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BACKGROUND 

Diabetes is the seventh leading cause of death in the United States (US) and has been 

implicated in the etiology of several other leading causes of death as well (1). Diabetes was 

responsible for more than 250,000 deaths in 2015 (2) and, in 2012, imposed an economic burden 

of approximately $245 billion stemming from direct medical costs and loss of productivity (3). 

The expected rise in diabetes prevalence among the US adult population, from 14% in 2010 to an 

estimated 21% in 2050 (4), will impose even greater burdens on the nation’s economic and 

healthcare systems, as well as patients and their families.  

Age, smoking behavior, body mass index (BMI), and levels of physical activity have all 

been implicated as risk factors for diabetes (5). Family history and genetic variants have also 

been linked to increased diabetes risk (6), but it has been suggested that their influence on 

diabetes is greatest for middle-aged individuals between the ages of 35 and 60 (7), plausibly 

suggesting an increased importance of behavioral or lifestyle characteristics in later life for 
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diabetes onset at older ages. Thus, exploring how modifiable risk factors and genetic risk 

influence diabetes onset in later life may aid in our understanding of the progression of diabetes 

as well as the utility of targeting specific modifiable risk factors for intervention among 

individuals who vary in their genetic predisposition. 

Two prior studies, one using the Framingham Offspring Study (8) and one using cohorts 

of Swedish and Finnish subjects (9), found that genetic makeup plays a modest but significant 

role in predicting new cases of diabetes, even after accounting for common risk factors. These 

studies highlight the utility of incorporating a genetic component into analyses looking at the 

associations between risk factors and diabetes onset. However, these studies were each limited to 

fewer than 20 single nucleotide polymorphisms (SNPs). Increased collection of genetic material 

over the past decade has led to advances in genome-wide association studies (GWASs) and the 

construction of polygenic risk scores (PGSs) which can elucidate a better understanding of the 

genetic risk for diabetes.  

Our aim in this study was to examine the effects of genetic risk of diabetes and later-life 

behavioral and lifestyle characteristics associated with diabetes. We used data from the national 

population-based and longitudinal US Health and Retirement Study (HRS). We conducted a 

time-to-event analysis with time-varying covariates to better understand how genetic endowment 

combines with changing behavioral characteristics to shape risk of diabetes onset for non-

Hispanic whites and non-Hispanic blacks. We hypothesized that a higher genetic predisposition 

for diabetes would be associated with a higher risk of diabetes onset for both race groups. 

Furthermore, we analyzed which behavioral and lifestyle characteristics would still have 

statistically significant relationships with diabetes onset even after controlling for the genetic 

component, as those with persisting significant associations may be the most critical in terms of 



clinical recommendations for diabetes management. 

 

METHODS 

Study population 

The HRS is a nationally representative and longitudinal study that has biennially assessed 

the financial, physical, and mental well-being of community-dwelling adults aged 50+ and their 

spouses since 1992. Since the conception of the HRS, new participants have been added to the 

survey. The HRS is sponsored by the National Institute on Aging (NIA U01AG009740) and is 

conducted by the University of Michigan (10). 

From 2006 to 2012, the HRS collected genetic data from a sub-sample of non-Hispanic 

white and non-Hispanic black respondents who consented and provided salivary 

deoxyribonucleic acid (DNA). Details on the sample selection and consent procedures are 

available elsewhere (11). We restricted our analysis to the non-Hispanic white and black 

respondents with available genetic information, and followed these respondents from 1992 to 

2014. We linked the HRS data files compiled by RAND Corporation (12) with the HRS genetic 

data containing a PGS for diabetes (11). Descriptions of the assay and calculation procedures are 

detailed elsewhere (11). 

Measures 

Outcome. Incident diabetes was determined by a respondent’s affirmative response to the 

question: “Since we last talked to you, that is since [last interview date], has a doctor ever told 

you that you have diabetes or high blood sugar?” Age was censored for individuals who did not 



report diabetes by the last wave in 2014 or who died without ever reporting diabetes. 

Exposure. GWASs have identified a large number of genetic variants, typically SNPs, 

associated with a wide range of health outcomes and behaviors. However, the majority of these 

variants have a small effect and typically correspond to a small fraction of truly associated 

variants, meaning that they have limited predictive power. A PGS aggregates and weights this 

information into a single measure linked to a phenotype of interest (13). We used a PGS for 

diabetes which was constructed by the HRS researchers using the GWAS meta-analysis 

conducted by Morris and colleagues (14). The GWASs in the meta-analysis used to estimate 

SNP weights were derived from analyses based on European ancestry groups; thus, the 

predictive power of the PGSs for African ancestry groups may vary (13, 15). To account for this, 

PGSs were standardized by the HRS for each ethnicity to a standard normal curve (mean = 0, 

standard deviation [SD] = 1). This PGS z-score allows for a simple interpretation – a one SD 

increase in the PGS versus the change of one risk allele within a race group. In our primary 

analysis, PGS was included as a continuous standardized score. We also performed sensitivity 

analyses with the PGS as a dichotomous variable (z-score < 0, z-score ≥ 0) and as a categorical 

variable splitting the PGS into tertiles. 

Covariates. We selected covariates based on their anticipated association with diabetes. 

Sociodemographic covariates included sex (male, female), race (non-Hispanic white, non-

Hispanic black), foreign born (yes, no), level of education (less than high school, high 

school/GED, some college, college or above), and partnership status (married/partnered, not 

married/partnered). Measures of economic well-being included employment status (employed, 



unemployed, retired, disabled, not in labor force), household income (log-transformed),1 

household wealth (log-transformed),2 and whether the respondent had Medicare (yes, no), 

Medicaid (yes, no) or another form of health insurance (yes, no). We assessed behavioral and 

lifestyle characteristics by including respondent’s self-report of BMI (continuous), exercise 

(waves 1-6: report of vigorous activity at least three times per week; waves 7-12: report of 

vigorous activity more than once per week), smoking status (never smoker, current smoker, 

former smoker), and alcohol consumption (report of consuming 3+ alcoholic drinks on days they 

drank). Extreme values of BMI (BMI < 10, BMI > 75), were recoded as missing values. We also 

included self-reported binary indicators of whether the respondent had been diagnosed between 

waves with high blood pressure, cardiovascular disease, and arthritis, which are important health 

comorbidities for diabetes (16-18). For the purpose of this analysis, our main interest was in the 

behavioral and lifestyle variables, and how they were modified with the inclusion of our 

exposure. By adjusting for all these sociodemographic covariates, measures of economic well-

being, and health comorbidities, we attained better estimates of our behavioral and lifestyle 

variables. 

Additionally, we adjusted for birth cohort to account for the structured sampling design 

of the HRS which introduces new birth cohorts approximately every six years. We also included 

ancestry-specific principal components to account for possible confounding from population 

stratification and possible ancestry differences in genetic makeup that could bias estimates, as 

                                                           
1 Household income is the sum of all income in a household, including respondent’s and spouse’s 

income from wages, pension and annuity, social security, disability, and retirement, 

unemployment and workers compensation, other government income, as well as household 

capital and other income. 
2 Household wealth is the net value of total household wealth including primary residence, other 

real estate, transportation, businesses, stocks and bonds, checking and savings accounts, bonds, 

total mortgage, other home loans, debt, and individual retirement accounts. 



recommended in the literature (11, 15).  See Ware et al. (11) for detailed information on the 

construction of the ancestry-specific principal components.  Their estimates are not displayed in 

our tables for brevity. 

Statistical analysis 

Our analytic sample consisted of 15,190 respondents, of which 12,090 were non-Hispanic 

white and 3,100 were non-Hispanic black.  Over the course of the study period, this resulted in 

103,059 person-years of follow-up. 

Kaplan-Meir survival curves and multivariate Cox regression models (19) were used to 

estimate the contribution of the diabetes PGS to diabetes onset after adjusting for time-varying 

measures of behavioral and lifestyle characteristics. First, models were run as a function of all 

covariates except for the diabetes PGS and ancestry-specific principal components, both on the 

analytic sample and stratified by race to account for ancestral differences between whites and 

blacks (20, 21). Most GWASs, including the one conducted by Morris and colleagues (14), are 

done predominantly on observations of European descent, so the predictive ability of the PGS 

might differ by race. These models were then run with the addition of the genetic variables as 

independent variables, again, both on the analytic sample and stratified by race. This second set 

of models demonstrated how the relationships changed with the inclusion of the genetic 

components. Concordance values (i.e., the proportion of pairs of cases in which the subject with 

higher risk had the event before the subject with lower risk) were used as our goodness of fit 

measures (22). Analyses of deviance, using log likelihoods, were run between corresponding 

models in the first and second sets (23). Because of the nested nature of these models, these 

analyses were able to determine how the inclusion of the genetic component altered model fit. 



In all our survival models, we included cluster-robust standard errors to account for 

household stratification in the HRS and to address potential within-household spillover effects 

(24). We used age as the time unit in all analyses with an individual’s age at study entry as the 

baseline measure. All statistical analyses were performed in R version 3.5.0 (25) with the 

“survival” package for our primary analyses (26). In all cases, significance was reported at the 

five-percent level. 

 

RESULTS 

Table 1 shows summary characteristics for some basic demographics and the behavioral 

and lifestyle characteristics of the analytic (i.e., genetic) sample at baseline. The analytic sample 

was 42.04% male and 79.59% of respondents were non-Hispanic white. The mean age was 56.53 

years. The non-Hispanic white sample was slightly older and more male than the non-Hispanic 

black sample. The mean BMI of the non-Hispanic white sample was about 27 kg/m2, which 

would be classified as overweight, while the mean BMI of the non-Hispanic black sample was 

about 30 kg/m2, which is the threshold for obese. There were fewer regular exercises among non-

Hispanic blacks, but fewer current smokers and heavy drinkers among non-Hispanic whites.   

A total of 4,217 (27.76%) individuals reported being diagnosed with diabetes over the 

survey period. In Figure 1, we display the unadjusted cumulative hazard of diabetes onset for 

non-Hispanic white and non-Hispanic black respondents. As expected, the cumulative hazard 

increased with advancing age.  However, the curve for blacks rose more quickly than that for 

whites. By the end of the age range, the hazard of diabetes onset was clearly more likely among 

non-Hispanic blacks than non-Hispanic whites. 



Table 2 shows the results from three separate multivariate Cox regression models for 

diabetes onset as a function of all covariates except the diabetes PGS and ancestry-specific 

principal components. The first used the analytic sample, the second used only non-Hispanic 

white respondents, and the third used only non-Hispanic black respondents. In the model using 

the analytic sample, non-Hispanic whites had a lower risk of diabetes onset relative to non-

Hispanic blacks, which we demonstrated in Figure 1. Respondents who reported being 

married/partnered, being disabled (compared to employed), having higher BMI, being a current 

smoker (compared to a never smoker), having high blood pressure, and having a cardiovascular 

disease were significantly associated with increased risk of diabetes onset whereas those who 

reported being retired (compared to employed), having higher levels of income or wealth, being 

a Medicare recipient, being a heavy drinker, and having arthritis were significantly associated 

with reduced risk of diabetes onset. One’s sex, foreign-born status, educational attainment, 

participation in Medicaid, use of other health insurance, or physical activity were not found to be 

significant. 

The results from the model of non-Hispanic whites were the same, likely due to the 

overwhelming proportion of non-Hispanic whites in the analytic sample. While partnership 

status, employment status, wealth, being a Medicare recipient, BMI, having high blood pressure, 

and having arthritis registered significance in the model for non-Hispanic blacks as well, there 

were some discrepancies in other variables. Income, alcohol consumption, and having a 

cardiovascular disease were no longer significant at the five-percent level. Former smokers (in 

addition to current smokers) were found to be at an increased risk of diabetes onset compared to 

never smokers among non-Hispanic blacks. Additionally, regular exercise was associated with a 

decreased risk of diabetes onset among non-Hispanic blacks. 



We re-estimated the three models in Table 2, but included the diabetes PGS and ancestry-

specific principal components. The results from these runs are in Table 3. For the analytic 

sample, the estimated hazard of the diabetes PGS was 1.16 (95% confidence interval: [1.12, 

1.20], P < 0.001), suggesting that a one SD increase in the diabetes PGS increased the risk of 

diabetes by 16% while holding adjusted covariates constant. In these analyses, the diabetes PGS 

was statistically significant for both non-Hispanic whites (HR = 1.38, 95% confidence interval: 

[1.30, 1.46]) and non-Hispanic blacks (HR = 1.22, 95% confidence interval: [1.06, 1.40]). The 

hazard ratio for the analytic sample did not fall between those obtained from the stratified 

analyses for non-Hispanic whites and non-Hispanic blacks. The stratified models implicitly 

allowed for interactions between race and all other covariates in the model. Thus, it is possible 

that allowing for these interactions affected the coefficient estimates for the diabetes PGS. 

As before, the variables that were significant in the overall model were also significant in 

the model for non-Hispanic whites, but these did not necessarily line up with the variables that 

were significant in the model for non-Hispanic blacks. Again, the differences were that income, 

alcohol consumption, and having a cardiovascular disease were not significant for diabetes onset 

among non-Hispanic blacks, while being a former smoker (compared to being a never smoker) 

and being a regular exerciser were significant. However, arthritis was no longer a significant 

health comorbidity for non-Hispanic blacks once the diabetes PGS was included. 

The variables that were significant before, for the most part, remained significant in the 

corresponding models that included genetic information, so the inclusion of the diabetes PGS 

and ancestry-specific principal components generally did not change the significance of any of 

the associations between the other characteristics and diabetes onset. However, these models 

informed us that PGS was also a significant variable for diabetes onset and that its relationship 



should not be ignored. 

Furthermore, models with the diabetes PGS and ancestry-specific principal components 

performed better than those without them. Concordance was consistently higher for the models 

in Table 3 than the corresponding models in Table 2. Analyses of deviance were computed for 

corresponding models in Tables 2 and 3, and these results are presented in Table 4. For the 

analytic sample, the non-Hispanic white subset, and the non-Hispanic black subset, the tests were 

statistically significant. That is, the inclusion of these genetic components significantly improved 

model fit in the explanation of diabetes onset. 

 

DISCUSSION 

In the current study, we utilized a national population-based sample of the US to explore 

diabetes onset and better understand the effects of genetic endowment and time-varying 

behavioral characteristics commonly associated with diabetes. Models with the genetic 

component performed significantly better than models without it. The diabetes PGS was 

consistently statistically significant with diabetes onset after testing different operationalizations 

and adjusting for a range of characteristics. Respondents with a higher genetic propensity for 

diabetes were at higher risk of diabetes, irrespective of the other characteristics we included in 

our model. We found a number of these other characteristics to be statistically significantly 

associated with diabetes onset, including sociodemographics, economic well-being, behavior and 

lifestyle, and health comorbidities. Similar behavioral variables were also found to be significant 

in a population-based study in Turkey (27). 

Our cumulative hazard curves demonstrated that diabetes onset differed by whites and 



blacks, both in rate of onset as well as overall levels of onset, which has been found previously in 

the literature (28, 29). In stratified models by race, we found that the association between the 

diabetes PGS and onset of diabetes to be statistically significant among both non-Hispanic white 

and black respondents, but the relationship was stronger among whites. Although PGSs were 

calculated separately for European and African ancestry groups, the GWAS meta-analysis used 

to estimate SNP weights were derived from analyses based on European ancestry groups; thus, 

the predictive power of the PGSs for African ancestry groups may vary (13, 21). Therefore, the 

weaker relationship of the diabetes PGS among the non-Hispanic black sample could be due to a 

myriad of factors. For example, it could be an artifact of how the PGS was calculated, it could be 

due to the smaller sample size for non-Hispanic black respondents, or possibly a true weaker 

association between the diabetes PGS and diabetes onset. Extending GWASs to other ancestry 

groups is essential for a better understanding of how well these PGSs can actually perform for 

groups that are not non-Hispanic white. 

Regardless of race, genetics were associated with diabetes onset. However, this should 

not downplay the role of behavioral or lifestyle characteristics. These behavioral and lifestyle 

characteristics “ultimately interact with risk alleles in susceptibility genes to initiate common 

forms of [diabetes]” (30). For both non-Hispanic whites and blacks, BMI was significantly 

associated with a higher propensity of diabetes onset, as was being a current smoker (compared 

to being a never smoker). Interestingly, being a former smoker (compared to being a never 

smoker) was also associated with a higher propensity of diabetes onset for blacks. Heavy 

drinking was associated with a decreased risk of diabetes onset for whites but not blacks, while 

exercising was associated with a decreased risk of diabetes onset for blacks but not whites. These 

results demonstrate the potential ability of behavioral characteristics as a mechanism for delaying 



or preventing diabetes onset, and lifestyle interventions have indeed been useful in prevention of 

type II diabetes (31, 32). However, differences between non-Hispanic whites and non-Hispanic 

blacks in stratified models demonstrate the potential need for targeted interventions, as well as 

the need to expand this line of research to other race and ethnic population segments. 

There are a few limitations to note. In our study, the analytic sample comprised of 

respondents who consented and provided DNA samples for genotyping. The Appendix presents 

the summary characteristics of our analytic sample, the summary characteristics of the complete 

HRS sample, and t-tests or χ2-tests as appropriate. Our sample differed significantly when 

compared to the complete HRS sample, which perhaps is not surprising, as there was selection 

into the genetic sample. For example, respondents in the analytic sample were more likely to be 

younger (mean [SD] age, 56.53 [8.44] years vs. 62.76 [12.27] years, P < 0.001) and have lower 

BMI (mean [SD] BMI, 27.82 [5.69] vs. 27.05 [5.52], P < 0.001). This is a caveat that has been 

noted in several prior studies (33-35), and unfortunately cannot be rectified with the use of 

weights. These differences should be taken into account when considering the results and 

interpretations of our findings. 

Mortality selection could also be a concern, as respondents had to survive to age 50 (or 

be the spouse of someone who survived to age 50) in order to be in the HRS sampling frame. 

While this is an issue with all studies using the HRS, respondents in studies also using the 

genetic component had to survive to 2006-2012 in order to be included for potential genetic 

sampling. 

Another caveat is that the survey question used in the HRS to assess regular physical 

activity changed after wave 6. In our analysis, a respondent was considered a regular exerciser 

during waves 1-6 if they reported vigorous physical activity 3+ times per week or, for waves 7-



12, if they reported vigorous physical activity at least once per week. We opted to classify 

vigorous physical activity based on how it was defined in the wave by HRS. 

Despite the limitations, this paper has shown the importance of looking at the effects of 

genetic and behavioral characteristics together, and that both are necessary in understanding the 

etiology of diabetes. Although previous papers have examined them together, the advantage of 

this paper is that we studied their relationship in both non-Hispanic white and black respondents 

using a national population-based study. Our findings suggest that although genetic variants are 

associated with diabetes onset, behavioral and lifestyle characteristics remain an important part 

of diabetes management. BMI, smoking, alcohol, and exercise were all found to be significant in 

various specifications of our models. Thus, despite the statistically significant role genetic 

endowment plays in diabetes onset, individuals might still be able to reduce their risk by 

engaging in protective behaviors, which has substantial clinical relevance. 

Diabetes is a multifaceted trait that has both a heritable and lifestyle component. A 2015 

review by Prasad and Groop (36) reported that the heritability of type two diabetes mellitus 

varied between 25% and 80%, depending on the length of follow-up, which may indicate a 

change in heritability with age and thus the changing importance of modifiable risk factors for 

diabetes onset. In the context of our findings that both lifestyle factors and genetic risk play a 

role in diabetes onset, it is important to target lifestyle factors that may mitigate the role of 

genetic endowment. Thus, future studies should examine gene-environment interactions in the 

onset of diabetes. Understanding the contribution of lifestyle factors over the lifespan to 

epigenetic changes in the expression of genetic risk for diabetes would be a valuable contribution 

to this line of work. 
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FIGURES 

Figure 1. Unadjusted Cumulative Hazard of Diabetes Onset for the Analytic Sample Stratified 

by Race with 95% Confidence Interval. 

  



TABLES 

Table 1. Summary Characteristics for the Analytic Sample and Race Sub-Samples at Baseline. 

Characteristic Mean or % 

 
Analytic sample 

(n = 15,190) 

Non-Hispanic whites 

(n = 12,090) 

Non-Hispanic blacks 

(n = 3,100) 

Age, mean 56.53 56.90 55.09 

Male, % 42.04 42.98 38.39 

BMI, mean 27.82 27.25 30.04 

Regular exerciser, % 32.12 33.76 25.75 

Smoking status, %    

    Current smoker 21.59 19.61 29.32 

    Former smoker 36.08 37.54 30.41 

    Never smoker 42.21 42.75 40.11 

Heavy drinker, % 9.33 8.97 10.71 

Note. Statistically significant differences between non-Hispanic white and non-Hispanic black 

respondents were observed for all characteristics at the p = 0.05 level. 

  



Table 2. Hazard Ratios from a Multivariate Cox Regression Model Without Diabetes PGS 

Included as a Covariate. 

Characteristic Hazard ratio (standard error) 

 
Analytic sample 

(n = 15,190) 

Non-Hispanic 

whites 

(n = 12,090) 

Non-Hispanic 

blacks 

(n = 3,100) 

Male 1.070 (0.044) 1.071 (0.050) 0.981 (0.092) 

Non-Hispanic white 0.735*** (0.055) NA NA 

Foreign-born 0.944 (0.099) 0.892 (0.119) 1.059 (0.176) 

Education    

    Less than high school 

    (reference group) 
1 1 1 

    High school/GED 1.018 (0.061) 0.986 (0.072) 1.023 (0.112) 

    Some college 1.003 (0.067) 0.986 (0.078) 0.980 (0.128) 

    College or above 0.892 (0.073) 0.875 (0.085) 0.955 (0.149) 

Married/partnered 1.597*** (0.050) 1.594*** (0.059) 1.540*** (0.091) 

Employment status    

    Employed 

    (reference group) 
1 1 1 

    Unemployed 0.981 (0.122) 0.816 (0.163) 1.383 (0.190) 

    Retired 0.599*** (0.053) 0.568*** (0.062) 0.738** (0.102) 

    Disabled 1.932*** (0.130) 1.818** (0.183) 2.247*** (0.195) 

    Not in labor force 0.919 (0.090) 0.862 (0.102) 1.189 (0.212) 

Income 0.907*** (0.023) 0.889*** (0.029) 0.953 (0.042) 

Wealth 0.920*** (0.012) 0.912*** (0.015) 0.949** (0.020) 

Medicare 0.190*** (0.062) 0.173*** (0.073) 0.253*** (0.121) 

Medicaid 1.032 (0.091) 0.993 (0.134) 1.136 (0.123) 



Health insurance 1.034 (0.044) 0.996 (0.050) 1.191 (0.090) 

BMI 1.086*** (0.003) 1.098*** (0.004) 1.057*** (0.006) 

Regular exerciser 1.002 (0.042) 1.076 (0.048) 0.833* (0.090) 

Smoking status    

    Never smoker 

    (reference group) 
1 1 1 

    Current smoker 1.370*** (0.063) 1.382*** (0.075) 1.320* (0.119) 

    Former smoker 1.076 (0.043) 1.034 (0.049) 1.228* (0.090) 

Heavy drinker 0.808** (0.073) 0.779** (0.085) 0.940 (0.147) 

High blood pressure 1.852*** (0.043) 1.898*** (0.049) 1.564*** (0.098) 

Cardiovascular disease 1.112* (0.046) 1.142** (0.051) 1.053 (0.105) 

Arthritis 0.789*** (0.041) 0.771*** (0.046) 0.845* (0.085) 

Concordance 0.874 0.872 0.835 

Notes. Significance is denoted by *** p < 0.001, ** p < 0.01, and * p < 0.05. 

Model also controls for birth cohort. 

  



Table 3. Hazard Ratios from a Multivariate Cox Regression Model With Diabetes PGS Included 

as a Covariate. 

Characteristic Hazard ratio (standard error) 

 
Analytic sample 

(n = 15,190) 

Non-Hispanic 

whites 

(n = 12,090) 

Non-Hispanic 

blacks 

(n = 3,100) 

Diabetes PGS 1.159*** (0.019) 1.380*** (0.030) 1.219** (0.072) 

Male 1.075 (0.044) 1.096 (0.051) 0.964 (0.094) 

Non-Hispanic white 0.735*** (0.056) NA NA 

Foreign-born 0.912 (0.100) 0.905 (0.121) 1.076 (0.177) 

Education    

    Less than high school 

    (reference group) 
1 1 1 

    High school/GED 1.032 (0.061) 1.006 (0.072) 1.002 (0.113) 

    Some college 1.014 (0.067) 1.012 (0.079) 0.976 (0.129) 

    College or above 0.883 (0.074) 0.883 (0.087) 0.911 (0.150) 

Married/partnered 1.607*** (0.050) 1.594*** (0.060) 1.536*** (0.092) 

Employment status    

    Employed 

    (reference group) 
1 1 1 

    Unemployed 0.979 (0.122) 0.818 (0.161) 1.339 (0.190) 

    Retired 0.602*** (0.053) 0.571*** (0.062) 0.726** (0.102) 

    Disabled 1.965*** (0.129) 1.829*** (0.180) 2.227*** (0.196) 

    Not in labor force 0.931 (0.090) 0.873 (0.101) 1.184 (0.208) 

Income 0.904*** (0.023) 0.891*** (0.029) 0.946 (0.042) 

Wealth 0.922*** (0.012) 0.913*** (0.015) 0.949** (0.020) 

Medicare 0.190*** (0.062) 0.176*** (0.074) 0.251*** (0.121) 



Medicaid 1.019 (0.091) 1.005 (0.134) 1.130 (0.122) 

Health insurance 1.032 (0.043) 0.991 (0.050) 1.181 (0.090) 

BMI 1.086*** (0.003) 1.098*** (0.004) 1.056*** (0.006) 

Regular exerciser 1.000 (0.042) 1.079 (0.048) 0.833* (0.090) 

Smoking status    

    Never smoker 

    (reference group) 
1 1 1 

    Current smoker 1.370*** (0.063) 1.380*** (0.074) 1.330* (0.120) 

    Former smoker 1.070 (0.043) 1.021 (0.050) 1.239* (0.092) 

Heavy drinker 0.824** (0.074) 0.797** (0.085) 0.943 (0.148) 

High blood pressure 1.851*** (0.044) 1.871*** (0.049) 1.582*** (0.099) 

Cardiovascular disease 1.116* (0.046) 1.157** (0.052) 1.054 (0.105) 

Arthritis 0.796*** (0.040) 0.774*** (0.047) 0.853 (0.085) 

Concordance 0.877 0.876 0.838 

Notes. Significance is denoted by *** p < 0.001, ** p < 0.01, and * p < 0.05. 

Models also control for birth cohort and ancestry-specific principal components.  



Table 4. Test Statistics from Analyses of Deviance Comparing Models Without and With 

Diabetes PGS Included as a Covariate. 

  
Analytic sample 

(n = 15,190) 

Non-Hispanic whites 

(n = 12,090) 

Non-Hispanic blacks 

(n = 3,100) 

Without diabetes PGS Log lik = –33196 Log lik = –24940 Log lik = –6368 

With diabetes PGS Log lik = –33159 Log lik = –24865 Log lik = –6364 

Test statistic χ2 = 74.41*** χ2 = 149.41*** χ2 = 9.09** 

Note. Significance is denoted by *** p < 0.001, ** p < 0.01, and * p < 0.05. 

  



APPENDIX 

Summary Characteristics for the Analytic and Complete Samples. 

Characteristic Mean or % 

 
Analytic sample 

(n = 15,190) 

Complete HRS sample 

(n = 37,495) 

Age, mean 56.53 60.24 

Male, % 42.04 43.82 

Non-Hispanic white, % 79.59 68.20 

BMI, mean 27.82 27.36 

Regular exerciser, % 32.12 28.83 

Smoking status, %   

    Current smoker 21.59 21.73 

    Former smoker 36.08 36.47 

    Never smoker 42.21 41.63 

Heavy drinker, % 9.33 8.39 

Note. Statistically significant differences between the analytic sample and excluded respondents 

were observed for all characteristics at the p = 0.05 level. 


