
Introduction 

Air quality is a cause of concern in India, particularly in cities where swelling urban population, unplanned urban and 

industrial development and increased volume of motorized traffic have resulted in severe air pollution level often exceed 

the National Ambient Air Quality Standards (NAAQS), which in turn affecting the surrounding environment and human 

health. Cities in India have grown haphazardly with little consideration of the functioning of urban systems as a whole. 

The country’s urban areas often lack adequae regional transport networks, for example. Large swaths of informal 

settlements have emerged in vacant inner-city districts and suburban peripheries, compromising environmental 

conditions, public health, and personal safety. In recent decade, India is struggling to improve its urban air quality. To 

tackle this deteriorating situation the country requires a method to measure properly and model pollution levels. 

Different studies evident spatial and temporal distribution of air pollution. Various studies have documented significant 

variation of outdoor air pollution at small scale within urban areas for important pollution such as NO2 (Fisher, 2000; 

Kingham, Briggs, Elliott, Fischer, & Erik Lebret, 2000; Lebret et al., 2000; Monn, 2001; Jerrett et al., 2005; Zhu, Hinds, 

Kim, Shen, & Sioutas, 2002). In some settings, the distribution greatly vary within a city than the between cities (Jerrett, 

et al., 2005; Miller et al., 2007). Like every large cities in the world, Indian cities have varied land use pattern. Due to 

that, the spatial distribution of air pollution in cities influenced by many factors, including distance from source, reactivity 

of pollutants with other chemicals in the air, wind pattern, temperature, elevation and a strong influence of urban design 

(building height and density). Further, regional air pollution mitigation has focused mainly on emission reduction through 

economic (odd-even license plates access in Delhi, ban of sale of above 2000cc diesel vehicles in Delhi), or technological 

(catalytic convertors for cars, clean coal for power plants) means. However, strategies for mitigating the intra-urban 

impact of air pollution have not been identified or investigated mainly due to unknown and unexplored situation of spatial 

distribution of air pollution. The role of land use features in regulate ambient air pollution concentration plays an important 

role. It rises an interesting question: to what extent can urban land use be managed or modified to decrease the impact of 

air pollution on human health? However, the relationship among air pollution, local land use pattern and associated health 

impacts has not been quantified or investigated systematically before. 

To address such challenges, Land Use Regression (LUR) model, which successfully combines measurements of air 

pollution and stochastic modelling using land use variables obtained through geographic information systems (GIS) to 

construct predictive model of ambient air pollutants concentration. Further, the spatial interpolation technique gives a 

smooth surface with a continuous map of pollution concentration. Modelling of spatial variation in air quality and 

estimating human exposure of urban India provides a better opportunity of understanding the health risk and to inform 

the necessary policies and research to address air pollution level. The value of this modelling in India is not just because 

air quality is poor in cities like Delhi and Mumbai, but also because these cities are in high density, high rise cities featuring 

a predominantly vertical population growth. The combination of densification, complex topography and vertical stratified 

growth in the sense of high level regional pollution suggesting a more complex variation in pollution concentration than 

seen in the cities of developed world. Findings from these cities may not be applicable to the Indian content, or even to 

other cities of developing countries. Therefore, this research seek to predict the concentration of NO2 by using land use 

variables at unsampled locations of Delhi, Mumbai and Navi Mumbai on the basis of sampled monitoring data and also 

tried to see the distributional variation of NO2 concentration within cities. 

Materials and Methods 

The monthly average of nitrogen dioxide (NO2) concentration (g/m3) were obtained directly from CPCB official 

website, for thirteen monitoring stations in Delhi, six monitoring stations in Mumbai and Navi Mumbai between the year 

2015 and 2016. All of these stations are located in proximity to industrial area, high traffic intensity area, residential and 

other area (CPCB, 2016). To estimate independent variables for LUR model, the different spatial data have been used in 

this study are consisted in five broad categories: Physical geography– altitude (meter); Land use- industrial area and 

commercial area; Road– road type and length of different roads; Traffic– traffic intensity, density of traffic signals, density 

of bus stops; Demographic– population density. The altitude data used in this study estimated through Google Earth. For 

land use data of industries and commercial area, OpenStreetMap data of India have been used. Density of bus stops and 

traffic signals data also obtained through map vectorization from Google Earth. The roads of the cities classified under 

three broad categories ; i) Primary roads- express ways and national highways (NH); ii) secondary roads- state highways 

(SH) and major district roads (MDR); iii) Tertiary roads- other district roads (ODR) (Kadiyali & Lal, 2005). Traffic 

intensity data consists of number of vehicles per kilometre on a major road of Delhi and Mumbai which was obtained 

from Delhi Traffic Police website and Transport Department Statistics of Mumbai respectively. Ward wise population 

data of Delhi and Mumbai in 2001and 2011 are taken from Census of India for the purpose of projection of 2015 

population for both the cities. 
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Under the Classical Linear Model, upheld the assumptions of Ordinary Least Square (OLS) regression, land use regression 

was developed for accurate exposure assessment at those locations where monitoring stations are not situated in the our 

study area. The Land Use Regression model requires data of air pollution concentration which will be placed as dependent 

variable and land use variables such as industrial area, commercial area, are under vegetation, length of road, traffic 

intensity and other topographical variables like wind speed and temperature is used as independent variables. The land 

use pattern at monitoring sites and area within a buffer constructed around with the help GIS software. For each monitoring 

sampled station locations, we constructed a series of concentric circle, known as buffers, with radii of 100, 300, 500, 750, 

1000 and 2000 meters, using ArcGIS (after reviewing previous literature). All input variables such as land use data, road 

data, and population data was computed by estimating the area, length and quantity of the land use characteristics within 

certain buffer. Due to unavailability of traffic intensity data of all streets for the cities modelled in this study, the traffic 

intensity was estimated within certain buffer by multiplying length of roads in certain buffer and number of vehicles per 

km. of the city on a day. Population in each buffer was estimated by computing the area of buffer, which was further 

multiplied with population density of the census ward in a city. A total of 58 variables in eight categories were created 

for LUR model development.  

Ordinary Kriging approach was used to visualize the surface of the LUR model using Geostatistical wizard in ArcGIS 

10.2. It is a weighted combination of measurements at surrounding of measured sample locations. Kriging assigns weights 

at each concentration by exploiting the spatial correlation among the observed measurements. The robustness of the 

surface map obtained, was established by estimating the congruency between predicted values and observed values 

through scatter plot. The assumption for normality is checked using Q-Q plot. 

Important Results 

NO2 sample collected from different monitoring stations of Delhi and Mumbai had an arithmetic mean of 62.61 (g/m3) 

with values ranging from 19 to 185.71 (g/m3) and 45.15 (g/m3) with values ranging from 6.14 to 129.18 (g/m3) 

respectively. After elimination of other variables that are correlated (Pearson’s r ≥ 0.06) with most highly ranked variables, 

10 variables remained from the total of 58 variables in Delhi and 7 out of 58 variables remained in Mumbai and Navi 

Mumbai. The multivariate analysis evidenced variables with statistical significance. In the context of Delhi, the final 

model explained 46% of NO2 variance. Traffic intensity in primary and secondary roads within the buffer of 1000 meters 

and 500 meters radius respectively, and length of primary roads at 1000 meters radius buffer exhibits the strongest 

interaction with level of NO2  (p < 0.05) than the interaction with density of traffic signals within the buffer of 2000 meter. 

For instance, in case of traffic signals, as the number of traffic signal increases in 2000 meters radius buffer area 

concentration of NO2 rises. However, traffic intensity in primary road at 1000 meters radius buffer shows negative relation 

with the coefficient which may be resulting from too wide distance from the monitoring stations (See Table 1). 

In Mumbai, the model explained 55% of the variability in measured concentration of NO2. Industrial and commercial area 

within 750 meters radius buffer shows the strongest relation to NO2 (p < 0.001) concentration in the city. However, 

commercial area shows negative relation with NO2 concentration. The traffic intensity of primary roads within 1000 

meters radius buffer and population within 300 meters radius buffer shows comparatively less significant relation with 

NO2 concentration (See Table 2). 

The interpolated annual spatial concentration of NO2 using the Kriging approach have created a smooth surface of intra-

urban distribution for Delhi. The average of LUR predicted NO2 was 53.63 𝜇g/m3 (SD= 10.85 𝜇g/m3). The interpolated 

NO2 concentrations map gests that city centre or the main city are the major pollution source in Delhi. While the peripheral 

areas may play a role in decreasing air pollutant concentrations. Modelled ambient concentrations of NO2 within Delhi 

city range from 42 𝜇g/m3 to 100 𝜇g/m3, well below the National Ambient Air Quality standards i.e. 40 𝜇g/m3 (See Figure 

1). 

Similarly, kriging was applied to construct the NO2 concentration surface in Mumbai. In comparison to Delhi the LUR-

predictive mean concentration is lesser with lower standard deviation. The low standard deviation value reflects the more 

homogeneity in terms of NO2 spread across the city. In terms of spatial distribution of pollution concentration, it is more 

in south-east and north part of Mumbai. Whereas, Navi Mumbai have lesser concentration compare to Mumbai. The 

surface map reflects the heterogeneity of NO2 concentration across different areas. For instance, concentration can be 

observed to be more in south-east and north part of Mumbai whereas, Navi Mumbai have lesser concentration compare 

to Mumbai. Modelled ambient concentrations of NO2 within Mumbai city range from 29 to 61 g/m3, which is also below 

the National Ambient Air Quality standards (See Figure 1). 

The validity of LUR model can only be established through coherency or relatedness of predicted and observed values. 

The scatter plot describes the relatedness or the correlation between the predicted values and observed values of NO2. The 

correlation between the values came out to be 0.49 (See Figure 2). 

Additionally, the kriging interpolation is based on assumption of normality of observed values. In order to check whether 

the assumption has been valid in the analysis, Q-Q plot is used. Majority of the points found to be closer or lying on the 



straight line passing through the origin which establishes the normality assumption. However, extreme values seem to be 

placed quite far in the plot which is believed to be not affecting the results (See Figure 3). 

Conclusion 

We can summarise the attempt with the estimated value for air pollution concentration, the predicted surface map for 

Delhi, Mumbai and Navi-Mumbai, using the concentration data from CPCB and predictor variables from census and 

Google Earth. The study used multiple secondary data for study area to construct and evaluate the land use regression 

model. In general, it can be said that the modelling procedure has brought good estimates in terms of accuracy and 

suitableness with the theory of environmental change. The methodology has its limitations with respect to its applicability 

which lies within a small area, the availability of data is another challenge. Amidst these limitations and challenges, to 

our knowledge, this research work is first application of land use regression and spatial interpolation (Kriging) to predict 

the surface map for two most important cities in India using the secondary data available in public domain. However, the 

modelling should be modified to inculcate other predictors and improvise on the estimates obtained for air pollution 

concentration. 
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Tables and figures 

Table 3.3: Results of LUR model with chosen variables based on criteria, Delhi 
NO2 β Std. Error t P>t 95% CI 

          LCL UCL 

Population (300m) 0.00533 0.00343 1.55 0.123 -0.0015 0.0121 

Industrial Area (750m) -0.00006 0.00004 -1.41 0.16 -0.0001 0.0000 

Commercial Area (750m) 0.00034 0.00022 1.57 0.119 -0.0001 0.0008 

Traffic Signals (1000m-2000m) 0.86892 0.49565 1.75 0.082 -0.1111 1.8489 

Traffic signals (500m) 0.82338 3.80933 0.22 0.829 -6.7065 8.3533 

Traffic Intensity Primary Road (750m-1000 m) -0.03686 0.01722 -2.14 0.034 -0.0709 -0.0028 
Traffic Intensity Secondary Road (750 m-1000 m) -0.03436 0.02813 -1.22 0.224 -0.0900 0.0213 

Traffic Intensity Secondary Road (500m) 0.00693 0.00185 3.33 0.026 -0.0053 0.0192 

Primary Road (1000m) 0.00873 0.00375 2.33 0.022 0.0013 0.0161 
Secondary Road (750 m) 0.01240 0.00834 1.49 0.139 -0.0041 0.0289 

Constant 42.34590 11.95442 3.54 0.001 18.7100 65.9820 

R2= 0.4689,  N=156 

Table 3.4: Results of LUR model with chosen variables based on criteria, Mumbai-Navi Mumbai 
NO2 β Std. Error t P>t 95% CI 

          LCL UCL 

Population (300m) 0.00073 0.00037 1.99 0.05 0.00000 0.00146 

Industrial Area (750m) 0.00014 0.00004 3.64 0.01 0.00006 0.00021 

Commercial Area (750m) -0.00036 0.00008 -4.52 0.01 -0.00052 -0.00020 

Primary Road Traffic Intensity(1000m) 0.00080 0.00092 0.87 0.389 -0.00103 0.00263 

Secondary Road Traffic Intensity(750m-1000m) -0.02075 0.00374 -0.67 0.532 -0.02820 -0.01331 

Secondary Road Traffic Intensity (500 m) 0.00904 0.00198 4.56 0.01 0.00510 0.01298 

Secondary Road (500m-750m) 0.04212 0.00975 4.32 0.01 0.02274 0.06151 

Constant 45.02315 13.15620 3.42 0.001 18.84643 71.19980 

R2= 0.5586, N=48 



Figure 1: Concentration of NO2 (g/m3) in Delhi, Mumbai-Navi Mumbai, 2015 

 

Figure 2: Cross validation of LUR model for Delhi and Mumbai-Navi Mumbai 

 

Figure 3: Q-Q plot for normality check before kriging interpolation, Delhi and Mumbai-Navi Mumbai 

 


