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1 ABSTRACT

In the field of mortality, the Lee-Carter (L-C) based approach is the best way
to forecast mortality rates. Since the first version of the model in 1992, scholars
have developed different versions of it, so we could therefore define an ”L-C
model family” that includes all developments of it. Nevertheless, the first for-
mulation of 1992, remains the benchmark for comparing the performance of
future models. The main aim of this thesis is to try to fill a gap between de-
mography methodology and statistical learning field. Indeed using data from
Human Mortality Database we will attempt to integrate the L-C model with
machine learning approach, in particular by using the Neural Network (NN).

2 INTRODUCTION

Mortality contributes significantly to population dynamics, indeed during the
last two centuries developed countries have experienced a persistent increase
in life expectancy[7]. Mortality modeling is crucial in economy, demography
and social sciences, because through the mortality rates the prices of insurance
products are determined and social policies are defined in the administrations.
Considering the influence of mortality rates, it is necessary to model and forecast
them in the near future. In order to predict future mortality rates, a model can
be used to describe the mortality trend, for this purpose, scientists have always
used statistical tools in this field. In recent years, thanks to the computational
ability improvement, statistical learning techniques are back on stage. They
were already known a few decades before and nowadays they are known as
”machine learning”. Unfortunately, scholars have always ignored the use of
these techniques in the demographic field. Along this line of research, this
paper attempts to bridge the gap between demography and machine learning,
proposing new methods for investigating mortality processes. According to the
demographic literature we have two types of mortality models[9]:

1. Deterministic models:
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deMoivre(1725), Gompertz(1825), Makeham(1860), Weibull(1939).

2. Stochastic models: Alho(1990,1992), Alho and Spencer(1990), Bell
and MOnsel (1990), Lee-Carter(1992).

The purpose of this paper is to get a Lee-Carter model estimation supported by
Neural Network (NN). The first part is dedicated to the classic version of Lee-
Carter model, in which we get the estimation of parameters and the final aim
is not to give up the Lee-Carter model but integrate it with NN technique. In
this sense, we can use the NN to forecast the ”k” parameter in the model. The
data comes from Human Mortality Database[4], after several trials, we chose the
data from which we obtained the best forecasting performance, in particular the
Danish male, from 1960 up to 2009.

3 MATERIAL and METHODS

3.1 Lee-Carter

The first approach to L-C model (1992) has been developed by the authors on
U.S. mortality data, 1933-1987[5]. Trough the time several improvements have
been made but the L-C 1992 remain still the benchmark for comparison with
all future developments. The model can be written as[2]:

ln(mx,t) = ax + bxkt + εx,t (1)

with constraints: ∑
x

bx
2 = 1;

∑
t

kt = 0 (2)

Where mx,t are the observed central death rate at age x in year t, ax is the av-
erage age-specific pattern of mortality, bx is the pattern of deviations from the
age of profile as the kt varies. The parameter kt is a time-trend index of general
mortality level, forcasted using ARIMA with drift. The εx,t is the residual term
at age x and time t. In their original paper, Lee and Carter (1992) applied a
two-stage estimation procedure. In the first stage, singular value decomposition
(SVD) is applied to the matrix of log(mx,t) − a. Then in the second step, the
time series of kis re-estimated by the method of so called ”second stage estima-
tion”. According to the main aim of this thesis we will use a NN to forecast the
k parameter in Lee Carter model. The model about k forecast can be written as:

kt = f(kt−1) + εt (3)

Where kt−1 = (kt−1, yt−2, ..., kt−n) is a vector containing the values of the series
and f is a neural network with n hidden nodes in a m layer. The error series ε
is assumed to be homoscedastic.
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3.2 Neural Network

The term neural network originated as a mathematical model inspired by the
biological neural networks that constitute animal brains.1 Indeed, every node
of the graph represented a neuron, connected to each other by the arcs rep-
resented the synapses. A neural network is essentially a two-stage regression
scheme, generally of nonlinear type. Following the graph in Figure 1 is pos-
sible formalize the neural network items. Each neuron in a network receives
“weighted” information via these synaptic connections from the neurons that it
is connected to and produces an output by passing the weighted sum of those
input signals through an activation function f(α) = 1

1+e−α in the hidden layers.
The net used in this analysis is the so-called “feed-forward neural networks”
characterized by a lack of input-output interconnection between each neuron,
in other words, there is no “feedback” from the outputs of the neurons towards
the inputs. We indicate the generic input, latent,and output variables by xj ,
Hn, and ym, respectively.

Figure 1: Schematical view of Neural Network: The circles represent neurons and lines
represent synapses. Synapses take the input and multiply it by a “weight” (the “strength” of
the input in determining the output). Neurons add the outputs from all synapses and apply
an activation function.

1We now know that the animal brain is much more complex, but the term neural network
survives[1].
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3.2.1 BACKPROPAGATION

Training a neural network basically means calibrating all of the “weights”
by repeating two key steps, forward propagation and back propagation:

· In forward propagation we apply a set of weights to the input data and
calculate an output. For the first forward propagation, the set of weights
is selected randomly.

· In back propagation we measure the margin of error of the output and
adjust the weights accordingly to decrease the error.

Neural networks repeat both forward and back propagation until the weights
are calibrated to accurately predict an output. Among many other learning al-
gorithms, “back-propagation algorithm” is the most popular and the mostly
used one for the training of feed-forward neural networks. It is, in essence, a
means of updating networks synaptic weights by back propagating a gradient
vector in which each element is defined as the derivative of an error measure
with respect to a parameter The first step is the forward pass, necessary to carry
out the backpropagation algorithm. The feed-forward pass consists of forward-
ing the input value in the hidden layer, summing the product of each input by
its respective weight:

H1 = x1w1 + x2w2 (4)

More general:

Hn =

n∑
j=0

xjwj = wTx (5)

In each node, in every hidden layer (in the case of a multy layer NN), we
obtain an output came from the sigmoidal activaction function:

outHn = f(H) =
1

1 + e−Hn
(6)

The latter step is performed a number of times according to the number of
hidden layers used. Then the output value from the hidden layer will be ob-
tained, passing the hidden layer output to the input of the next layer through
this following steps.

4



y1 = outH1w5 + outH2w6 (7)

ym =

m∑
j=0

outHjwj (8)

Finally is it possible to obtain the neural network output by applying acti-
vation function as usual.

outym =
1

1 + e−yn
(9)

COST FUNCTION: Since the activation function is a continuous function
it is differentiable. This property allows us to define a cost function2 that can
be minimized in order to update our weights.

e = (y − ŷ); J =
∑ 1

2
(e)2 (10)

In order to minimize the cost function, we will use gradient descent3.
For simplicity, let us consider a convex cost function for one single weight.

We can describe the principle behind gradient descent as “climbing down a hill”
until a local or global minimum is reached. At each step, we take a step into
the opposite direction of the gradient, and the step size is determined by the
value of the learning rate as well as the slope of the gradient.

wk updated:

wk.up = wk − r
˙∂totalE

∂wk
(11)

or

∆w = −r∇J(w) (12)

2The fraction 1
2

is just used for convenience to derive the gradient[8].
3A simple useful optimization algorithm used in machine learning to find the local minimum

of linear systems[3].
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The rate of change r is a hyperparameter set at 0.5 to ensure convergence,
since a small value implies too many iterations while a large value does not allow
convergence to the global minimum

Figure 2: Rate of change and gradient discending

DERIVATION STEPS: Derivation procedure using the chain rule applied
in backpropagation

for wk; k = 5, ..., 8

∂totalE

∂wk
=
∂totalE

∂out.yk
· ∂out.yk

∂yk
· ∂yk
∂wk

(13)

for wz; z = 1, ..., 4

∂totalE

∂wz
=
∂totalE

∂out.Hn
· ∂out.Hn

∂Hn
· ∂Hn

∂wz
(14)

∂totalE

∂out.Hn
=

∂E1

∂out.Hn
+

∂E2

∂out.Hn+1
(15)

∂E1

∂out.Hn
=
∂E1

∂yk
· ∂yk
∂outHn

(16)

∂E1

∂yk
=

∂E1

∂outyk
· ∂outyk

∂yk
(17)

6



4 RESULTS

We have applied the Lee-Carter model to mortality rates in time series from
1960 to 2009 in Danish male population. In order to explore the properties of
the three components of the model, we plot them. As mentioned in the previous
chapter, the parameter alpha represents the general age shape of mortality, in
the same way, the b profile tell us which rates decline rapidly and which rates
decline slowly in response to change in k.

Figure 3: Lee Carter estimation

Reminding the main aim of this thesis we operate forecasting the k param-
eter. We carry out two procedure, in one hand we forecast the parameter using
an ARIMA with drift, according to the classical scheme of Lee Carter. On the
other hand, we will go on with the construction of the NN. For semplicity, we
will omit the L-C details about forecasting and we will concentrate on NN tech-
nique. In order to build an NN is it necessary to specify the parameters: hidden
layers and lag time. In this sense, data shall be divided into training data and
testing data and we apply the NN model on it.

This training data has been used for learning while the testing data has
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Figure 4: Training and testing Neural Network

been used to validate the model obtained, whether it is sufficient to describe
the existing data or not. By using the last step we have formalized the NN’s
setting, in which we employ a single hidden layer with a lag of 5. Figure 4 shows
a good forecast trend on the real data, validated by following values:

1. Training set: ME(-0.000714474), RMSE(2.783176)

2. Test set: ME(-1.024437346), RMSE(4.206276)

The next step is performing the trained model on the whole dataset and
forecast the next 25 years. As we can see from the Figure 5, through the NN
approach we can get a completely different result respect Lee Carter procedure.
A Welch test has been performed to underline a significant statistical difference
between the forecasted vector of k parameters (L-C Vs. NN: p.value < 0.01).
In fact, a nonlinear estimation of the k parameter trend has been obtained, this
characteristic has important reverberation on the forecast trend as well. Indeed
as Figure 6 shows us, in the model comparison, they look meaningfully different
from each other. The graphical differences have been confirmed from AIC values,
in favour of NN method. Other important differences will be supported in the
forecast of life expectancy at birth (Figure 7)
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Figure 5: k-NN

5 CONCLUSION

The field of nonlinear estimation of k parameter in Lee Carter model, is in
constant evolution. Nowadays is a common view among scholars thinking that a
nonlinear behaviour of the k parameter could be a more plausible way to under-
stand mortality patterns. Actually, the Lee-Carter forecast shape is likely too
trivial to getting a realistic trend, in particular about life expectancy forecast.
In this sense, the nonlinear shape make possible underline the differences in
mortality trend, weighing in each of its parts (infant, adult and senescent com-
ponents), the different shape in the mortality trend. In the analysis is evident
how the employ of NN change the shape of future mortality rate (the last red
part in the Figure 6), particularly into infant mortality section. Furthermore,
we got the best evidence in life expectancy at birth’s plot, in which the NN’s
power is more evident. In fact, through the nonlinear estimation, we can get an
interesting life expectancy shape, very different from the classic L-C forecasting,
which is in totally disagrees with the trend of last available data not forecasted
by the model(from 2010 up to 2016, the black dots).
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Figure 6: Lee Carter Vs. Neural Network

Figure 7: Life expectancy at birth: Lee Carter Vs. Neural Network
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