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Short Abstract 

Many studies have documented significant divergence in U.S. county-level mortality trends since 

2000. Recent analyses have effectively utilized spatially-explicit Bayesian hierarchical models to 

make robust estimates of county-level mortality over space and time. However, few studies have 

examined a comprehensive set of time-varying contextual covariates within such a modelling 

framework to illustrate how large differences in mortality trajectories by county and region are 

associated with shifting levels of social and economic context, health care access, behaviors and 

population composition. Combing vital statistics data with county-level characteristics related to 

healthcare, health behaviors, socioeconomic profile and population composition, this paper 

utilizes a spatially-explicit Bayesian hierarchical modelling framework to analyze how changing 

levels of mortality across age groups are associated with changes in county-levels exposures. 

Additionally, we employ a Shapley decomposition on the time-varying components of our 

models to illustrate the additive contributions of each changing characteristic to the observed 

mortality change in each U.S. county since 2000.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Extended Abstract 

 

Geography has long been recognized as an important factor influencing an individual’s 

exposures to health-related risks and economic opportunities over their life course (Krieger et al. 

2005). Historically, mortality and geography have been intertwined across the United States and 

large geographic inequalities have been documented (Chetty et al. 2016; Dwyer-Lindgren et al. 

2016; Murray et al. 2006; Wang et al. 2013). Many studies have focused on gaps in health and 

life expectancy across different geographic regions or groups of counties, with one 2006 study 

finding a gap in life expectancy of over 35 years between race-county combinations (Ezzati et al. 

2008; Murray et al. 2006; Wang et al. 2013). In describing the significant heterogeneity across 

county-level mortality rates, several studies have importantly emphasized an initial fall and then 

increase in heterogeneity between 1960-2000 (Ezzati et al. 2008; Krieger et al. 2008). County-

level heterogeneity in mortality levels and progress necessitates exploration of the associated 

county-level characteristics. Much of this research focuses on distributive justice concerns with a 

particular emphasis on the concentration of poverty and income inequality and racial/ethnic 

minorities. Public health research utilizing newly available datasets has suggested that social and 

environmental risk is also becoming increasingly concentrated in rural counties which may be 

contributing to the U.S. stagnation on various health and mortality indices (Lichter et al. 2012; 

United States Environmental Protection Agency 2014). 

While there has been significant research on geographic mortality differentials in the 

United States by states and county-regions, including evidence of large gains in life expectancy 

across central metropolitan areas, many of these studies examine mortality trends across wide 

geographies which may mask mortality heterogeneity across counties. This further risks 

obscuring the drivers of stagnating or deteriorating life expectancy by race, in particular across 

the rural regions of the United States (Case and Deaton 2015). In addition, many studies 

examining the relationships between social exposures and mortality at the county-level ignore 

spatial autocorrelation in county mortality rates, which can bias the associations between 

exposures and health and mortality (Jackson et al. 2000; Nuru-Jeter and LaVeist 2011).  

Spatial analysis has become more common in predictive modelling at the county-level. In 

a comprehensive analysis of county-level mortality trends, Dwyer-Lindgren et al. use a spatially 

explicit Bayesian small-area model to estimate mortality rates from 1980 to 2014 (Dwyer-

Lindgren et al. 2017). They additionally examine associations with key hypothesized drivers of 

mortality change, but only do so using a cross-section of estimated mortality rates (or life 

expectancy) in 2009 in an ordinary-least-squares framework. While such an approach can 

suggest which county-level characteristics are likely important in explaining county-level 

variation in mortality at a point in time, it cannot describe how the changes in these 

characteristics relate longitudinally to shifting mortality trajectories across U.S. counties. In 

addition to estimated relationships, many contemporaneous indicators may be very correlated 



with contemporaneous mortality rates, but these indicators may be virtually unchanging since 

2000 and thus cannot explain the large divergences in county-level mortality improvement.  

This project aims to describe differential trends in age-standardized crude death rates 

(ASCDRs) by sex for key age groups (0-24, 25-64, 65+) across all US counties from 2000-2015 

and examine the degree to which shifting profiles of socioeconomic characteristics, healthcare, 

health behaviors, and population composition may be driving heterogeneous mortality trends. 

We employ a spatially-explicit Bayesian hierarchical model to estimate the associations between 

mortality rates and a diverse set of contextual county-level covariates since 2000. As the levels 

and changes in these covariates themselves are often distributed very unequally across counties, 

we also employ a decomposition of mortality change at the county-level based on our estimated 

models to examine how the consequences of these changes in characteristics and their 

associations with county-level mortality vary across the United States.  

 

Data 

We use vital statistics data on deaths and population estimates from the National Center 

for Health Statistics (NCHS) to estimate age-specific (five-year age groups), all-cause mortality 

rates by sex for all counties (CDC 2018) for 1999-2001, 2009-2011, and 2014-2016 to obtain 

more robust estimates than if a single years of data were used. Mortality rates were age-

standardized using the 2000 Census populations to ensure that differential mortality rates are not 

simply due to differences in changing population age structures. In order to account for 

important mortality differences across the urban-rural continuum within the United States and to 

capture omitted variables that may be structured around these dimensions, we additionally 

categorize counties by metropolitan-nonmetropolitan status and region according to the county-

level typologies from the United States Department of Agriculture’s (USDA) Economic 

Research Service (ERS) (USDA ESR 2015). 

We assembled a database of time-varying contextual covariates at the county-year-level 

from 2000-2015 to assess how trends in mortality rates are associated with changes in factors 

related to the county’s socioeconomic profile, healthcare availability, health behaviors, and 

population composition. Table 1 reports the source information for each indicator as well as the 

temporal coverage. 

 

Methods 

We first calculate a global Moran’s I for each dataset of county-level, all-cause, age-

standardized mortality rates. The Moran’s I statistic is a common measure of spatial 



autocorrelation, i.e. the strength of the correlation between observations nearer in space 

compared to those that are further apart (Li et al. 2007). In this formula,  

N is the number of spatial units indexed by i and j, where i is each specific county, j is every 

other county, x is the observed county-level mortality rate, x̄ is the mean mortality rate across all 

counties, w is a matrix of spatial weights, and W is the sum of all spatial weights. This statistic is 

dependent on assumptions about the structure of the spatial weight matrix. For this analysis, we 

use a Queens nearest neighbor matrix which defines “neighbors” as those counties sharing a 

boundary. Additionally, we calculate a test examining local indicators of spatial autocorrelation 

(LISA) over the entire dataset using the same spatial weights matrix (Anselin 2010). This 

approach decomposes the global Moran’s I statistic to local pockets of spatial autocorrelation, 

and tests whether they are significantly different than what could be expected given the same 

observed data randomly distributed across space (weighting with county populations). This 

exploratory test can be useful in locating clustered observations with significant leverage on the 

global spatial autocorrelation, as well as identifying local pockets of potential spatial 

nonstationarity.  

To examine the associations between mortality and our county-level predictors, we fit 

Bayesian generalized linear models assuming a binomial likelihood and logit link-function to 

estimate age-specific death rates (𝑚i,y,a) in each county (i), year (y), and age (a). These models 

were specified and compared with an increasing number of county-year covariates (𝑋𝑖,𝑦), with 

the final model including a latent spatial error structure (𝛾𝑖) following the Besag model. The 

spatial weights matrix was constructed using a nearest-neighbors approach following the Queens 

convention. All models were fit in a Bayesian framework with uninformative priors. The 

posterior distributions were fit using computationally efficient and accurate approximations in R-

INLA (integrated nested Laplace approximation) (Rue et al. 2014). The spatial model 

specification is below, while all others (𝑋𝑖 = metro categories, metro + region categories, metro + 

region + predictors) included no latent error structure. All models contained year (2000, 2010, 

2015) and five-year age groups as dummy variables. All county-year covariates (𝑋𝑖,𝑦) were 

interacted with three broad age groups (0-24, 25-64, 65+). 

𝐷𝑖,𝑦,𝑎|𝑚i,y,a, 𝑁i,y,a ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚i,y,a, 𝑁i,y,a) 

𝑙𝑜𝑔𝑖𝑡(𝑚i,y,a) = ∝  + 𝛽1𝑋𝑖,𝑦 + 𝛽2𝐴𝑔𝑒 + 𝛽3𝑌𝑒𝑎𝑟 +  𝛾𝑖 +  𝜀i,y,a 

𝛾𝑖 ~ 𝐵𝑒𝑠𝑎𝑔(0, 𝜏) 

𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1000) 

𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(1,10) 



All models were estimated separately by sex. We calculated several statistics to compare model 

performance, examining both in-sample fit and the degree of spatial autocorrelation in the 

county-level residuals. A high degree of spatial autocorrelation in the residuals would indicate 

that our model does not fully capture the spatial autocorrelation in our observed data conditional 

on our predictors, which can result in biased estimates for the coefficients given the assumption 

of conditional iid errors does not hold (Anselin 2010). We calculate the Moran’s I for all model 

residuals using the same nearest-neighbors spatial weight matrices used in fitting the spatial 

model. We also calculate two fit statistics to compare model performance. The deviance 

information criterion (DIC) is a hierarchical modeling generalization of the more commonly used 

Bayesian information criterion (BIC). As with BIC, a smaller DIC is preferable in comparison 

and penalizes models for fit as well as the number of effective parameters. General model in-

sample error is compared using the root-mean-squared-error (RMSE), weighting errors by 

county populations. 

We use Shapley decomposition to quantify the contributions of each time-varying 

contextual covariate, the secular trend, and unobserved variation to changes in observed 

mortality rates within counties (Fortin et al. 2010; Madden 2012; Wang et al. 2014). Shapley 

decomposition is a method originating within game theory that allows for decomposition of 

changes in a variable attributable to changes in contributory factors. Specifically, to assess the 

effect of each time-varying factor in our model on mortality rates between 2000-2015, we 

constructed the universe of scenarios in which all factors took on values from either 2000 or 

2015 in each specific scenario. To compute the effect of any one factor, we assessed each pair of 

scenarios in which that factor changed but all other factors maintained the same values. The 

average of the changes across all pairs of scenarios was the contribution of that factor to change 

in observed mortality. We repeated the same process for all contextual covariates, the secular 

trend (year), and the residual between predicted and observed mortality rates. 

 

Preliminary findings 

 For the purpose of this abstract, all Figures are reported only for the female age-

standardized death rates (ages 25-64). Table 2 presents the estimated coefficients from a series of 

models for females, as well as the fit statistics and Global Moran’s I calculated on the model 

residuals. This table includes coefficients from the county predictors interacted with the 25-64 

age group to explore correlates of middle-age mortality trends. The combination of metropolitan 

category and region explain some, but not all, of the spatial autocorrelation in the observed 

county-level mortality rates. There is a significant mortality advantage for the large central and 

fringe metro counties compared to the medium/small metro and non-metro counties. However, 

conditional on several contextual covariates this advantage disappears. In the full spatial model, 

poverty and reliance on transfers are significantly associated with higher mortality rates, while 

the proportion of the county population that is foreign-born and the proportion college-educated 

are associated with lower mortality.  



 However, the inference we can make regarding change based solely on these coefficients 

is limited. They are useful in illustrating the conditional relationships of change between 

covariates and mortality across our entire dataset, but the levels of these covariates and how they 

are changing over time is very heterogeneous across counties within the United States. Figures 2 

and 3 illustrate the additive contribution at the county-level of the proportion foreign-born and 

the proportion of personal income as transfers, respectively, calculated from the Shapley 

decomposition of observed mortality change between 2000-2015. Figure 2 demonstrates how 

despite the significant negative relationship between the proportion foreign-born and mortality 

across all counties, suggesting that higher the share of the foreign-born the lower the morality at 

ages 25-64. It is also clear that the magnitude of this association in explaining observed mortality 

change is very geographically confined to large metropolitan areas on the coasts and several 

cities. These counties, such as those containing Chicago, Atlanta, and New York City, are where 

dramatic increases in the proportion foreign-born have been observed since 2000. In terms of 

geography, this aspect of population composition has remained virtually unchanged across most 

of the United States. Figure 3 shows how the rising proportion of personal income as government 

transfers has contributed positively to mortality change, i.e., increasing mortality with increasing 

proportion of personal income coming from government transfers, almost everywhere, although 

this contribution is particularly dramatic across the South and Appalachia.  

 Figure 4 summarizes the geographic heterogeneity in these additive contributions by 

aggregating to observed mortality change for each region-metro-nonmetro group of counties. 

Here we can observe geographic variation in the level and direction of total observed mortality 

change, as well as how our model decomposes those additive contributions. As observed in prior 

work, female mortality rates in the 25-64 age group have generally improved in almost all large 

metro areas and across the coastal and Mountain regions. However, these rates have increased 

dramatically across counties in Appalachia and the South Central region. An increasing reliance 

on personal transfers is a large positive contributor to this change, as well as increased absolute 

poverty.  

 

Next Steps 

We have illustrated our analytic strategy using only one age-group and gender (25-64, 

female). We will estimate similar models for both men and women across all age groups. In 

addition, we will examine the richer set of county-level characteristics shown in Table 2. Their 

inclusion will permit the analyses of the role of changing socioeconomic characteristics, health 

care resources, health behaviors and population composition to the diverging mortality trends 

that have been observed in the last decades in the United States. They will shed light on which 

contextual-level factors have been associated with widening mortality disparities by gender, 

metro-nonmetro status and region of the country. The paper will end with a discussion of the 

results and their implications for future analyses and public policies. 



Table 1. County-level characteristics by source and year coverage. Several indicators have to be interpolated to 

our modelling range (2000-2015) by using linear projection with an annualized growth rate forward to 2015 or 

backward to 2000. 



Table 2. Estimated coefficients from Bayesian generalized linear models, women ages 25-64, United States, 2000, 

2010 and 2015.  

Model 1 includes metropolitan status, Model 2 adds regional indicators, Model 3 adds county-level predictors, and Model 4 adds a latent spatial 

random effects structure following the Besag distribution. The global Moran’s I is calculated on the residuals from each model. The DIC and 

RMSE are reported to compare in-sample fit. 

 

 



Figure 1. Global and LISA tests for spatial autocorrelation across female age-standardized mortality rates at ages 

25-64, 2015. 

 
Panel A shows each county’s mortality rate compared to the rates of surrounding counties defined by the Queens matrix. Dot size 

corresponds to county population. Red and blue indicate a significant LISA test for positive spatial autocorrelation (p<0.05), 

where red indicates high-mortality counties surrounded by similarly high-mortality counties and blue indicates low-mortality 

counties surrounded by similarly low-mortality counties. Dark grey indicates significant negative autocorrelation in the LISA test 

(either high-mortality surrounded by low-mortality of vice versa). Panel B visualizes the location of the counties surrounded by 

similarly high (red) or low (blue) mortality rates across the United States 



Figure 2. The additive contribution of changes in the proportion of the population that is foreign-born to the 

changes in observed age-standardized (25-64, female) mortality rates (per 100,000). 

 
 

 



Figure 3. The additive contribution of changes in the proportion of personal income as government transfers to 

the changes in observed age-standardized (25-64, female) mortality rates (per 100,000).  

 

  



Figure 4. Changes in observed female age-standardized mortality rates at ages 25-64 between 2000 and 2015 by 

metro-nonmetro status and region. 

The black dots represent the change in the ASCDR (per 100,000). The additive contributions of each factor from the Shapley decomposition to 

this observed mortality change are plotted as colored bars. The sum of all bars within a metro-region is equal to the observed mortality change. 

 


