohorts transitioning to adulthood after the onset of the SDT. Udry 

(1996) proposes a multilevel biosocial model, where societal characteristics influence the 

relationships between genetic predispositions and outcomes. Specifically, the genetic influence on 

voluntary behavioral outcomes, e.g. entering parenthood and marriage, will decrease in societies 

with a high level of social constraints. Udry (1996, 335) argues in egalitarian and individualistic 

contexts behavioral variation will increase and genetic predispositions will have more opportunities 

to express themselves. Indeed, studies using twin data have observed higher heritability for Danish 

cohorts transitioning to adulthood after the onset of the SDT for fertility motivation and fertility 

(H. Kohler, Rodgers, and Christensen 1999, 2002; Rodgers et al. 2001). Tropf and colleagues 

(2015) also find that the heritability of UK women’s age at first birth increased for cohorts 

characterized by liberalization and the sexual revolution, but that the introduction of modern 

contraception and economic recessions decreased heritability shortly after. Therefore, we expect 
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that the heritability of family trajectory complexity will increase across birth cohorts (H2), 

especially for individuals who transitioned to adulthood after the onset of the SDT. 

 

Data & Methods 

Sample & Sequence Definition 

The HRS4 is a biennial panel study with prospective and retrospective data on family formation, 

which also recently collected molecular genetic information from their respondents. The original 

HRS cohort was first sampled in 1992 and consisted of men and women born between 1931-1941 

at ages 51-61. A second study cohort, the Asset and Health Dynamics among the Oldest Old, of 

men and women born before 1924 was collected the following year. The two study cohorts were 

collected simultaneously in 1998 when the third and fourth cohorts were introduced, the Children 

of the Great Depression born between 1924 and 1930 and the War Babies born 1942-1947. Since 

then a refreshment sample has been added every three waves, i.e. six years. We restrict our analyses 

to respondents born between 1915 and 1965. 

We estimate the heritability of a wide range of family demographic indicators that we use to 

construct family trajectories and calculate sequence complexity. Specifically, we analyze four 

fertility indicators: the age at first birth, average spacing between births in years, and the total 

number of biological children both including and excluding childless respondents. These variables 

are prepared using respondent’s self-reports on the number of children and the year of their birth, 

but also include “best guess” information of the year of children’s birth prepared by the RAND 

corporation. We exclude respondents from analyses on the age first birth if there is no information 

on the year of birth for any of their children. We prepare seven marital indicators for our analyses: 

whether respondents ever married, the age at first marriage, the number of marriages both including 

and excluding respondents who never married, whether respondents ever divorced, and the number 

of divorces both including all respondents who marriage and excluding respondents who never 

                                                           
4 The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number NIA 
U01AG009740) and is conducted by the University of Michigan. 1992-2014 RAND Fat Files, Cross-Wave: Polygenic 
Score Data, RAND HRS Longitudinal File 2014, and the RAND HRS Family Data 2014 public use datasets. Produced 
and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA 
U01AG009740). Ann Arbor, MI, 2018. For more information, visit: http://hrsonline.isr.umich.edu/.  
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divorced. We exclude respondents with age at first birth, birth spacing, and age at first marriage 

values under the 1st percentile or above the 99th percentile from those respective analyses.  

Using the information described above, we reconstruct individuals’ family life courses as 

sequences from age 18 to 45 using 5 different sequence alphabets. The first sequence alphabet 

includes only information on fertility: at any given age, an individual can be childless (0C) or have 

any number of children (e.g. C1, C3, or C5). Similarly, our second sequence alphabet focuses on 

marital histories, where individuals can be single (S), in a first, second, or third marriage (M1, M2, 

M3), divorced (D) or widowed (W). The other three sequence specifications combine both union 

and fertility histories. The most differentiated alphabet simply combines the fertility and union 

sequences, generating states such as single with one child (SC1), married with two children (MC2), 

or divorced without children (DC0), or in a second marriage with five children (M2C5). We also 

generate sequences with a reduced alphabet, where states are only differentiated up to 3 children 

(e.g. MC1, MC2, MC3+), and a simple alphabet whether we only differentiate between being 

married or single and childless or a parent. Please note that cohabitation and residential histories 

have not been extensively collected by the HRS and therefore cannot be included in the sequence 

alphabet. However, it is unlikely that the lack of information on parental home leaving and 

cohabitation will bias our results. Individuals left the parental home are early ages relatively 

universally and cohabitation was not a common living arrangement for our study cohorts. 

 

Estimating Genetic Similarity 

Saliva samples were collected during enhanced face-to-face interviews during the 2006, 2008, 

2010, and 2012 waves for 15,708 respondents. Genotyped data measuring a sample of 

approximately 2.4 million single nucleotide polymorphisms (SNP) was obtained from respondents’ 

saliva samples using the Ilumina HumanOmni2.5 BeadChips.5 SNPs are DNA nucleotide pairs that 

vary within a population. For example, at a single position in the genome some individuals may 

have the nucleotide cytosine, while others have thymine. The variants of each SNP are called alleles 

                                                           
5 For detailed information on the collection and preparation on the genotypic data, see the Quality Control Report for 
Genotypic Data at http://hrsonline.isr.umich.edu/sitedocs/genetics/HRS2_qc_report_SEPT2013.pdf prepared by the 
University of Washington. 
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and the alleles that are the second most common in a population are termed minor alleles. Using 

the SNPs, genetic similarity is estimated as: 

𝐴 = ∑
( )

( )
, 

where N is the number of genetic markers, and xij and xik are the number of minor alleles at SNP i 

for individuals j and k, and p is the minor allele frequency. The matrix A containing the genetic 

similarity estimates between all respondent pairs is called the genetic relationship matrix (GRM). 

We calculate the GRMs using all autosomal6 SNPs with a minor allele frequency above one percent 

in the sample to ensure that genetic similarity is based on variants that are common and not rare 

within a population.7 We then prune the sample for cryptic relatedness (Aij ≥ 0.025), i.e. persons 

genetically comparable with second-degree cousins. It has been shown that genetically similar 

individuals also share similar environments, which could bias our heritability estimates by 

including variation attributable to shared environments. Although it has been demonstrated that the 

violation of this assumption does not substantially bias GREML estimates (Conley et al. 2014). 

 

Estimating Heritability 

We use GCTA-GREML to estimate the heritability of family life course complexity and its 

components (see Domingue, Wedow, et al. 2016 for an introduction on applications with social 

demographic traits; see also Yang et al. 2011). The underlying assumption of GREML is that if 

phenotypic variation is attributable to genetic variants, then individuals who are more similar 

genetically should be more similar phenotypically. GREML utilizes random effects modeling to 

quantify the proportion of trait variance that is attributable to genomic differences. Formally, a 

given phenotype, y, is modeled as: 

𝑦 = 𝑋𝛽 + 𝑔 + 𝜖, 

                                                           
6 Autosomal chromosomes are non-sex chromosome pairs 1-22. 
 
7 GREML assume that the average effect size on the outcome of interest per standardized SNP is minute and normally 
distributed. The distribution assumption also assumes that SNPs with low minor allele frequencies have larger effects. 
Therefore, rare alleles are removed to ensure heritability estimates are not based on a rare variant found only in a select 
population (Yang et al. 2017, 1307–8). 



15 
 

where Xβ is a matrix of covariates and their coefficients, g is a vector of random effects and ϵ a 

vector of errors. As the name GREML indicates, the model is estimated using restricted maximum 

likelihood. The GRM enters the model through the variance component of the random effects:  

𝑔~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎 𝐴). 

This means that the individual random effects are normally distributed with a mean of zero and a 

variance of σg
2, which denotes the additive genetic variance captured by the SNPs. The GRM, here 

A, builds the variance-covariance structure of the random effect. Note that standard assumptions 

apply for GREML models, e.g. that ϵ is independent of X and g, and normally distributed. 

Heritability, h2, is then defined as the proportion of total variance attributable to the variance of the 

random effects. Formally, 

𝑉𝑎𝑟(𝑦) = 𝑉𝑎𝑟(𝑔) + 𝑉𝑎𝑟(𝜖) = 𝜎 + 𝜎 , 

Where the variance of y, Var(y), is equal to the variance component of the random effect, σg
2, plus 

the residual variance, σϵ
2. Subsequently, heritability is estimated as the variance component of the 

random effect, σg
2, divided by the total variance of y, σg

2 + σϵ
2: 

ℎ = . 

This approach belongs to the class of mixed linear modeling, similar to multilevel modeling 

commonly used in social demography and sociology (e.g., Van Winkle 2018; Van Winkle and 

Fasang 2017 for cross-country and cross-cohort comparisons). Heritability is essentially an 

intraclass correlation coefficient commonly used in comparative sociological research. However, 

estimating country and cohort random effects to decompose the complexity variance attributable 

to differences across countries and cohorts, the random effect above is used to decompose the 

variance into a genetic and an environmental component.  

We estimate SNP heritability for a pooled HRS sample as well as heritability for 25-year birth 

cohorts. Due to the issue of population stratification, we follow the convention in the literature and 

restrict our sample to self-identified Non-Black and Non-Hispanics. We use GCTA8 to conduct all 

analyses (see Yang et al. 2011). We estimate both unadjusted and adjusted GREML models. In the 

                                                           
8 http://cnsgenomics.com/software/gcta/#Overview 
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adjusted models, we include the respondents’ gender and birth year as well as ten principle 

components to adjust for population stratification, i.e. differences in minor allele frequencies that 

are attributable to ancestral differences.9 This adjustment has been criticized as it may correct for 

differences that are meaningful for the trait being studied and can lead to underestimated 

heritability estimates. All phenotypes except for whether respondents ever married or divorced are 

standardized by gender and birth year before the analyses. 

 

Results 

Trends in Sequence Complexity & its Components 

Summary statistics for the Non-Black and Non-Hispanic HRS sample with genotyped data are 

displayed in Figure 2. We present both means (black lines) and standard deviations (grey lines) by 

birth year for all our fertility, marital, and divorce indicators as well as our sequence complexity 

variants. For example, the average age of first birth decreased from over 26 for the 1915 birth 

cohort to well under 24 for the 1940 cohort. During the same period the standard deviation in the 

age at first birth decreased from approximately 5 to 4.5 years. The age of first birth then increases 

to 25 for the 1950 birth cohort with a standard deviation of nearly 6 years. We observe a 

corresponding trends for birth spacing: the average number of years between births and its variance 

is highest for pre-1920 and post-1950 cohorts. The average number of children is highest at nearly 

3.5 for the 1930 cohort with a standard deviation of 3.6, but dips well under an average of 3 children 

with an even lower variance for the 1950 cohort. According the Udry’s (1996) proposed 

relationship between behavioral variation and heritability, we could expect to observe high 

heritability for age at first birth and birth spacing for younger cohorts and the opposite for the 

number of children.  

 

                                                           
9 This is commonly called the “chopsticks problem”, which arises when subgroups have different allele frequencies 
that coincide with a phenotype that is culturally rather than biologically determined (Hamer and Sirota 2000). For 
example, persons of Asian and European ancestry will systematically differ on SNP variants that would coincide with 
the different probability of chopstick use between the two subgroups.  
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Figure 2: Sample Means and Standard Deviations of Family Demographic Indicators by Birth 

Year 

 

As can be seen under the marital indicators of Figure 2, the proportion of the sample that had ever 

married drop from nearly 100 percent to 90 percent between the 1940 and 1960 birth cohorts. 

During that period, the age at first marriage increased from just over 22 with a standard deviation 

of 4.5 to nearly 25 with a standard deviation of 6.5. The average number of marriages increased 

from roughly 1.3 for the 1920 cohort to 1.5 for the 1945 cohort before sinking again, likely due to 

higher rates of cohabitation preceding marriage and following divorce. The variance in the number 

of marriages, however, did not decline as steeply as the average number of marriages following the 

1945 cohort. As would be expected, the propensity to divorce as well as the average number of 

divorces experienced and its variance increased across cohorts. 

Trends in average complexity and its variation correspond to the trends above. The complexity of 

fertility sequences are high and vary largely for the 1930 cohort, reflecting the higher number of 

parity transitions and as well as the variation in the age of first birth, birth spacing, and number of 

children for cohorts before 1940. In contrast, the complexity of union sequences is highest for post-

1950 cohorts, which matches the trend towards more variance in the propensity to marry and the 

number of marriages as well as a higher number of transitions into divorce. The complexity of 

sequences with both fertility and union statuses show differing trends. Average complexity for 

sequences with the most differentiated alphabet is highest and varies to a greater extent for older 

cohorts, which matches trajectories consisting of a larger number of fertility transitions than union 

transitions. The complexity of sequences with reduced and simple alphabets give somewhat more 

weight to union transitions. Average complexity is then higher for post-1950 cohorts, especially 

for sequences with the simple alphabet, and the variance of the complexity of sequences with both 

the reduced and simple alphabet increase across birth cohorts. Therefore, we might observe 

different trend for heritability depending on the sequence alphabet: decreasing along with lower 

variance for fertility and differentiated sequences, but increasing along with increasing variance 

for union sequences as well as sequences with a reduced and simple alphabet. 

 

GREML Heritability Estimates  
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SNP heritability estimates for all our family demographic indicators and sequence complexity 

values from GREML models on the entire sample and their 95 percent confidence intervals are 

displayed in Figures 3 and 4. Estimates from unadjusted GREML models are displayed in Figure 

3, while the estimates in Figure 4 are adjusted for 10 ancestral principal components as well as 

respondents’ gender and birth year. The heritability estimates as well as their standard errors, p-

Values, and sample sizes can be found in the first column of Table A1 for Figure 3 and Table A2 

for Figure 4 in the manuscript appendix. We estimates approximate confidence intervals based on 

the estimated standard errors, which may be upwards biased (see Schweiger et al. 2016), making 

it difficult to discern which estimates are statistically different from zero. We therefore, mark 

heritability estimates that are statistically different from zero (p ≤ 0.05) in black and those that are 

not statistically different from zero in grey. 

 

Figure 3: Unadjusted SNP Heritability Estimates 

 

Figure 4: Adjusted SNP Heritability Estimates 

 

As can be seen in Figure 3, we find statistically significant heritability for most of our family 

demographic indicators, including the age at first birth, the number of children, the age at first 

marriage, the number of marriages, the propensity to divorce, and the number of divorces. Of those 

indicators, only the heritability estimate for the propensity to divorce becomes statistically 

insignificant after we adjust our GREML models. Heritability is high for both the age at first birth 

and first marriage: 21 percent of the variance in the age at first birth and 24 percent of the variance 

in the age of first marriage can be accounted for by genetic differences. Estimates are lowest for 

the number of children, marriages and divorces as well as the propensity to divorce, with roughly 

0.15, 0.17, 0.13, and 0.09, respectively.  

We also find statistically significant heritability for the complexity of fertility sequences as well as 

the complexity of sequences with a differentiated or simple alphabet. For example, results from 

unadjusted GREML models indicate that 13 percent of the complexity variance of fertility 

sequences is attributable to genetic factors. Common genetic differences account for 11 percent 
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and 10 percent of the complexity variance of sequences with differentiated and simple alphabets. 

Our heritability estimates for the complexity of union sequences and sequences with a reduced 

alphabet are smaller, roughly 0.06, and not statistically different from zero. Once our GREML 

models are adjusted using gender, birth year, and ancestral principal components, our heritability 

estimate for the complexity of sequences with a simple alphabet is no longer statistically different 

from zero. In contrast, the heritability estimates for the complexity of fertility and differentiated 

sequences increase slightly to 15 percent and 12 percent, respectively. In sum, we find partial 

support for our first hypothesis that the complexity of family trajectories will be heritable.  

 

GREML Heritability Estimates across Birth Cohorts 

SNP heritability estimates for our family demographic indicators and sequence complexity 

measures and their 95 percent confidence intervals are displayed by birth cohort in Figures 5 and 

6. Estimates from unadjusted GREML models are depicted in Figure 5 and estimates from adjusted 

GREML models are shown in Figure 6. Each estimate is based on a 26-year birth cohort. For 

example, the 1930 heritability estimates are based on individuals born between 1917 to 1943. 

Cohort heritability is estimated using 26-year cohorts to ensure a sufficiently large sample to 

identify moderately large heritability (N ≈ 5,000 for h2 ≈ 0.2) (see Visscher et al. 2014). These 

figures allow us to gage whether the heritability of family demographic behavior is changing across 

birth cohorts. Similar to Figures 3 and 4, heritability estimates that are statistically different from 

zero (p ≤ 0.05) are black and those that are not statistically different from zero are grey. All 

heritability estimates as well as their standard errors, p-Values, and sample sizes can be found in 

Tables A1 and A2 for Figure 5 and 6, respectively (see manuscript appendix). 

 

Figure 5: Unadjusted SNP Heritability Estimates by 25-Year Birth Cohorts 

Fertility Indicators 

 

Figure 6: Adjusted SNP Heritability Estimates by 25-Year Birth Cohorts 

Fertility Indicators 
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Broadly speaking, we find little evidence that the heritability of family demographic behavior 

changed across US cohorts born between 1915 and 1965. For example, the unadjusted heritability 

of the age at first birth fluctuates between roughly 36 percent for the 1928 birth cohort and 26 

percent for the 1946 cohort (see Figure 5). However, the estimates are not statistically different 

from one another. The adjusted heritability estimates for the age at first birth shown in Figure 6 

also do not statistically differ across birth cohorts, although the estimates vary from 14 percent for 

the 1953 cohort and 29 percent for the 1928 cohort. Similar trends – relatively constant non-zero 

heritability estimates – can be found for the age at first marriage and the number of marriages. 

Heritability estimates for the propensity to divorce and the number of divorces are statistically 

different from zero for older cohorts, but become statistically insignificant for post-1945 cohorts. 

We do find more considerable and statistically significant differences between the heritability of 

the number of children between younger and older birth cohorts. However, rather than increasing 

heritability, our results show that heritability drops from 31 percent for the 1928 cohort to zero for 

the post-1950 cohorts. 

Similar to the overall estimates, we find statically significant and non-zero heritability for the 

complexity of fertility sequences and sequences with differentiated or simple alphabet from 

unadjusted GREML models. Our results also indicate that like the cohort trends for the propensity 

to divorce, the number of divorces and the number of children, the non-zero heritability estimates 

for complexity become statistically insignificant for younger birth cohorts. Cohort-specific 

estimates from adjusted GREML models demonstrate that only the complexity of fertility and 

differentiated sequences are statistically significant for pre-1940 birth cohorts. For example, nearly 

22 percent of the complexity variance of sequences with a differentiated alphabet can be attributed 

to genetic factors for the 1928 cohort, but none for post-1940 cohorts. In sum, our results do not 

support our second hypothesis that the heritability of family trajectory complexity will increase 

across birth cohorts. 

 

Discussion 

In this study, we applied for the first time a biodemographic approach to the study of family life 

course complexity using methods developed in molecular genetics. Specifically, we estimated the 
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heritability of family life course complexity as well as a wide range of family demographic 

indicators using GCTA-GREML on data from the HRS. Based on findings from behavioral 

genetics research on twins, we hypothesized that family life course complexity as well as its 

components will be moderately heritable (H1). Further, based on arguments by Udry (1996; see 

also H. P. Kohler et al. 2006) that heritability increases in contexts characterized by fewer social 

constraints, we hypothesized that the heritability of family life course complexity and its 

components will increase across birth cohorts in the United States (H2). While we do indeed find 

moderate heritability for the complexity of fertility and differentiated sequences as well as other 

family demographic indicators (H1), we find no evidence for increasing heritability (H2). 

Our results support micro-biosocial models that family demographic (e.g. H. P. Kohler et al. 2006; 

Udry 1996) and sociological (Freese 2008) outcomes are heritable. On account of the composite 

nature of family life course complexity – incorporating both fertility, union formation, and union 

dissolution – it seems plausible that genetic factors influence complexity directly through 

biological mechanisms and indirectly through intermediate phenotypes, such as personality. Our 

SNP heritability estimates for fertility are slightly higher than those estimated by Tropf and 

colleagues (2015) on a pooled sample of UK and Dutch women. As would be expected, SNP 

heritabilities for marriage and divorce are somewhat lower than earlier estimates using twin data 

(Johnson et al. 2004 for marriage; Jocklin, McGue, and Lykken 1996; McGue and Lykken 1992 

for divorce). In sum, our analyses corroborate previous literature that family demographic behavior 

and demonstrate that even composite life course outcomes are heritable.  

However, our results do not systematically validate Udry’s (1996) hypothesis that the genetic 

influence on voluntary behavioral outcomes, e.g. entering parenthood and marriage, will increase 

in societies characterized by the SDT. A possible explanation might lie in additional hypothesis 

made by Udry (1996, 328) that has received less attention: “The more similar the social constraints 

faced by individuals in a society (…) the higher the proportion of variance in their behavior that is 

controlled by biological differences in the population”. While shifts in value orientations and legal 

opportunities for divorce may be similar between the US and many Northwestern European 

countries, the universality of those constraints may be higher in generous European welfare states 

that are secularized to a higher degree. Further analyses, given adequate sample sizes, should 

estimate heritability separately by educational group or socioeconomic status. 
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There are limitations to the estimation of heritability with GREML and using SNPs (see Krishna 

Kumar et al. 2016 for an overview). The GCTA-GREML approach is only valid for traits with 

genetic variants located throughout the entire genome that are weakly associated with that trait 

(Domingue, Wedow, et al. 2016). This is because the GRM only approximates genome-wide 

genetic similarity if the sample of SNPs and their association with a trait are a reasonably good 

proxy for the entire genome. The SNP heritability estimate may be biased if a genetic variant with 

an exceptionally large association is missing. However, it is unlikely that our heritability estimate 

for sequence complexity, which is per definition highly polygenic due to its composite nature, is 

biased in such a manner.  

A further limitation that GCTA shares with other estimation methods for heritability, is the “black 

box” nature of heritability. Without knowing the loci associated with complexity and the 

phenotypic effects of those loci, it is not possible to follow the causal biological and social 

pathways connecting genetic factors with complexity. A possible first step would be to estimate 

chromosome-specific SNP heritability, because molecular geneticists have identified specific 

chromosomes that are associated with phenotypes to a greater or lesser degree. Future research 

could use bivariate GREML models to test the genetic correlation between two phenotypes, such 

as complexity and personality (Deary et al. 2012; Lee et al. 2012). This would allow scholars to 

inch towards untangling the causal mechanisms involved in the heritability of family life course 

complexity. Similarly, analysis of specific genetic associations—top hits—from a GWAS of 

sequence complexity would allow for functional analysis of the particular roles of those genes that 

exert the most influence on the outcome. 

What role can family, labor market, and welfare policy play in societies where social demographic 

outcomes are heritable? Murry & Herrnstein’s (1994) deeply controversial book “The Bell Curve” 

argued that the United States had become a “genotocracy” (term applied later by Conley and 

Fletcher 2017): a society where social stratification is based on genetic differences and social policy 

only could alleviate the consequences of those differences. Recently, Conley & Fletcher (2017) 

published a systematic critique of the perspective that stratification patterns in western societies 

are genetically based and unalterable. Even if heritability is extremely high, it does not indicate 

genetic determinism. The impact of genetic factors on sociological and demographic outcomes is 

dependent on the social environment and must be contextualized. Although we do not find evidence 

for cross-temporal change in heritability, a comparison of our estimates with findings using 
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European data (e.g. Tropf, Stulp, et al. 2015) indicates strong gene-environment interactions (see 

also Tropf et al. 2017). The reaction of individuals with similar genotypes likely varies across social 

contexts, e.g. when institutions effect the relationship between intermediate phenotypes and social 

processes. There is also increasing evidence in the area of epigenetics that environments also 

triggers or suppresses the manifestation of genetic factors at a molecular level (Landecker and 

Panofsky 2013). Our results in no way support arguments that stratification patterns are static due 

to genetic influences and cannot be altered by social policy. 

Our results demonstrate that holistic life course outcomes can also be heritable and that life course 

sociologists should begin to incorporate biodemography into their research. A first starting point is 

to estimate heritability for more life course outcomes that are of interest. For example, the 

heritability of life course patterns derived from cluster analysis and the heritability of deviations 

from those patterns would be an obvious next step. Depending on the outcomes of those analyses, 

life course sociologists may need to add existing educational and fertility polygenic risk scores into 

their analyses that estimate the association between individual characteristics and life course 

patterns. This could give sociologists leverage on whether educational attainment is causally 

associated with the choice to follow a certain life course path or whether unobserved intermediate 

phenotypes are confounding our analyses. 
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Figures 

Figure 1: Ideal Type Pathways for Genetic Effects on Sociological Relationships through 
Intermediate Phenotypes 

 

A) Independent Direct Effect B) Moderated Effect 

  
C) Higher Order Effect D) Confounded Effect 

  
Note: Figure adapted from Freese (2008) 
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Figure 2: Sample Means and Standard Deviations of Family Demographic Indicators by Birth 

Year 

Fertility Indicators 

Note: Averages in black and standard deviations in grey displayed by birth year using local polynomial smoothing. 
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Figure 2 continued: Marital Indicators 

Note: Averages in black and standard deviations in grey displayed by birth year using local polynomial smoothing. 
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Figure 2 continued: Divorce Indicators 

 
Note: Averages in black and standard deviations in grey displayed by birth year using local polynomial smoothing. 
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Figure 2 continued: Sequence Complexity 

 
Note: Averages in black and standard deviations in grey displayed by birth year using local polynomial smoothing. 
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Figure 3: Unadjusted SNP Heritability Estimates 

 

Note: Heritability estimates and 95% confidence intervals from unadjusted GREML models displayed. See Table A1 for details. 
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Figure 4: Adjusted SNP Heritability Estimates 

 

Note: Heritability estimates and 95% confidence intervals from GREML models adjusted for 10 ancestral principle components, gender, and birth year displayed. 

See Table A2 for details. 
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Figure 5: Unadjusted SNP Heritability Estimates by 25-Year Birth Cohorts 

Fertility Indicators 

Note: Heritability estimates and 95% confidence intervals from unadjusted GREML models displayed from 25-year 

birth cohorts. Black markers indicate that heritability estimates are statistically different from zero (p < 0.05). 
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Figure 5 continued: Marital Indicators 

Note: Heritability estimates and 95% confidence intervals from unadjusted GREML models displayed from 25-year 

birth cohorts. Black markers indicate that heritability estimates are statistically different from zero (p < 0.05). 
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Figure 5 continued: Divorce Indicators 

 
Note: Heritability estimates and 95% confidence intervals from unadjusted GREML models displayed from 25-year 

birth cohorts. Black markers indicate that heritability estimates are statistically different from zero (p < 0.05). 
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Figure 5 continued: Sequence Complexity 

 
Note: Heritability estimates and 95% confidence intervals from unadjusted GREML models displayed from 25-year 

birth cohorts. Black markers indicate that heritability estimates are statistically different from zero (p < 0.05). 
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Figure 6: Adjusted SNP Heritability Estimates by 25-Year Birth Cohorts 

Fertility Indicators 

Note: Heritability estimates and 95% confidence intervals from GREML models adjusted for 10 ancestral principal 

components, gender, and birth year displayed from 25-year birth cohorts. Black markers indicate that heritability 

estimates are statistically different from zero (p < 0.05). 
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Figure 6 continued: Marital Indicators 

Note: Heritability estimates and 95% confidence intervals from GREML models adjusted for 10 ancestral principal 

components, gender, and birth year displayed from 25-year birth cohorts. Black markers indicate that heritability 

estimates are statistically different from zero (p < 0.05). 
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Figure 6 continued: Divorce Indicators 

 
Note: Heritability estimates and 95% confidence intervals from GREML models adjusted for 10 ancestral principal 

components, gender, and birth year displayed from 25-year birth cohorts. Black markers indicate that heritability 

estimates are statistically different from zero (p < 0.05). 
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Figure 6 continued: Sequence Complexity 

 
Note: Heritability estimates and 95% confidence intervals from GREML models adjusted for 10 ancestral principal 

components, gender, and birth year displayed from 25-year birth cohorts. Black markers indicate that heritability 

estimates are statistically different from zero (p < 0.05). 
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