Short-term and Long-term Exposure of Ambient Air Pollution and its Impact on Respiratory Morbidity and Mortality: A Systematic Review

Rahul Rajak¹ PhD. Research Scholar, International Institute for Population Sciences, Sciences, Mumbai, India Email.id- <u>rajrahul0906@gmail.com</u> Dr. Aparajita Chattopadhyay² Assistant Professor, International Institute for Population Mumbai, India Email.id- <u>aparajita@iips.net</u>

Introduction:

A well-established body of literature, documents and reports highlights how both short and long-term exposure to ambient [outdoor] air pollution (AAP) (mainly consisting of nitrogen oxides [NOx], sulfur dioxide [SO₂], nitrogen oxides [NO_x], Particulate matter [PM], ozone [O₃] and carbon monoxide [CO]) is associated with adverse health outcomes (Liu et al. 2013; Sehgal et al. 2015; Kesavachandran et al. 2015; Cohen et al. 2017; Haque & Singh, 2017). The health effects are measured by short-term exposure to pollutants by hours, days, or weeks and long-term exposure of months or years (Beverland et al. 2012). The effects of short-term exposure on human health include exacerbation of pre-existing respiratory disease (especially asthma, COPD, chronic respiratory [sputum, cough, wheezing problem, breathing problem] and pre-existing cardiovascular disease (including ischemia, arrhythmias, and cardiac failure). This leads to an increase in hospitalization and emergency department visits (Kumar et al. 2004; Gupta, 2008 & Patankar & Trivedi, 2011). The longer and more intense the exposure, greater is the impact on health, ranging from minor eye irritations, cough, wheezing, allergic rhinitis, respiratory symptoms to decreased lung and heart function, tuberculosis, cardiovascular diseases, hospitalization, and even premature death (Kumar & Foster, 2007; Guttikunda & Jawahar, 2012; Guttikunda & Goel, 2013; Ghosh & Mukherji, 2014; Tobollik et al. 2015 & Gawande et.al. 2016).

According to the World Health Organization (WHO), 14 cities from India feature in the top 20 world's most polluted cities in terms of $PM_{2.5.}$ The cities of Kanpur, Faridabad, Varanasi, Gaya, Patna, Delhi, Lucknow, Agra, Muzaffarpur, and Srinagar are listed in the top 10 (WHO, 2018). At present, Indian cities are among the most polluted cities in the world. It is estimated that ambient air pollution leads to approximately 670,000 deaths annually (Dholakia et al. 2014).

Epidemiological time series and case-crossover studies of AAP and their health impacts had been carried out in different cities in India namely, Delhi (Cropper et al. 1997; Chhabra et al. 2001; Pande et al. 2002, Rajarathnam et al. 2011); Kanpur (Gupta, 2008); Ludhiana (Kumar et al. 2010), Chennai (Public Health and Air Pollution in Asia, 2011); Mumbai, Shimla, Ahmedabad, Bangalore and Hyderabad (Dholakia et al. 2014). Apart from the above mentioned studies few have also investigated the effects of air pollution on health outcomes (Gurjar et al. 2010; Lelieveld et al. 2015; Dey et al. 2018). Therefore, we conducted a systematic review of AAP exposure for both shorter and longer time periods in order to understand and quantify the burden of diseases and mortality for the exposed population.

Methods: Search strategy and selection criteria

For this systematic review, we systematically searched Science Direct, JSTOR and Research Gate, Scopus, Book SC, Google Scholar, PubMed and Taylor and Francios using combinations of the following keywords: *"ambient air pollution", "long-term exposure", short-term exposure, "particulate matter", "respiratory morbidity", "respiratory mortality", "hospital admission" and "premature mortality".* We also manually searched the references of every primary study for additional publications. Further publications were also

identified by examining the review articles. Search results were screened by title, than by abstract, to eliminate irrelevant articles.

The inclusion and exclusion criteria for in this review:

The inclusion criteria for articles in this review we include only those articles which explain the impact of ambient air pollution on human health. Also, we select only those articles conducted in India or Indian cities. The publication between January 1, 1990, to January 31, 2018, in the English language only. We select only peer-reviewed original articles with full paper. The exclusion criteria for articles in this review we excluded abstracts of conference presentations because they did not contain sufficient information. We also exclude those study which has only explaining air pollution but not considers the health impact. Those articles fulfilling all inclusion and exclusion criteria were included in the list of literature for further review (figure 1).

Table 1. Summary of selected epidemiologic studies between the study period of 1990-2018

Study Design	Short-Term	Long-Term	Pre-Mature Mortality	Total
Time Series	2	5	6	13
Cross Sectional	6	7	-	13
Case-Control	3	1	1	5
Cohort Study	1	1	6	8
Case Study	1	1	1	3
Modelling/Bottom up Modelling Study	-	-	2	2
Intervention Study	-	-	1	1
Total	13	15	17	45

Table 2. WHO specified default value of Relative Risk (RR)b per 10 ug/m₃ increase of daily average for PM_{10} , SO₂ & NO₂ with 95 % CI

Pollutants	Mortality/Morbidity	Relative Risk(RR) ^b (95 % CI) per 10 ug/m ³	Baseline Incidence per 100,000 ^c
	Total Mortality ^x	1.0074 (1.0062-1.0086)	1013
	Cardiovascular Mortality ^y	1.008 (1.005-1.018)	497
PM ₁₀	Respiratory Morbidity ^z	1.012 (1.008-1.037)	66
	Hospital admission respiratory diseases	1.008 (1.0048-1.0112)	1260
	Hospital admission Cardiovascular diseases	1.009 (1.006-1.013)	436
	Total Mortality ^x	1.004 (1.003-1.0048)	1013
50	Cardiovascular Mortality ^y	1.008 (1.002-1.012)	497
302	Respiratory Morbidity ^z	1.01 (1.006-1.014)	66
	COPD ^a Morbidity (hospital admission)	1.0044 (1-1.011)	101.4
NO	Cardiovascular Mortality ^y	1.002 (1-1.004)	497
1102	COPD Morbidity (hospital admission)	1.0038 (1.004-1.0094)	101.4

a COPD: Chronic obstructive Pulmonary diseases;

b Lower and upper limits (range) of RR value;

c Baseline incidence 100,000 is based of threshold limit is given in WHO guideline;

x International classification of diseases (ICD) code number: ICD-9-CM<800;

y ICD-9-CM 390-459; zICD-9 460-519

Preliminary Result

Short-Term Effect:

The health effects of short-term exposure to air pollution are very important aspects of environmental epidemiology (Szyszkowicz, 2018). The vast majority of epidemiological studies reporting health effects associations with AAP in India use data from urban centers and mostly report on prevalence of respiratory morbidity. Through a systematic review of the literature, we identified six cross-sectional studies; three casecontrol studies, two time -series studies one case and cohort study. These studies are investigating the association between ambient exposure and respiratory morbidity, hospital admission/hospital visit and emergency room visit for asthma or other respiratory causes (Chhabra, et al. 2001; Pande et al. 2002; Kumar et al. 2004; Ingle et al. 2005; Jayanthi & Krishnamoorthy, 2006; Ghose, 2009; Patankar & Trivedi, 2011; Central Pollution Control Board, 2012; Liu, et al. 2013; Kesavachandran, et al. 2015; & Prasad & Sanyal, 2016; Cohen et al. 2017; Haque & Singh, 2017). Most of these existing studies on ambient air pollution and impact on health are based on the physical linkage approach, where a dose response function is estimated in order to observe the relationship between human health and air pollution. These studies largely concentrated in the metropolitan cities like Delhi, Mumbai, Chennai, and Kolkata and found that elevated levels of AAP are the main causes of prevalence of diminished lung function, acute and chronic respiratory symptoms (cough, wheeze, and asthma) in children and adults (Gordon et al. 2018; Sehgal et al. 2015; Gawande, et al. 2016; Public Health and Air Pollution in Asia [PAPA], 2011; Ghose, 2009; Chhabra et al. 2001; Pande et al. 2002).

Interestingly, the short-term exposure resulting from acute increases in $PM_{2.5}$ and PM_{10} are not limited to the critically ill or dying. In fact, much of the morbidity and mortality occurred among active individuals with one or more risk factors. Nagpure et al. (2014) evaluates the human health risks (mortality and morbidity) due to air pollution in Indian national capital territory of Delhi (NCT Delhi). The result shows that about 11394 (total mortality), 3912 (cardiovascular mortality), 1697 (respiratory mortality) and 16253 (hospital admission of COPD) respectively were observed for entire NCT Delhi in the year 2000. However, within one decade, in the year 2010, these figures became 18 229, 6374, 2701 and 26525 respectively. In national

level Cohen et al. (2017) also explain that exposure to $PM_{2.5}$ caused 29 609.6 thousand (25 923.3 – 33 562.7) disability-adjusted life-years (DALYs) in India during 2015. Based on the results of this review, we conclude that if short-term ambient air pollutants ($PM_{2.5}$, PM_{10} , SO_2 , and CO_2) cross their daily prescribed standards level (each 10-µg/m₃ or 50-µg/m₃) increased the risk of the burden of disease.

Author	Follow-up	Pollutant	Outcome measure	Population size,	Result & Effect (95% CI)
	Period			characteristics	
				pollution exposure	
Chhabra		TSPs, SO_2 ,	Bronchial, Asthma,	Low SES= M: 716,	Higher-pollution zone:
et al.	1990-2000	NO ₂	chronic bronchitis, &	F: 524; Middle SES=	2.30 (1.74, 3.05);
2001			COPD	M: 815, F: 699; High	Lower pollution zone:
				SES= M: 813, F:	2.21 (1.80, 2.71)
				574.	
Kumar et	1999 -2001	TSP, PM,	Sputum, Cough,	Study Town: M:	Chronic respiratory symptoms risk: 1.5
al. 2004		SO _x &	Wheezing problem &	1105, F: 722;	(1.2 -1.8)
		NO _x ,	Breathing problem	Reference Town: M:	Spirometric ventilatory defect risk: 2.4
				908, F: 868	(2.0 - 2.9)
Ingle et		SPM, SO _x ,	Coughing, Shortness	60 Male in exposed	Frequent coughing
al. 2005	2003-2004	NO _x , &	of breath, respiratory	group and 60 Male in	2.96 (2.4 - 3.6)
		CO	tract Irritation.	control group	
Patankar			Cough,	1542 respondents	Cough = 0.35 net effect if PM10, 50-
&	2003-2004	PM_{10} and	breathlessness,	(11+ years of age)	μ gm ₃ is increase.
Trivedi,		NO ₂	wheezing and cold,	Government	Breathlessness = 1.40 net effect if NO2
2011			and illnesses such as		20- μ gm ₃ increase.
			allergic rhinitis and		COPD= 0.70 net effect if PM10, 50-
			COPD		μgm ₃ is increase.
Ghose,		SPM,	Nose block,	450 Male in exposed	Increased respiratory symptom: 1.98
2009	2008-2009	RPM, SO_2 ,	Sneezing, Cough &	group and 410 Male	(1.29–3.66), Reduced lung function:
		$NO_x, \&$	Hyperacidity	in control group	2.23 (1.67–4.15), Higher siderophage
		PM _{10.}			numbers: 4.43 (2.54–7.68)
Central			Lung function,	A total number of	Dry cough: $1.48 (1.24 - 1.67)$; Wet
Pollution	2002 - 2005	SPM,	attacks of shortness	16,164 children aged	cough: 1.33 ($1.12 - 1.56$); Wheeze:
Control		PM_{10} ,	of breath, wheezing,	between 4-17 years	1.23 (1.04-1.45); Breathlessness on
Board,		$SO_2, \&$	dry or wet cough and	participated in this	exertion: 1.37 (1.15-1.63). Medically-
2012		NO_2	cnest tightness.	study.	diagnosed astima: $1.08 (0.87-1.42);$
		SO NO	Despiratory disassas	2000 sabool shildran	Eye initiation: 2.45 (1.50-5.74)
		$SO_2, NO_x,$	and lung function	in the age group 6.7	Dry Cough: 29.5% in Study and 21.3% in Control p=0.000 Significant
Gawanda	2012	$SPM H_2S$	and fung function	In the age group 0-7	21.5% In Control, p=0.000 Significant
Gawallue,	2013	51 101, 1125	among ciniciten	years and 15-14 years	Night Cough: 22.3% in Study and
2016				were selected	13.6% in Control p=0.000 Significant
2010					by Chi Square test
					Sneezing: 17.8% in Study and 10.2%
					in Control n=0.000 Significant by Chi
					Square test
			Impair lung function	The exposed group	Positive association between
			in children. Children	consisted of 5,671	particulate pollution and asthma attacks
Siddique	2002-2005	SPM,	suffering from	children (3,708 boys	1.28 (1.07-1.42)
et al.		RSPM,	asthma were not	and 1,963 girls). The	
(2010)		$NO_2 \&$	included in this study.	control group	
		SO_2	Only normal healthy	comprised of 2,245	
			children were	children (1,438 boys	
			recruited.	and 807 girls)	

Table 3. Short-term exposure of Ambient Air Pollution and its impact on Respiratory Morbidity

Note: SES = socioeconomic status.

Ambient Air Pollution and its impact on Respiratory Morbidity

The recent study by Patankar & Trivedi, (2011) estimate that a cough is 0.35 net increases if PM_{10} is 50-µgm₃ increased. Similarly, breathlessness is 1.40 net increases if NO₂ is 20- µgm₃ increased and COPD are 1.15 increases if NO₂ is 20- µgm₃ increased respectively. Similalry, Kumar et al. (2004) examines the association of outdoor air pollution with chronic respiratory morbidity. The result shows that the prevalence of chronic respiratory symptoms (cough, phlegm, breathlessness, or wheezing) was 27.9 and 20.3% in the industrial town and reference towns (non-industrial town), respectively (p<0.05). Similarly, obstructive ventilatory defect was 24.9 and 11.8% (p < 0.05), respectively. Central Pollution Control Board in 2012, found a similar risk among school children in Delhi. The findings were compared with rural control school children in West Bengal. It was found that Delhi had 1.7-times higher prevalence of respiratory symptoms (a dry cough, wheeze, breathlessness, chest discomfort) was 1.67 (95% CI 1.32-1.91). Another study by Ghose (2009) found that respiratory symptoms was increased (odds ratio [OR] = 1.98, 95 percent [CI], 1.29–3.66), lung function was reduced (OR = 2.23, 95 % CI, 1.67–4.15), and higher siderophage numbers (OR = 4.43, 95 % CI, 2.54 –7.68) respectively.

Author	Follow	Pollutant	Outcome	Population size,	Result & Effect (95% CI)
	-up		measure	characteristics pollution	
	period			exposure	
			Hospital visit,	Total cardio-respiratory	Asthma, observed $(7.23 + 7.82);$
			Emergency room	events: 6478 cases (In 1997),	expected $(5.96 + 4.55)$ and increase
Pande et	1997-	TSP,CO,	visit for asthma,	9334 cases (in 1998) COAD:	21.30 percent.
al. 2002	1998	SO_2 &	COAD & ACE	1240 cases (in 1997), 1944	COAD , observed $(4.37 + 4.97)$;
		NOx		cases (in 1998) Asthma: 2138	expected $(3.50 + 2.48)$ and increase
				cases (in 1997) 3151 cases (in	24.90 percent
				1998) ACE: 3100 cases	ACE, observed $(10.09 + 2 7.09);$
				(1997), 4239 cases (in 1998).	expected $(8:11 + 3.07)$ and increase
					24.30 percent
Gupta,	2004	SO ₂ , NOx,	Household health,	Selection of Households	Workdays lost due to Asthma =
2008		& SPM	Number of days	(HHs): The Low class	3.5390 (2.20)
			of illness,	category: 385 HHs. The lower	One µgm3 fall in RSPM results in a
			Hospitalization,	middle class category: 116	marginal gain of 0.00007 for a
			doctor's	HHs. High Class category:	representative person in a week.
			consultation.	104 HHs	
Liu, et al.	2006	SO_2 , PM,			Polluted and less polluted cluster:
2013		and NOx	8,340 patients	Hospitalization, Hospital visit	1.64 (1.43, 1.89);
			who visited the	(specialist pulmonary hospital	Very highly polluted and polluted
			hospital at least	with symptoms of respiratory	cluster: 1.98 (1.76 , 2.22); Very
			once in the study	disease), cardiopulmonary	highly polluted and highly polluted:
			period	diseases	0.98 (0.87, 1.09)
Maji et	2004–	PM_{10} , SO_2 ,	City based study		Mumbai: 20,955 (17,689–24,028)
al. 2016	2013	and NO_2	(Mumbai, Pune,		Pune: 3,502 (2,939–4,040) Nagpur:
			Nagpur, Thane,	Hospital admissions and	812 (681–939) Thane: 413 (347–
			Nashik,	Respiratory disease and	478) Nashik: (754–1,047)
			Aurangabad,	hospital admissions	Aurangabad: 497 (419–574)
			Solapur, Navi	cardiovascular	Solapur: 837 (710–960)
			Mumbai,	Disease (HACD).	Navi-Mumbai: 952 (803–1,093)
			Kolhapur,		Kolhapur: 251 (211–289)
			Chandrapur)		Chandrapur: 175 (147–203)

Fable. 4 Short-term	exposure of An	ıbient Air F	Pollution on	respiratory	admissions
	capobule of the		onution on	respinatory	aamoonomo

Note: Chronic obstructive pulmonary disease (COAD); ACE = acute coronary event.

Ambient Air Pollution on hospital Visit or admissions

Pande et al. (2002) found that due to high level of outdoor pollution, the emergency room visits for asthma increased by 21.30 percent; for chronic obstructive airways disease increased by 24.90 percent and acute coronary events (ACE) increased by 24.30 percent respectively. Liu et al. (2013), explain that there is a strong correlation between visits to a hospital due to respiratory disease and emission strength in the area of residence. He further explains that the relative number of patients who visited the hospital per number of inhabitants in each pollution zone is much higher in the highly polluted regions than in the less polluted regions. The result shows that polluted and less polluted zones have 1.64 (odds ratio) risk of hospital admission (95% CI: 1.43-1.89). Similarly, very highly polluted and less polluted zone have 3.25 (odds ratio) risk of hospital admission (95% CI: 0.87-1.09) respectively. In the same context, Chhabra et al. (2001) explain that the higher-pollution zone has a higher chance of respiratory morbidity 2.30 (95% CI: 1.74 - 3.05); as compared to lower pollution zone 2.21 (95% CI: 1.80 - 2.71).

Another notable study by Gupta (2006) estimates the monetary benefits to individuals from health damages avoided as reductions in air pollution. In his work suggests that a 1 μ gm₃ fall in RSPM results in a marginal gain of 0.00007 for a representative person in a week. He further found that the annual welfare gains to a working individual from reduced air pollution are Rs 130.39 due to the reduction in workdays lost and due to the reduced medical expenditures is Rs 34.43 to a person. This, constitute a total gain of Rs 212.82 million per annum of the study population. Indeed, hospital admissions and emergency room visits due to respiratory morbidity have been recognized as a more sensitive marker than mortality for assessment of the air pollution effects on human health (Gupta, 2008 & Liu, et al. 2013).

Long Term Effect:

Long-term exposures to air pollution have been associated with chronic bronchitis, markers of atherosclerosis, respiratory impairment, lung cancer, and mortality (Cropper et al. 1997; Kumar et al. 2010; Public Health and Air Pollution in Asia [PAPA], 2011; Balakrishnan et al. 2013; Ghosh & Mukherjee 2014; Tobollik et al. 2015; Gawande et al. 2016; & Maji et al. 2016). There is a significant number of new studies on long-term air pollution exposure, covering a wider range of the geographic region of India. These recent studies support the positive associations between ambient pollutants (PM₁₀, NO₂ & SO₂) and high risk of mortality. The pooled effect estimate that the excess risk per 10 μ g/m₃ increase in PM₁₀ exposure was 1.004 (1.002 to 1.007) for all-cause mortality in Tamil Nadu, and for Delhi, it was 1.0015 (1.0007 to 1.0023) [PAPA, 2011]. Overall, the available studies provide evidence that long-term exposure to ambient air pollution in India is associated with asthma cases, reduced lung function, lung cancer, non-trauma death, cardiovascular deaths, respiratory deaths and pre-mature death (Cropper et al. 1997; Pandey, et al. 2005; Sehgal et al. 2015 & Gawande, et al. 2016). In addition, case fatality also depends on age, pre-existing cardiovascular disease, obesity, low socioeconomic status smoking, and other individual factors. Individual susceptibility to the health effects of air pollution may differ, due to either biological differences or behavioral differences affecting exposure (Stockfelt, 2017).

Author	Follow-up period	Pollutant	Outcome measure	Population size, characteristics pollution exposure	Result & Effect (95% CI)
Kumar & Foster, 2007	2003-2004	PM _{2.5}	1576 household's survey	Respiratory health and Lung function	One standard deviation increase in $PM_{2.5}$ exposure results in a .79 point decline in lung function. A one standard deviation increase in current PM2.5 results in a .628 point decline in lung function.
Siddique et al. (2010)	2002-2005	SPM, RSPM, NO ₂ & SO ₂	The exposed group consisted of 5,671 children (3,708 boys and 1,963 girls). The control group comprised of 2,245 children (1,438 boys and 807 girls)	Reduced Lung function. restrictive, obstructive, and combined type of lung functions deficits.	Level of PM (76–100 µg/m3) RR 1.34 (1.06–1.68) Level of PM (101–125 µg/m3) RR 1.62 (1.40–1.87) Level of PM (>125 3.75 µg/m3) RR (3.50–4.60 µg/m3)
Sehgal et al. 2015		PM _{2.5} , CO, NO ₂ & SO ₂ .	153 workers respondents aged below 40 years with no smoking history.	Lung function, respiratory impairment, Asthma, and Heart attack	Difference between means of lung function duration of work 3–5 years 0.74 (0.25 - 1.33) duration of work >5 years 0.94 (0.48- 1.40)
Khafaie et al. (2017)	2015-2016	PM ₁₀	400 exposed group (diabetic patient) and 465 non-exposed group (healthy people)	Chronic symptoms and the pulmonary function tests (PFT)	1 SD increase in PM10 was associated with a greater risk of having dyspnea by 1.50 (1.12– 2.01). Higher exposure to PM10 was also significantly associated with lower FVC%. The size of effect for 1 SD μ g/m3 increase in PM10 concentration was 3.71 (0.48–4.99) decrease in FVC.
Arora et al. (2018)	2015	NO ₂ , PM ₁₀ , and PM _{2.5}	Out of 550 adult women aged 18–59 years in 528 houses, eventually, 500 females gave consent for participation in the study.	Altered lung function	Smokers and participants with a history of respiratory disease had 4.619 (1.075–19.851) and 3.479 (1.121–10.798) at $P < 0.05$ higher chance of abnormal forced expiratory volume in 1 (FEV1).

Table. 5 Long-term effects of Ambient Air Pollution on Lung Function

Impact on Lung Function

Lung function is an important measure of respiratory health and a predictor of cardiorespiratory morbidity and mortality (Gotschi et al. 2008). Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues (Adam et al. 2014). Over the past two decades, researchers worldwide have investigated long-term effects of ambient air pollution on lung function with most finding adverse effects (Siddiqu et al. 2017). Mehta et al. (2013) found the each $10-\mu g/m_3$ increase in long-term ambient PM_{2.5} concentrations is associated with around a 12% increased risk of acute lower respiratory infections (ALRI) incidence. Also, various studies claim that the decrease of $10-\mu g/m_3$ of PM would be safe to Years of Life Lost (YLL). Siddiqu et al. (2017) explain that increasing levels of PM₁₀ were found to be associated with increased lung function deficits of obstructive and restrictive type. The result shows that urban children are the most vulnerable group in this regard. PM10 level in ambient air was found to be associated with restrictive (OR= 1.35, 95% CI 1.07–1.58), obstructive (OR=1.45, 95% CI 1.16–1.82), and combined type of lung function deficits (OR=1.74, 95% CI 1.37–2.71) in children. Arora et al. (2018) commented that Smokers and participants with a history of respiratory disease had 4.619 (1.075–19.851) and 3.479 (1.121–10.798) at P < 0.05 higher chance of abnormal deficits lung function. Kumar & Foster, (2007) found that one standard deviation increase in current PM_{2.5} results in a .28 standard deviation reduction in lung function. Also, one standard deviation increase in current PM_{2.5} results in a .628 point decline in lung function

Author	Follow- up period	Pollutant	Outcome measure	Population size, characteristics pollution exposure	Result & Effect (95% CI)
Cropper et al. 1997	1991- 1994	TSP, SO ₂ , & NOx	NDMC Non-Trauma Deaths in different board Municipal Corporation of Delhi Urban: 34,455 New Delhi Municipal Committee: 1,999 Delhi Cantonment Board: 49	Non-trauma death, Cardiovascular Deaths & Respiratory Deaths	100 Microgram increase in TSP the Total Non-trauma Deaths was 2.3 increased and Cardiovascular Deaths was 4.3 increased (significance at 95% confidence level)
Kumar et al. 2010	2002– 2004	RSPM, NO _x and SO2	Overall in the 3- year period, 28,007 deaths were registered, with an average of 25.4 deaths per day.	Daily death due to air pollutants	Effect of air quality on mortality 1.007 (1.002 - 1.013) For every 1-km decrease in midday visibility (i.e., higher air pollution), the mortality increased by 2.4% .
PAPA, 2011	2002-2004	PM ₁₀ , NO ₂ & SO2	 Chennai: Daily all-cause mortality ranged from 60 to 229 deaths in a year, Delhi: Total daily all-natural- cause mortality varied from 126 to 368 with an average of 222 deaths per day. 	Daily all-cause mortality	Tamil Nadu: 1.004 (1.002 to 1.007) Delhi: 1.0015 (1.0007 to 1.0023)
Balakrishn an et al. 2013	2002– 2004	PM ₁₀	Data on daily total all-cause mortality were collected from the Chennai City Corporation office. (Daily mortality: N= 1096)	Daily all-cause mortality	0.44 (0.17–0.71) increase in mortality per 10 μg/m3 increase in daily average concentrations of PM10 Relative risk (RR) 1.0044 (1.002–1.007).
Dholakia et al. 2014	2005- 2012	PM ₁₀	Daily all-cause mortality data were collected from the birth and death registers of the municipal corporations of Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla.	Daily all-cause mortality	Ahmedabad 0.16 (0.31 to 0.62) Bangalore 0.22 (0.04 to 0.49) Hyderabad 0.85 (0.06 to 1.63) Mumbai 0.20% (0.10 to 0.30) Shimla 1.36% (0.38 to 3.1
Tobollik et al. 2015	2008-2011	PM	Natural Deaths per 100,000 People Male: 635, Female: 401 Cardiovascular Deaths per 100,000 People Male: 194, Female: 139	Cardiovascular Deaths, premature mortality	Life years were lost due to PM2.5: Male: 58,868 (40,003– 75,094) Women: 37,490 (25,476–47,823)

 Table. 6 Long--term effects of Ambient Air Pollution on Mortality

Death due to Acute Respiratory Infection (ARI) in India during 2004-2016

Source: Data obtain from Ministry of Health and Family Welfare (MOHFW), Government of India.

Map Prepared by: Author

Ambient Air Pollution on Mortality

We found significant associations between ambient air pollution levels and mortality from respiratory infection, cardiopulmonary diseases and from lung cancer. Each 100 μ g/m₃ increase in total suspended particles (TSP) is associated with only a 2.3 percent change in total non-trauma death; 4.3 percent change in cardiovascular mortality and 3.1 percent change in respiratory infection (Cropper et al. 1997). A similar result is found by Balakrishnan et al. (2013) estimated 0.44% (95% confidence interval 0.17 – 0.71) increase in mortality per 10 μ g/m₃ increase in daily average concentrations of PM₁₀. Tobollik et al. (2015) found that a decrease of 10% in PM concentrations would save 15,904 (95% CI: 11,090–19,806) life years. He also found 6,108 (CI: 4150–7791) of the 81,636 total natural deaths in the urban population of Kerala due to PM_{2.5}. Stratified by sex and in absolute numbers, more attributable deaths were modeled for men with 3,613 (CI: 2455–4609) deaths, as compared to 2495 (CI: 1695–3183) deaths for women. Long-term exposure to PM_{2.5} was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) and lung cancer than from non-malignant respiratory diseases (pooled estimate 1090.4 death in India (95% UI 936.6–1254.8) [Cohen et al. 2017].

Maji et al. (2017) observed that cardiovascular death due to pollutants (PM_{10} , SO_2 , and NO_2) in Agra city was 908 (95% CI: 412–1372) in 2002 followed by 1193 (95% CI: 559–1771) in 2006, 1004 (95% CI: 474–1496) in 2010 and 1095 (95% CI: 517–1632) in 2014. Overall, the available studies provide evidence that long-term exposure to ambient air pollution in India is associated with asthma cases, reduced lung function, lung cancer, non-trauma death, cardiovascular deaths, respiratory deaths and pre-mature death (Cropper et al. 1997; Pandey, et al. 2005; Sehgal et al. 2015 & Gawande, et al. 2016).

Ambient air Pollution and Premature Mortality

Over the past decades, numerous epidemiological studies and meta-analysis, estimating an increased premature mortality due to short- and long-term exposure to PM (Guttikunda & Jawahar, 2012; Silva et al. 2013; Ghude et al. 2016). In India, about 0.62 million premature excess number of death cases occurred due to outdoor air pollution and became the fifth leading cause of death after high blood pressure, indoor air pollution, tobacco smoking, and poor nutrition in 2012 (Maji, 2016). Chowdhury & Dey (2016) estimate of 486,100 (73,200–1,254,800) annual premature deaths in India but it is lower than some of the recent estimates for India as part of global study (Pope et al. 2002; Cohen et al. 2006; Apte et al. 2015) because of the difference in methodology. Murray et al. (2015) in his study using a raw estimate of PM_{25} and he calculate annual premature death of 587,000 reported for India. Even at the state level, the scenario of premature death is changing. Again, Chowdhury & Dey (2016) identified that Indian states of Uttar Pradesh, Bihar, West Bengal, Maharashtra and the Delhi metropolitan area are the most vulnerable and contribute 25%, 15%, 7.6%, 5.4% and 1.7% to total all- India premature death from ambient PM_{2.5} exposure in the previous decade. Guttikunda et al. (2014) explain that due to high concentrations of PM_{2.5} the premature deaths in greater Chennai and the greater Vishakhapatnam regions was 4,850 and 1,250 respectively. For comparison, Guttikunda & Jawahar, (2012) estimated 3,600 for Pune, 4,950 for Ahmedabad, 1800 for Indore, and 1250 for Surat. For cities similar in area and size, the estimated premature mortality in Guttikunda and Goel (2013) estimated 7,350 to 16,200 premature deaths for Delhi in 2010. Our systematic reviews suggest that the PM_{2.5} considerably impact pre-mature mortality and life expectancy in India. In fact, the economic cost of estimated premature mortalities associated with PM2.5 and O3 exposure is about 640 (350–800) billion USD in 2011, which is a factor of 10 higher than total expenditure on health by the public and private expenditure (Ghude et al. 2016).

State/region/ City	States/Country	Study year	Pollutant	Premature mortality	Projection of Premature mortality	Study Design	Reference		
National Level Estimation									
All India	National Level	1990	PM_{10}	438000	-	Time series	IHME, 2013		
All India	National Level	2010-2011	PM _{2.5}	80,000-115,000	-	Time series	Guttikunda & Jawahar, 2014		
All India	National Level	2010	PM _{2.5} and O ₃	644993	-	Cohort Study	Lelieveld et al. 2015		
All India	National Level	2010	PM and Ozone	69000	-	Time series	OECD, 2014		
All India	National Level	2011	PM _{2.5}	570000	-	Modelling Study	Ghude et al. 2016		
All India	National Level	2013	PM _{2.5}	397 000	-	Cohort Study	Silva et al. 2013		
All India	National Level	2016	PM _{2.5}	486100	-	Cohort Study	Chowdhury & Dey, 2016		
All India	National Level	2031-2040	PM _{2.5}		9100-12300 Per year	Cohort Study	Chowdhury et al. 2018		
Northern India	North India	2018	O3	37800	-	Cohort Study	Karambelas et al. 2018		
	State Level Estimation								
State Level	Uttar Pradesh	2011	PM _{2.5}	85500	-	Bottom-up Modelling Study	Ghude et al. 2016		
State Level	West Bengal	2011	PM _{2.5}	51300	-	Bottom-up Modelling Study	Ghude et al. 2016		
State Level	Maharashtra	2011	PM _{2.5}	57000	-	Bottom-up Modelling Study	Ghude et al. 2016		
State Level	Bihar	2011	PM _{2.5}	45600	-	Bottom-up Modelling Study	Ghude et al. 2016		
			City Le	vel Estimatio	n				
Delhi	National Capital	2001	PM_{10}	5000	-	Time series	Nema and Goyal (2010)		
Kolkata	West Bengal	2001	PM ₁₀	4300	-	Time series	Nema and Goyal (2010)		
Mumbai	Maharashtra	2001	PM ₁₀	2000	-	Time series	Nema and Goyal (2010)		
Chennai	Tamil Nadu	2001	PM ₁₀	1300	-	Time series	Nema and Goyal (2010)		
Ahmedabad	Gujarat	2001	PM ₁₀	4300	-	Time series	Nema and Goyal (2010)		
Kanpur	Uttar Pradesh	2001	PM_{10}	3200	-	Time series	Nema and Goyal (2010)		
Surat	Gujarat	2001	PM_{10}	1900	-	Time series	Nema and Goyal (2010)		
Pune	Maharashtra	2001	PM_{10}	1400	-	Time series	Nema and Goyal (2010)		
Bhopal	Madhya Pradesh	2001	PM_{10}	1800	-	Time series	Nema and Goyal (2010)		
Mumbai	Maharashtra	2000	PM_{10}	454	-	Case Study	Joseph et al. 2003		
Kolkata	West Bengal	2010	SPM	10000	-	Case-Control Design	Ghose, 2009		
Pune	Maharashtra	2010	PM_{10}	3600	4300 (In the year of 2020)	Intervention Study	Guttikunda & Jawahar, 2012		
Chennai	Tamil Nadu	2010	PM_{10}	3950	6000 (In the year of 2020)	Intervention Study	Guttikunda & Jawahar, 2012		
Indore	Madhya Pradesh	2010	PM ₁₀	1800	2500 (In the year of 2020)	Intervention Study	Guttikunda & Jawahar, 2012		

Table .7 Estimated Pre-mature Mortality due to Ambient Air Pollution in India

Continue.

City/region	States/Country	Study year	Pollutant	Premature mortality	Projection of Premature mortality	Study Design	Reference
		I	l				
Ahmedabad	Gujarat	2010	PM ₁₀	4950	7850 (In the year of 2020	Intervention Study	Guttikunda & Jawahar, 2012
Surat	Gujarat	2010	PM ₁₀	1250	2050 (In the year of 2020)	Intervention Study	Guttikunda & Jawahar, 2012
Rajkot	Gujarat	2010	PM_{10}	300	670 (In the year of 2020)	Intervention Study	Guttikunda & Jawahar, 2012
Delhi	National Capital	2010	PM _{2.5} & PM ₁₀	7,350–16,200	-	Bottom-up Modelling Study	Guttikunda & Goel, 2013
Delhi	National Capital	2010	PM _{2.5} & PM ₁₀	19700	-	NA	Times of India, 2015
Mumbai	Maharashtra	2010	PM _{2.5} and O ₃	10200	-	NA	Times of India, 2015
Kolkata	West Bengal	2010	PM _{2.5} and O ₃	13500	-	NA	Times of India, 2015
Hyderabad	Telangana	2010-11	PM _{2.5}	3700	-	Modelling Study	Guttikunda & Kopakka, 2014
Varanasi	Uttar Pradesh	2011	PM ₁₀	5700	-	Time series	Jain & Chowdhury, 2017
Chennai	Tamil Nadu	2012	PM _{2.5}	4850	-	Time series	Guttikunda et al. 2015
Vishakhapatnam	Andhra Pradesh	2012	PM _{2.5}	1250	-	Time series	Guttikunda et al. 2015
Agra	Uttar Pradesh	2016	PM _{2.5}	2421	-	Cohort Study	Dey, 2018
Allahabad	Uttar Pradesh	2016	PM _{2.5}	1443	-	Cohort Study	Dey, 2018
Gaya	Bihar	2016	PM _{2.5}	710	-	Cohort Study	Dey, 2018
Gorakhpur	Uttar Pradesh	2016	PM _{2.5}	914	-	Cohort Study	Dey, 2018
Kanpur	Uttar Pradesh	2016	PM _{2.5}	4173	-	Cohort Study	Dey, 2018
Lucknow	Uttar Pradesh	2016	PM _{2.5}	4127	-	Cohort Study	Dey, 2018
Meerut	Uttar Pradesh	2016	PM _{2.5}	2044		Cohort Study	Dey, 2018
Muzaffarpur	Bihar	2016	PM _{2.5}	531		Cohort Study	Dey, 2018
Patna	Bihar	2016	PM _{2.5}	2841	-	Cohort Study	Dey, 2018
Ranchi	Jharkhand	2016	PM _{2.5}	1096	-	Cohort Study	Dey, 2018
Varanasi	Uttar Pradesh	2016	PM _{2.5}	1581	-	Cohort Study	Dey, 2018

Table 8. Trends of Morbidity	y. Mortality and DALYs due to a	ambient air pollution in Indi	a during 1990-2015
Tuble of Hemab of Motorbian	, nortanty and Diff is add to	ampione an ponation in ma	

	19	90	1	.995	20	00	2005	5	2010)	2015	
Morbidity, Mortality and DALYs	Total Cases	Global Share (%)	Total Cases	Global Share (%)	Total Cases	Global Share (%)	Total Cases	Global Share (%)	Total Cases	Global Share (%)	Total Cases	Global Share (%)
Numbers of deaths attributable to PM2.5 exposure	7,37,400	21.21	7,95,200	21.76	8,57,300	22.60	8,95,900	22.77	9,57,000	24.26	10,90,400	25.71
Numbers of deaths from COPD attributable to exposure to ozone for all ages and sexes.	43,500	27.50	54,400	29.84	66,800	33.62	73,000	35.27	88,100	40.54	1,07,800	42.44
Age standardized DALY rates (DALYs/100,000 people) due to PM2.5 exposure	4,100	(2500 /100,000 people)	3,900	(2300/ 100,000 people)	3,700	(2100/ 100,000 people)	3,300	(1900/ 100,000 people)	3,000	(1600/ 100,000 people)	2,900	(1500/ 100,000 people)

Source: The State of Global Air, 2017

Table 9. Estimated health impact in DALYs of ambient air pollution in India, 2012								
Health end-points	Total Cases	Total DALYs						
Premature mortality adults	1,09,340	8,20,049						
Mortality children under 5	7,513	2,55,431						
Chronic bronchitis	48,483	1,06,663						
Hospital admissions	3,72,331	5,957						
Emergency room visits/Outpatient hospital visits	73,03,897	32,868						
Restricted activity days	1,231,020,030	3,69,306						
Lower respiratory illness in children	162,55,360	1,05,660						
Respiratory symptoms	3,917,855,052	2,93,839						
TOTAL		19,89,773						

Source: The World Bank, 2012

Discussion:

In evaluating the literature, there appears to be a consistent and significant, effect of AAP on human health. There is a large number of new studies on short-term and long-term air pollution exposure, covering a wider geographic area of India. However, through our literature review, we found that direct estimation of the short-term and long-term effects of air pollution in India has rarely been attempted. We found the significant heterogeneity in AAP exposure on human health in across studies, likely related to differences in particle composition, population characteristics, and methodological differences in particular region and confounder control. Several studies have a claim that in the last two decades, due to AAP exposure the cases of respiratory and cardiovascular morbidity (including heart and brain), hospital admission/visit for respiratory causes and incidence of pre-mature mortality have increased.

The rapid growth in the industrial, power, and transportation sectors nationally, combined with growth in urbanization, both planned and unplanned, have contributed to the rapid increase in AAP levels in India. Together, the substantial growth in the number of automobiles, iron and steel and coal-based power production are expected to significantly contribute to the worsening of air quality in the next decade in India (Gordon et al. 2018). For more than half of the cities of India included in the National Air Quality Monitoring Program (NAMP), two critical measures, PM_{2.5} and PM₁₀ (daily and annual levels), routinely exceed Interim Target-1 levels (75 and 150 μ g/m₃ for daily and 35 and 70 μ g/m₃ annually, respectively), as designated by the WHO. Interestingly, the results of a recent Lancet study by Lelieveld et al. (2018) found that total global mortality attributable to air pollution is 270000 deaths per year. Out of that 6 percent were from O₃, and 4.28 million (94%) were from PM_{2.5}. Notably, the contribution of O₃ in India was about 10% (96000 deaths per year). From the systematic review we found that higher ambient concentrations of PM_{2.5} /PM₁₀, SPM, O₃ and NO_X are responsible for an excess number of mortality and morbidity in the various megacities of India (Gupta, 2008; Ghose, 2009; Siddique et al. 2010; Guttikunda & Jawahar, 2012; Ghude et al. 2016; Gawande, et al. 2016; Arora et al. 2018). Infect the recent systematic review and meta-analysis at the global level which is also cooperated India suggested that Particulate Matter (PM) is the primary responsible for respiratory morbidity and mortality. But we also found the heterogeneity among studies and their outcome because of existed in numerous factors such as health outcome definition, length of exposure, climate of the specific city, smoking status, previous respiratory diseases, and using different study design and methodology.

In this systematic review, we found no cohort studies that reported mortality estimates for India populations exposed over the long term to high concentrations of air pollution. However, only one cohort study is explaining the maternal health risk due to ambient air pollution (Magsumbol et al. 2014). There is also evidence from time series and cross-sectional studies conducted in different cities in India of mortality from a chronic disease associated with long-term exposure to PM and other pollutants (Cropper et al. 1997; Kumar et al. 2010; Dholakia et al. 2014; & Tobollik et al. 2015). Furthermore, ambient air pollution makes a significant contribution to the variation in daily causes of mortality and pre-mature mortality, and this relation is needed to be understood in the Indian context. From the systematic review, we conclude that $PM_{2.5}$ and PM_{10} as the primarily responsible for deleterious health problems, including asthma, bronchitis, chronic obstructive pulmonary disease, pneumonia, upper respiratory tract and lower respiratory tract disorders. A recent study suggests that fine PM is a risk factor for premature mortality, cardiopulmonary and lung cancer mortality (Jayanthi et al. 2006; Kazimuddin et al. 2000; Silva et al. 2013; Lelieveld et al. 2015 & Dey, 2018).

Conclusions and Recommendations

Ambient air pollutions have one of the major impacts on human health, triggering, and inducing many diseases leading to high morbidities and mortalities, particularly in the developing countries such as India. Therefore, air pollutions control is vital and should be on the top of priority list of the governments. If India manages to meet the national air quality standard in all the cities exceeding Indian standard, annual premature death will be reduced. The policy makers and legislators must update all laws and regulations related to air pollutions. An effective environmental protection organization should have enough budgets for administration, research, development, monitoring, and full control of the environment including ambient air pollution. The pollution control authorities in India urgently need proper policies to elevate ambient air quality in terms of $PM_{2.5}$ and PM_{10} level to decrease the burden of diseases due to air pollution. Further research on the health effects of ambient air pollution should be very helpful to the researcher, public health officials, industrialists, and the general public.

Abbreviation

PM₁₀ Particulate matter ≤10 µm in aerodynamic diameter PM_{2.5} Particulate matter ≤2.5 µm in aerodynamic diameter NO₂ Nitrogen dioxide O₃ Ozone SO₂ Sulfur dioxide TSP Total suspended particles CO Carbon monoxide RSPM Respirable Suspended Particulate Matter SPM suspended particulate matter H₂S Hydrogen sulfide DALYs The disability-adjusted life year WHO World Health Organization

Reference:

- Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. *Environmental science & technology*, *49*(13), 8057-8066.
- Abelsohn, A., & Stieb, D. M. (2011). Health effects of outdoor air pollution: approach to counselling patients using the Air Quality Health Index. *Canadian Family Physician*, 57(8), pp881-887.
- Adam, M., Schikowski, T., Carsin, A. E., Cai, Y., Jacquemin, B., Sanchez, M., ... & Al Kanani, Z. (2014). Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and metaanalysis. *European Respiratory Journal*, erj01300-2014.
- Arora, S., Rasania, S. K., Bachani, D., Gandhi, A., & Chhabra, S. K. (2018). Air pollution and environmental risk factors for altered lung function among adult women of an urban slum area of Delhi: A prevalence study. *Lung India: official organ of Indian Chest Society*, 35(3), 193.
- Balakrishnan, K., Ganguli, B., Ghosh, S., Sambandam, S., Roy, S. Sen, & Chatterjee, A. (2013). A spatially disaggregated time-series analysis of the short-term effects of particulate matter exposure on mortality in Chennai, India. *Air Quality, Atmosphere and Health*, 6(1), pp111–121.
- Beverland, I. J., Cohen, G. R., Heal, M. R., Carder, M., Yap, C., Robertson, C., & Agius, R. M. (2012). A comparison of short-term and long-term air pollution exposure associations with mortality in two cohorts in Scotland. *Environmental health perspectives*, 120(9), 1280.
- Chhabra, S. K., Chhabra, P., Rajpal, S., & Gupta, R. K. (2001). Ambient air pollution and chronic respiratory morbidity in Delhi. *Archives of Environmental Health*, *56*(1), pp58–64.
- Central Pollution Control Board, (2012) Study on Ambient Air Quality, Respiratory Symptoms and Lung Function of Children in Delhi. *Environmental Health*, (August), p208.
- Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D., *et al.* (2005). The global burden of disease due to outdoor air pollution. *Journal of Toxicology and Environmental Health, Part A*, 68(13-14), pp1301-1307.
- Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., *et al.* (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. *The Lancet*, 389(10082), pp1907–1918.
- Chowdhury, S., Dey, S., & Smith, K. R. (2018). Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. *Nature Communications*, 9(1),p 318.
- Chowdhury, S., & Dey, S. (2016). Cause-specific premature death from ambient PM_{2.5} exposure in India: Estimate adjusted for baseline mortality. *Environment International*, *91*, pp283–290.
- Cropper, M. L., Simon, N. B., Alberini, A., & Sharma, P. K. (1998). The Health Effects of Air Pollution in Delhi, India. *World Health*, pp1–44.
- Dey S. (2018) Know what you are breathe: Air pollution Statistics for north Indian cities. A study by Centre for Environment and Energy Development in collaboration with IIT Delhi.
- Dey, S., Di Girolamo, L., van Donkelaar, A., Tripathi, S. N., Gupta, T., & Mohan, M. (2012). Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: A remote sensing approach. *Remote Sensing of Environment*, 127, pp153-161.
- Dholakia, H. H., Bhadra, D., & Garg, A. (2014). Short term association between ambient air pollution and mortality and modification by temperature in five Indian cities. *Atmospheric environment*, *99*, pp168-174.
- Gawande, U., Kadam, S., Khanvilkar, A., Potdar, G., & Salvitthal, H. (2016). Effects of Ambient Air Pollution on RespiratoryHealth of Children: Findings From a Cross-Sectional Study in Chandrapur, Maharashtra, India. Int J Cur Res Rev, 8(2), pp36–45.
- Ghosh, A., & Mukherji, A. (2014). Air Pollution and Respiratory Ailments among Children in Urban India: Exploring Causality. *Economic Development and Cultural Change*, 63(1), pp191–222.
- Guttikunda, S. K., & Jawahar, P. (2012). Application of SIM-air modeling tools to assess air quality in Indian cities. *Atmospheric Environment*, 62, pp 551-561
- Ghose, M. K. (2009). Air pollution in the city of Kolkata: Health effects due to chronic exposure. *Environmental Quality Management*, 19(2), pp53-70.

- Guttikunda, S. K., & Goel, R. (2013). Health impacts of particulate pollution in a megacity-Delhi, India. *Environmental Development*, 6(1), pp8–20.
- Gupta, U. (2008). Valuation of urban air pollution: A case study of Kanpur City in India. Environmental and Resource *Economics* (Vol. 41).
- Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, pp449–460.
- Gurjar, B. R., Jain, A., Sharma, A., Agarwal, A., Gupta, P., Nagpure, A. S., & Lelieveld, J. (2010). Human health risks in megacities due to air pollution. *Atmospheric Environment*, 44(36), pp4606–4613.
- Ghude, S., Chate, D. M., Jena, C., Beig, G., Kumar, R., *et al.* (2016). Premature mortality in India due to PM_{2.5} and ozone exposure. *Geophysical Research Letters*, pp4650–4658.
- Guttikunda, S. K., Goel, R., Mohan, D., Tiwari, G., & Gadepalli, R. (2015). Particulate and gaseous emissions in two coastal cities—Chennai and Vishakhapatnam, India. *Air Quality, Atmosphere and Health*, 8(6), pp559–572.
- Guttikunda, S. K., & Kopakka, R. V. (2014). Source emissions and health impacts of urban air pollution in Hyderabad, India. *Air Quality, Atmosphere and Health*, 7(2), pp195–207.
- Götschi, T., Heinrich, J., Sunyer, J., & Künzli, N. (2008). Long-term effects of ambient air pollution on lung function: a review. *Epidemiology*, 690-701.
- Gordon, T., Balakrishnan, K., Dey, S., Rajagopalan, S., Thornburg, J., Thurston, G., ... & Salvi, S. (2018). Air pollution health research priorities for India: Perspectives of the Indo-US Communities of Researchers. *Environment international*, 119, 100-108.
- Haque, M. S., & Singh, R. B. (2017). Air Pollution and Human Health in Kolkata, India: A Case Study. Climate, 5(4), p77.
- IHME, 2013. The Global Burden of Disease 2010: Generating Evidence and Guiding Policy. Institute for Health Metrics and Evaluation, Seattle, USA.
- IHME, 2017 "*The State of global air: A special report on global exposure to air pollution and its disease burden*" IHME & Institute for Health Metrics and Evaluation.
- Ingle, S. T., Pachpande, B. G., Wagh, N. D., Patel, V. S., & Attarde, S. B. (2005). Exposure to vehicular pollution and respiratory impairment of traffic policemen in Jalgaon City, India. *Industrial health*, 43(4), pp656-662.
- Jayanthi, V., & Krishnamoorthy, R. (2006). Key airborne pollutants Impact on human health in Manali, Chennai. *Current Science*, 90(3), pp405–413.
- Jain, V., Dey, S., & Chowdhury, S. (2017). Ambient PM_{2.5} exposure and premature mortality burden in the holy city Varanasi, India. *Environmental Pollution*, 226, pp182–189.
- Joseph, A., Sawant, A., & Srivastava, A. (2003). PM₁₀ and its impacts on health a case study in Mumbai. International Journal of *Environmental Health Research*, *13*(2), pp207–214.
- Kazimuddin, A., Banerjee, L. (2000). Fighting For Air. Down to Earth, July 31.
- Khafaie, M. A., Salvi, S. S., Yajnik, C. S., Ojha, A., Khafaie, B., & Gore, S. D. (2017). Air pollution and respiratory health among diabetic and non-diabetic subjects in Pune, India—results from the Wellcome Trust Genetic Study. *Environmental Science and Pollution Research*, 24(18), 15538-15546.
- Karambelas, A., Holloway, T., Kinney, P. L., Fiore, A. M., Fries, R. De, Kiesewetter, G., & Heyes, C. (2018). Urban versus rural health impacts attributable to PM2.5 and O3 in northern India. Supplementary Information. *Environmental Research Letters*, 13, 064010.
- Kaushik, C. P., Ravindra, K., Yadav, K., Mehta, S., & Haritash, A. K. (2006). Assessment of ambient air quality in urban centres of Haryana (India) in relation to different anthropogenic activities and health risks. *Environmental* monitoring and assessment, 122(1-3), pp27-40.
- Kesavachandran, C. N., Kamal, R., Bihari, V., Pathak, M. K., & Singh, A. (2015). Particulate matter in ambient air and its association with alterations in lung functions and respiratory health problems among outdoor exercisers in National Capital Region, India. *Atmospheric Pollution Research*, 6(4), pp618-625.
- Kumar, R., Sharma, S., Thakur, J., Lakshmi, P. V. M., Sharma, M., & Singh, T. (2010). Association of air pollution and mortality in the ludhiana city of India: A time-series study. *Indian Journal of Public Health*, 54(2), p98.
- Kumar, N., & Foster, A. (2007). Respiratory Health Effects of Air Pollution in Delhi and its Neighboring Areas, India. *Environmental Monitoring & Assessment*, 135,pp 313-25.

- Kumar, R., Sharma, M., Srivastva, A., Thakur, J. S., Jindal, S. K., & Parwana, H. K. (2004). Association of outdoor air pollution with chronic respiratory morbidity in an industrial town in northern India. Archives of Environmental Health: An International Journal, 59(9), pp471-477.
- Liu, H.-Y., Bartonova, A., Schindler, M., Sharma, M., Behera, S. N., Katiyar, K., & Dikshit, O. (2013). Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India. Archives of Environmental & Occupational Health, 68(4), pp204-217.
- Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. *Nature*, 525(7569), pp367–371.
- Lelieveld, J., Haines, A., & Pozzer, A. (2018). Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. *The lancet Planetary health*, 2(7), e292-e300.
- Mani, M., Markandya, A., Sagar, A., & Strukova, E. (2012). An analysis of physical and monetary losses of environmental health and natural resources in India. The World Bank.
- Maji, K. J., Dikshit, A. K., Deshpande, A., & Speldewinde, P. C. (2016). Human health risk assessment due to air pollution in ten urban cities in Maharashtra, India. *Cogent Environmental Science*, *12*(1),p 0.
- Magsumbol, M. S., Singh, A., Ghosh, A., Kler, N., Garg, P., et al. (2014). Association of air pollution on birth outcomes in New Delhi - a pilot study on the potential of HMIS data for environmental public health tracking. *Journal* of Medical Informatics, 8(2), pp52–56.
- Mehta, S., Shin, H., Burnett, R., North, T., & Cohen, A. J. (2013). Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Quality, Atmosphere & Health, 6(1),pp 69-83.
- Murray, C., et al., (2015). Global, regional and national comparative risk assessment of 76 behavioural, environmental, occupational and metabolic risks or clusters of risks in 188 countries 1990–2013 : a systematic analysis for the GBD Background. Lancet 6736, 1–27. http://dx.doi.org/10.1016/S0140-6736 (15)00128-2.
- OECD. Publishing. (2014). The Cost of Air Pollution: Health Impacts of Road Transport. OECD Publishing.
- Nagpure, A. S., Gurjar, B. R., & Martel, J. C. (2014). Human health risks in national capital territory of Delhi due to air pollution. *Atmospheric Pollution Research*, *5*(3), pp 371-380.
- Nema, P., Goyal, S.K., 2010. Estimation of health impacts due to PM10 in major Indian cities (Chapter 11). Air Pollution: Health and Environmental Impacts. CRC Press e Taylor & Francis Group, pp. 297e310.
- Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *Jama*, 287(9), 1132-1141.
- Public Health and Air Pollution in Asia (2011). Coordinated Studies of Short-Term Exposure to Air Pollution and Daily Mortality in Two Indian Cities, HEI Public Health and Air Pollution in Asia Program with a Critique. *The HEI Health Review Committee Research Report 157 Health Effects Institute Boston, Massachusetts.*
- Patankar, A. M., & Trivedi, P. L. (2011). Monetary burden of health impacts of air pollution in Mumbai, India: Implications for public health policy. *Public Health*, *125*(3), pp157–164.
- Pande, J. N., Bhatta, N., Biswasl, D., Pandey, R. M., Ahluwalia, et al. (2002). Outdoor Pollution and Emergency Room Visits at a Hospital in Delhi. *Indian J Chest Dis Allied Sci*, 44, pp13–191.
- Pandey, J. S., Kumar, R., & Devotta, S. (2005). Health risks of NO2, SPM and SO2in Delhi (India). *Atmospheric Environment*, 39(36), pp6868–6874.
- Prasad, D., & Sanyal, S. (2016). A Study of Air Quality and its Effect on Health: A Geographical Perspective of Lucknow city. Space and Culture, India, 4(1), p51.
- Rajarathnam, U., Sehgal, M., Nairy, S., Patnayak, R. C., Chhabra, S. K., & Ragavan, K. V. (2011). Part 2. Time-series study on air pollution and mortality in Delhi. Research Report (Health Effects Institute), (157), pp47-74.
- Sehgal, M., Suresh, R., Sharma, V. P., & Gautam, S. K. (2015). Assessment of outdoor workers' exposure to air pollution in Delhi (India). *International Journal of Environmental Studies*, 72(1), pp99–116.

- Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J. F., *et al.* (2013). Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. *Environmental Research Letters*, 8(3).
- Siddique, S., Banerjee, M., Ray, M. R., & Lahiri, T. (2010). Air pollution and its impact on lung function of children in Delhi, the capital city of India. *Water, Air, & Soil Pollution, 212*(1-4), 89-100.
- Szyszkowicz, M. (2018). Concentration–response functions for short-term exposure and air pollution health effects. *Environmental Epidemiology*, 2(2), e011.
- Stockfelt, L., Andersson, E. M., Molnár, P., Gidhagen, L., Segersson, D., Rosengren, A., ... & Sallsten, G. (2017). Longterm effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden. *Environmental research*, 158, 61-71.
- Tobollik, M., Razum, O., Wintermeyer, D., & Plass, D. (2015). Burden of Outdoor Air Pollution in Kerala, India—A First Health Risk Assessment at State Level. *International journal of environmental research and public health*, 12(9), pp10602-10619.
- Time of India (2015). Delhi will record world's largest number of premature deaths due to air pollution <u>https://timesofindia.indiatimes.com/india/Delhi-will-record-worlds-largest-number-of-premature-deaths-due-to-air-</u> pollution/articleshow/49000678.cms
- World Health Organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease.<u>http://www.who.int/phe/publications/air-pollution-global-assessment/en/</u>
- Zhang, H., Niu, Y., Yao, Y., Chen, R., Zhou, X., & Kan, H. (2018). The impact of ambient air pollution on daily hospital visits for various respiratory diseases and the relevant medical expenditures in Shanghai, China. *International journal of ronmental research and public health*, 15(3), p425.