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PREDICTING INFANT MORTALITY RISK FROM INFORMATION AVAILABLE AT THE 

TIME OF BIRTH 

Using birth certificate data for all registered US births over a three year period (2000-2002), we 

explore whether it is possible to reliably identify infants at risk of dying before their first 

birthday using information that is routinely gathered at the time of birth. We use four classifiers 

from the machine learning (ML) literature to predict mortality before the first birthday, as well as 

age at death (early neonatal, late neonatal, and postneonatal) and cause of death. We also explore 

whether the quality of predictions varies by maternal race/ethnicity. We find that the best-

performing classifier correctly identifies, at the time of birth, 3 out of 4 infants who die before 

their first birthday. The resulting risk scores can potentially be used to allocate more intensive 

care within and beyond the clinical setting to infants with a high predicted mortality risk. 
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With infant mortality rates ranked highest among developed nations, reducing infant mortality 

remains an important public health goal in the United States(Chen, Oster, and Williams 2016; Thakrar et 

al. 2018; MacDorman et al. 2014; MacDorman and Mathews 2009). In this study, we explore whether it 

is possible to reliably identify infants at risk of dying before their first birthday using information that is 

routinely gathered at the time of birth on the standardized US birth certificate. We assess whether the 

quality of predictions varies by the age (early neonatal, late neonatal, and postneonatal) and cause of 

death. Given large inequities in mortality risks that between infants born to mothers with different 

racial/ethnic backgrounds, we also explore whether the quality of predictions varies by maternal 

race/ethnicity.  

Developing algorithms and screening tools to detect potentially fatal health conditions among 

newborns have been identified as central priorities for research on newborn health (Yoshida et al. 2014). 

Alongside universalist programs aimed at improving health for all newborns, prediction models could be 

used to detect infants at increased mortality risk at the time of birth, who would then be referred to more 

intensive care within and beyond the clinical setting. Such targeting based on risk scores is desirable 

when interventions are costly and providing them regardless of need would divert resources from areas of 

greater need. Furthermore, targeting reduces potential risks associated with unnecessary, potentially 

harmful, and invasive treatments and interventions. Illustrating the potential use of prediction models in 

this context, Pan et al. (2017) show how risk scores from machine learning (ML) algorithms can improve 

the allocation of mothers at risk of adverse birth outcomes to an intensive care program with limited 

enrolment capacity. Potash et al. (2015) show how risk scores for lead poisoning allow a limited number 

of inspectors to prioritize high-risk buildings for inspections.  

Multivariate predictions models for infant survival have been studied extensively for infants born 

very prematurely or with very low birth weight. A recent meta-analysis concludes that prediction models 

can support medical decision making in newborn intensive care units (NICUs) (Medlock et al. 2011). It 

reports median classifier performance metrics (see Methods, for definitions) across 41 studies that provide 



 

a reference for our own analyses: These studies focus on a small subset of newborns with very high 

mortality risks, and it is unclear how well ML classifiers predict mortality risks in the full population of 

newborns. Related work has tried to predict the risk of preterm birth, the single most important cause of 

infant mortality(Lawn et al. 2014), in clinical trial (Vovsha et al. 2016) and administrative data (Pan et al. 

2017; Tran et al. 2016), and birth certificate data from North Carolina (Courtney et al. 2008). Studies on 

preterm birth and survival among infants admitted to NICUs indicate that machine learning classifiers 

outperform conventional regression or paper & pencil-based screening tools. Finally, research from across 

the social and medical sciences has identified numerous risk factors for infant mortality many of which 

are recorded on US birth certificates(Ma and Finch 2010; Almond, Chay, and Lee 2005; Chen, Oster, and 

Williams 2016; MacDorman and Mathews 2009). These latter studies focus on whether and how specific 

factors are causing elevated mortality risks.  

To our knowledge, this is the first study that tries to leverage information from nearly all 

variables measured on birth certificates to predict either infant mortality or other markers of newborn 

health for all US births in a given year. Relying on birth certificate data in this context is appealing 

because this data is routinely gathered in a standardized format for the entire population at the time of 

birth. It includes an extensive list of demographic and medical variables that have been shown to both 

predict infant mortality, and short- and long-term health and socio-economic outcomes. Given that birth 

certificate data are available for the entire population, they represent a potentially underutilized resource 

for determining which infants should be considered at higher risk of death and therefore receive 

additional care and services within and beyond the clinical setting.  

In the following, we compare the quality of predictions obtained from conventional logistic 

regression and machine learning algorithms. Mortality risk is commonly modeled as an additive function 

of a limited set of predictor variables that includes some interaction and non-linear effects for specific 

variables. Machine learning algorithms incorporate information from complex non-linear and interactive 



 

effects that have been shown to substantially improve predictive accuracy in some health contexts. We 

also explore whether the quality of predictions varies by age and cause of death and by maternal race.  

METHODS 

Data 

The analyses use data drawn from birth certificates for all registered births over the period from 

2000 to 2002 that are linked to death certificates for all deaths occurring before the first birthday, and 

published by the National Center for Health Statistics (NCHS) as the Linked Birth/lnfant Death Birth 

Cohort Data Sets. About one percent of infant death certificates cannot be matched to birth certificates, 

and these observations are excluded from the analysis. We use 2000 and 2001 data for training our 

models, and 2002 data for testing. Because both outcome and many features have a low prevalence, we 

pooled two years of data to train our models in order to obtain more robust results.  

While more recent data would clearly be desirable, we use 2000-2002 data for the following 

reasons: This is the most recent set of three consecutive years that the cohort-linked files are published for 

that (a) does not include a change in the version of the birth certificate the data are drawn from and (b) 

includes geographic detail that allows us to identify mother’s state of residence. To our knowledge, the 

most recent release of the cohort-linked file is for the 2011 birth cohort, but the publicly available data 

lack geographic identifiers and observations are based on two different versions of the US birth certificate 

that introduces many inconsistencies in the availability and coding of variables across years. 

The source files include the age at the time of death in days, and information on the cause and 

manner of death, as well as 158 potential predictor variables. We deleted variables created by the data 

provider that (a) relate to the quality of measurement of predictor values, such as whether an observation 

was imputed, or (b) are re-coded versions of other variables, collapsing information from a continuous 



 

variable, e.g. birth weight in grams, to a categorical variable. We also generated variables for 

maternal/paternal race/ethnicity, combining information both on race and Hispanic origin.  

The final set of predictors includes 107 variables. Table 1 in the Appendix includes a full list. 

They include demographic information on mothers, geographic information on maternal place of 

residence and place of birth, maternal risk factors, medical conditions and information on prior births, as 

well as, for infants, detailed information on labor and delivery and birth outcomes, such as birth weight, 

gestational age, and congenital malformations.  

Most variables are categorical by nature, but some, like birth weight, are measured on a 

continuous scale. We converted all numeric variables to categorical variables. When available, we used 

information from previous studies to appropriately recode variables so that non-linear relationships can be 

appropriately captured. For example, we used a relatively detailed classification for birth weight at low 

and very low birth weights because of the well-known, nonlinear association between birth weight and 

mortality risk at low levels of birth weight. Otherwise, we grouped continuous variables into bins. After 

converting all continuous variables to categorical values, we imputed missing values for all variables with 

the modal category (Pan et al. 2017). 

Our main outcome is mortality before the first birthday. The NCHS files include information on 

the age of death in days, which we use to further differentiate between deaths in the first week of life 

(days 0-6, early neonatal mortality), late neonatal mortality (days 7-27), and postneonatal (days 8-364) 

mortality. Furthermore, we explore different causes of death. Based on a 130 cause of death variable 

generated by NCHS, which is in turn based on ICD-10 Codes, we aggregated different causes of death 

into six categories with approximately similar prevalence:  

• “Diseases/disorders”, which includes infectious and parasitic diseases; neoplasms; diseases of the 

blood and immune system; endocrine, nutritional and metabolic diseases; diseases of the nervous, 

circulatory, respiratory, digestive or genitourinary systems (ucod130 codes 1-69).  



 

• “Maternal factors, complications of pregnancy, labor, and delivery” (ucod130 codes 70-85).  

• “Length of gestation and fetal malnutrition” (ucod130 codes 86-91).  

• “Other perinatal conditions”, which includes birth trauma, hypoxia, asphyxia, respiratory 

distress/conditions, infections originating in perinatal period, hemorrhagic and hematological 

disorders of newborn, syndrome of infant of a diabetic mother and neonatal diabetes mellitus, 

necrotizing enterocolitis, hydrops fetalis not due to hemolytic disease, other perinatal conditions 

(ucod130 codes 92-117) 

• “Congenital malformations, deformations, and chromosomal abnormalities” (ucod130 codes 118-

133). 

• “External causes, sudden infant death syndrome (SIDS), and causes not elsewhere classified 

(NEC)” (ucod130 codes 134-158) 

STATISTICAL MODELLING 

Our main goal is to assess how well infant mortality can be predicted from information available 

on birth certificates at the time of birth, and how the quality of prediction varies by age, the cause of 

death, and maternal race. Specifically, the goal is to predict values of a binary or categorical outcome 

variable from a set of predictor variables, or features. We do not adopt a survival analysis approach 

because this would require information on the duration of survival, which is not available at birth. 

Based on previous studies (Pan et al. 2017; Vovsha et al. 2016; Somanchi et al. 2015), we 

selected four machine learning classifiers and compared their performance to conventional logistic 

regression (LOG) without non-linear or interaction effects. The machine learning classifiers are: Gaussian 

Naive Bayes (GNB), One-class Support Vector Machines (SVMs) with a Radial Basis Function kernel, 

and Boosted Trees (XGB). Boosted trees are an ensemble method that iteratively using fixed size decision 

trees, iteratively fitting the residuals of the previous prediction to minimize the loss of the latest 

prediction. 



 

The low prevalence of the outcome variables, 0.68% of infants do not survive, can degrade the 

performance of the classifiers we use (Kubat and Matwin 1997). To improve classifier performance, in 

particular for predicting the less prevalent outcome, i.e., mortality, we subsample the training dataset (all 

births in 2000 and 2001), keeping all infants who die before their first birthday but only a random sample 

of those who survive. Following previous research (Somanchi et al. 2015), we explore classifier 

performance for the binary prediction task, survival until the first birthday, using four different sampling 

ratios: 1:1, 1:5, 1:10, and 1:145. In the first case, 1:1, we include n1 infants in the training dataset who 

die, where n1 is the number of infants who die and take a random subsample from the infants who survive 

of size one times n1. For a 1:5 (1:10) ratio, we include all n1 infants who die and take a random 

subsample of five (ten) times n1 infants who survive, and so forth. 1:145 corresponds to the naturally 

occurring ratio (no subsampling). Classifiers were evaluated using the (raw, not subsampled) testing data. 

We used the Scikit-Learn Library in Python 2.7 (Pedregosa et al. 2011) and a computer with an 

Intel Core i7-3770 CPU processor (3.40GHz), 16 GB of RAM and 64-bit operating system to perform the 

analyses. The runtime for the different models varied between a few seconds to a few minutes. 

Performance Metrics  

We report four metrics that quantify the performance of the classifiers: Sensitivity, Positive 

Predictive Value (PPV), Accuracy, and Area under the Receiver Operating Characteristic Curve (AUC). 

Sensitivity is defined as the percentage of infants who die before their first birthday and are correctly 

classified (true positives) relative to all infants who die before their first birthday (true positives + false 

negatives), i.e., the percentage of all deaths that were correctly predicted. Sensitivity diminishes both if 

the number of true positives diminishes and if the number of false negatives increases, i.e., the number of 

infants predicted to survive when they do not. PPV is defined as the percentage of true positives relative 

to all infants who are predicted to die (true positives + false positives). PPV diminishes both if the number 



 

of true positives diminishes and if the number of false positives increases, i.e., the number of infants 

predicted to die who survive.  

While Sensitivity places a penalty on false negatives, PPV places a penalty on false positives. 

From an applied perspective, false negatives correspond to infants who die within their first year but are 

predicted to survive by our model and may therefore not have received potentially life-saving 

interventions. False positives might correspond to infants who are predicted to die but actually survive 

and are nevertheless assigned to follow-up care that is costly and may be harmful. In this application, we 

focus on the costs of false negatives, i.e. not detecting infants who may have survived if detected, and 

therefore emphasize Sensitivity as the central parameter to judge model quality.  

Accuracy is defined as the percentage of infants correctly classified. It is the sum of true positives 

and true negatives as a percentage of all infants. The area under the receiver operating characteristics 

curve (AUC) measures the probability that a classifier ranks a randomly chosen positive instance (died) 

higher than a randomly chosen negative one (survived). 

RESULTS 

Table 1 reports descriptive statistics for the training data (births in 2000 and 2001) and test data 

(births in 2002). In both training and test data, about 1 in 145 infants die before their first birthday 

(0.68%). The distribution of age and cause of death is also similar across datasets. In the test data about 

41% of deaths occur within 24 hours of births. Another 27% of deaths occur between the 1 and 27th day. 

And the remaining 32% of deaths occur after the first month and before the first birthday. The cause of 

death group with the highest prevalence, “Other perinatal conditions” includes birth trauma, asphyxia, 

hypoxia, and other perinatal respiratory conditions.  

Table 2 reports the best performing classifiers for predicting mortality (death vs. survive) in each 

of the four subsampled training datasets. Considering Sensitivity, we observe that logistic regression 



 

performs best when the data are more balanced (1:1 and 1:5), while Gaussian Naïve Bayes and Boosted 

Trees perform better in unbalanced data (1:10 and 1:145). Across classifiers and sampling ratios, we 

obtain the best Sensitivity and AUC using Boosted Trees (XGB) and a 1:10 sampling ratio, i.e., 1 death 

per 10 survivors in the training data.  

Table 3 reports performance metrics based on training data with a 1:10 sampling ratio for four 

classifiers predicting mortality. Boosted Trees and Gaussian Naïve Bayes achieve the highest and second-

highest Sensitivity, but the lowest PPV. Logistic regression and SVMs achieve higher PPV but lower 

Sensitivity. Overall, Boosted Trees perform best in terms of Sensitivity and AUC, but worst in terms of 

PPV.  

Boosted Trees correctly identify 77% of infants who die before their first birthday from 

information provided at the time of birth, exceeding the performance of other classifiers substantially in 

terms of Sensitivity. They also achieve the highest AUC, 0.85. These metrics are similar to the median 

performance of classifiers predicting mortality among very preterm (or very low birthweight) infants 

admitted to NICUs reviewed by Medlock et al. (2011). However, PPV for Boosted Trees is low. Only 6% 

of infants predicted to die actually die. While correctly classifying 3 in 4 infants among those who die, the 

classifier generates 16 false positives for every true positive.  

The remainder of the analyses will examine the quality of predictions for different ages (early 

neonatal, late neonatal, and postneonatal) and causes of death. We will also examine whether the quality 

of predictions varies by race/ethnicity of mothers. Finally, we will conduct supplementary analyses to 

better understand both false negative and false positive predictions. The large number of false positives 

generated by the Boosted Trees present an interesting challenge, because they share many of the features 

of infants who do not survive, but yet they do. It will be interesting to see whether these differ 

systematically in their distribution across different US states and by maternal education, and whether 

they are predicted to die of preventable causes. Furthermore, while the quality of prediction is expected 



 

to vary across different causes, we intend to identify potentially preventable causes for which the 

classifiers perform particularly well. 
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TABLES 

Table 1. Descriptive Statistics for Training and Testing Data, Cohort-Linked NCHS Natality Infant 
Mortality Files, 2000-2002. 

 Training Data 
Births in 2000-2001 

Test Data 
Births in 2002 

 
Births % of 

births Births % of 
births 

Number of live births 8,084,950 100.00 4,021,825  100.00 
     
Number of deaths 54,849 0.68 27,500  0.68 
     
Age at death     
 Under 1 hour 8,133  0.10 4,111  0.10 
 1-23 hours 13,505  0.17 7,060  0.18 
 1-6 days 7,479  0.09 3,610  0.09 
 7-27 days 7,500  0.09 3,690  0.09 
 28 days and over 18,232  0.23 9,029  0.22 
     
Cause of death     

Diseases/disorders 6,678  0.08 3,383  0.08 
Maternal factors, complications of pregnancy, 
labor and delivery 5,487  0.07 3,007  0.07 

Length of gestation and fetal malnutrition 8,848  0.11 4,646  0.12 
Other perinatal conditions 12,952  0.16 6,228  0.15 
Congenital malformations, deformations and 
chromosomal abnormalities 11,168  0.14 5,554  0.14 

External causes, SIDS, not elsewhere classified 9,716  0.12 4,682  0.12 
 

  



 

Table 2. Best performing classifiers for different sampling ratios. 

Sampling Ratios 
Deaths:Survivors Model Sensitivity PPV Accuracy AUC 

[1:1] Logistic Regression 0.75 0.05 0.89 0.83 
[1:5] Logistic Regression 0.60 0.19 0.98 0.79 
[1:10] Boosted Trees 0.77 0.06 0.92 0.85 
[1:145] Gaussian Naïve Bayes 0.67 0.07 0.94 0.80 

 

Table 3. Performance metrics for different classifiers using 1:10 sampling ratio. 

Model Sensitivity PPV Accuracy AUC 

Logistic Regression 0.56 0.28 0.99 0.77 
Gaussian Naïve Bayes 0.68 0.07 0.94 0.81 
Support Vector Machines 0.54 0.24 0.99 0.77 
Boosted Trees 0.77 0.06 0.92 0.85 

 

 

 

 



 

APPENDIX 

Table A1. List of Features 

Variable Name Label 
birmon month of birth 
weekdayb day of week child born 
gestat gestation - in weeks 
dbirwt birth weight - in grams, converted to percentiles 
missval number of variables missing, generated 
dtotord detailed total birth order 
dnliv number of previous live births no longer living, generated 
dmage age of mother 
dfage age of father 
wtgain weight gain during pregnancy 
nprevist total number of prenatal visits 
drink average number of drinks per week 
cigar average number of cigarettes per day 
stoccfipb state of occurrence - FIPS code 
stresfipb state of residence (FIPS) 
resstatb resident status 
mracehisp father's race/ethnicity 
dmeduc education of mother detail 
married mother's marital status (recode of dmar) 
mplbir place of birth of mother 
mpcb detail month of pregnancy prenatal care began 
nodad no information on father on any variable, generated 
fracehisp father's race/ethnicity 
birattnd attendant at delivery 
pldel place or facility of delivery 
female infant sex (recode of csex) 
fmaps five minute APGAR score 
dplural plurality 
vacuum vacuum 
forcep forceps 
repeac repeat C-section 
primac primary C-section 
vbac vaginal birth after previous C-section 
vaginal vaginal 
phyper hypertension – pregnancy-associated 
chyper hypertension – chronic 
hemo hemoglobinopathy 
hydra hydramnios/oligohydramnios 
herpes genital herpes 
diabetes diabetes 
lung acute or chronic lung disease 
cardiac cardiac disease 
anemia anemia (hct.<30/hgb.<10) 
othermr other medical risk factors 
uterine uterine bleeding 
rh rh sensitization 
renal renal disease 
preterm previous preterm or small-for-gestational-age infant 
pre4000 previous infant 4000+ grams 



 

incervix incompetent cervix 
eclamp eclampsia 
otherob other obstetric procedures 
ultras ultrasound 
tocol tocolysis 
stimula stimulation of labor 
induct induction of labor 
monitor electronic fetal monitoring 
amnio amniocentesis 
otherlb other complication of labor and/or delivery 
distress fetal distress 
anesthe anesthetic complications 
cord cord prolapse 
cephalo cephalopelvic disproportion 
breech breech/malpresentation 
dysfunc dysfunctional labor 
prolong prolonged labor (>20 hours) 
precip precipitous labor (<3 hours) 
seizure seizures during labor 
excebld other excessive bleeding 
preplace placenta previa 
abruptio abruptio placenta 
rupture premature rupture of membrane (>12 hours) 
meconium meconium 
febrile febrile (>100 degrees F or >38 degrees C) 
otherab other abnormal conditions of the newborn 
nseiz seizures 
ven30m assisted ventilation - 30 minutes or more 
venl30 assisted ventilation - less than 30 minutes 
meconsyn meconium aspiration syndrome 
hyaline hyaline membrane disease 
alcosyn fetal alcohol syndrome 
injury birth injury 
nanemia anemia (hct.<39/hgb.<13) 
gastro other gastrointestinal anomalies 
omphalo omphalocele/gastroschisis 
tracheo tracheo-esophageal fistula/esophageal atresia 
rectal rectal atresia/stenosis 
circul other circulatory/respiratory anomalies 
heart heart malformations 
nervous other central nervous system anomalies 
microce microcephalus 
hydro hydrocephalus 
spina spina bifida/meningocele 
anen anencephalus 
othercon other congenital anomalies 
chromo other chromosomal anomalies 
downs Down's syndrome 
musculo other musculoskeletal/integumental anomalies 
hernia diaphragmatic hernia 
clubfoot club foot 
adactyly polydactyly/syndactyly/adactyly 
cleftlp cleft lip/palate 
Urogen other urogenital anomalies 
Renalage renal agenesis 
Genital malformed genitalia  
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