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Abstract 

Using data from a sample of 5,344 non-Hispanic and white adults from the Health and Retirement 

Study (HRS), we expand on research that links education and frailty among older adults by 

considering the role of genes associated with education. We calculate a genome-wide polygenic score 

(PGS) for education and demonstrate a strong and negative association between genes associated 

with education and symptoms of frailty in later life using two different indicators of frailty (Deficit 

accumulation and the Paulson-Lichtenberg frailty index). We also show that this association exists 

above and beyond years of completed education and we demonstrate that this association becomes 

weaker as older adults approach their 80s. Our results contribute to the education-health literature 

and suggest new and important pathways through which years of education may be linked to 

successful aging.  

 

 

 

  



Introduction 

One of the most important areas of research for demographers involves the characterization 

of health and the determinants of health of aging populations (Christensen et al. 2009). One 

particular area that has grown over the past 25 years is research that consistently demonstrates a 

robust relationship between education and health (Link and Phelan 1995). The protective effect of 

increasing years of education is evident across a number of morbidities and is fairly consistent across 

different sociodemographic groups in the US (Zajacova and Lawrence 2018). In this paper, we focus 

on a critical aging-related phenotype, frailty, and evaluate the extent to which this indicator of overall 

health among the elderly is linked to years of education. Previous work has shown educational 

gradients in frailty at both the population (Etman et al, 2012, Theou et al., 2013) and individual 

levels (Crimmins et al, 2010, Szanton et al, 2010) but no existing work has evaluated the hypothesis 

that some of this association is due to genetic influences that affect education and subsequently 

frailly.  

The purpose of the study is to explore the possibility that genetic loci that are associated 

with educational attainment are also implicated in the reduced likelihood of frailty in later life (60+ 

years). Importantly, we evaluate the possibility that genes related to education also predict frailty 

above and beyond the effect of educational attainment. While there is preliminary evidence that the 

PGSeduc has lasting benefits through the life course, we seek to explore how these effects manifest 

over biological age. That is, is the potential effect of the PGSeduc most predictive of frailty more or 

less important as individual ages? Such answers will help to elucidate the relationship effects of 

education on frailty by exploring the genetic mechanisms underpinning both measures. 

Genetics and Years of Completed Education 

A recent meta-analysis of twin and family studies show that up to 40% of variance in 

educational attainment can be explained by genetic factors (Brainigan, McCallum & Freese, 2013).  



Using genetic markers, it is now possible to quantify an individual’s genetic propensity for high 

levels of educational attainment. One increasingly popular method is the polygenic score (PGS) 

approach (Dudbridge 2013), which has led to a number of advances over the past two decades in 

predicting disease (Jostins & Barret, 2011). Such successes are reflective of a growing consensus that 

complex phenotypes, such as educational attainment, are influenced by many genetic loci with very 

small effect sizes (i.e., highly polygenic, Vissher et al., 2017).  The PGS for educational attainment 

(PGSeduc) is a single score representing genome wide influence on academic success, as measured by 

formal years of schooling. Initially, social scientists developed this score (Reitvelt et al., 2013, Okbay 

et al., 2016, Lee et al., 2018) to explain variation in schooling due to genetic factors and the current 

score explains roughly 10% of the variance in education (Lee et al. 2018). In early and midlife, the 

PGSeduc is predictive of other measures of academic success and cognitive performance (e.g., general 

cognitive ability, standardized exam scores, highest math course completed; Lee et al., 2018, Belsky 

et al., 2018). Into adulthood, the PGSeduc predicts social mobility and indicators of economic success 

(e.g., occupational status, asset accumulation, financial stability, and wealth at retirement; Belsky et 

al., 2016, Belsky et al., 2018, Barth, Papageorge, and Thom, 2018).  

 While there is evidence that genes associated with educational attainment predict indicators 

of success, the relationship with indicators of health is less established but is growing.  That is, do 

genes associated with educational attainment also predict health outcomes? Results from large 

consortia suggest significant genetic overlap between genes for educational attainment and a range 

of health indicators (e.g., Alzheimer’s disease, ischemic stroke, psychiatric conditions, vascular-

metabolic diseases, smoking status, and other physiological measures such as body-mass index; 

Bulik-Sullivan et al., 2015, Hagenaars et al., 2016, Gandal et al., 2018, Anttila et al., 2018). Indirect 

evidence for this association comes from two additional studies. First, Marioni et al. (2016) found 

that a child’s PGSeduc was predictive of mortality, as measured by the paternal and maternal lifespan 



(Marioni et al., 2016).  Second, Boardman et al. (2015) provide evidence for genetic correlation (rG) 

for genes linked to years of education and genes linked to self-rated health.    

Aging, genes, and frailty 

From a medical perspective, frailty is a state of reduced physiological resilience and increased 

vulnerability to adverse events. Patients who are frail are more likely to be hospitalized, lose daily 

independence, have negative outcomes with medical procedures (e.g., poor response to surgeries), 

and have increased risk of death (Mitnitski, Mogilner, and Rockwood. 2001; Fried et al., 2001; 

Hamaker et al., 2012; Jung et al., 2014; Mitnitski et al. 2015; Rodriguez-Manas and Fried 2015; 

Hanlon et al., 2018). Frailty is an indicator of general health predicts morbidity and mortality and is 

considered an indicator of biological age (Fried et al. 2001; Sanderson and Scherbov, 2014; Mitnitski 

et al., 2017). As demographic shifts in population age-structure occur worldwide, the result is a 

growing population at risk for frailty, which is a debilitating and financially costly age-related 

syndrome (Morley et al., 2013; Goldman et al., 2013). As such, it is imperative to understand the 

predictors and mechanisms governing who is most at risk for frailty.   

Though aging is the greatest known risk factor for frailty (Rockwood and Mitnitski, 2011), 

not all aging individuals become frail, and individuals develop frailty at different rates (Mitnitski & 

Rockwood, 2016). Those with lower levels of education are far more likely than those with relatively 

high levels of education to evidence symptoms of frailty at an early age (Santos-Eggimann et al. 

2009). There are two competing hypotheses regarding effects of education across the life course 

which may explain the related gradients for frailty. The cumulative advantage hypothesis posits that 

educational gradients should increase with age (O’Rand, 2006). Alternatively, the alternative, age as a 

leveler hypothesis suggests these differences are diminished later in life (Preston, Hill, & Drevensted, 

1988). To date, there is evidence for both perspectives depending on the specific measure of frailty, 

the age composition of the study, and whether or not frailty is measured as a static indicator of 



current health or a within person measure of change in indicators of frailty over time (Yang and Lee 

2010).  

Bringing measured genetic polymorphisms to bear may shed light on the relevance of these 

two age-related models.  Previous research has shown that roughly 20-40% of frailty is genetically 

oriented (Sanders et al. 2016; Young et al. 2016). In an oversimplification of this very complex 

process consider the possibility that two individuals with otherwise identical states of frailty may 

have arrived to this state via very different paths: one because of their environmental exposures 

across their lifetime and the other simply because of their genetic composition. Thus, 

environmentally oriented frailty and genetically oriented frailty should be considered somewhat 

different morbidities despite their identical appearance in terms of measurement and assessment. 

One way to evaluate the relevance of the two age-related models discussed above is to consider 

changes in the effect of the PGSed with increasing ages. If the effect of PGSed on frailty is the same 

across ages among adults over the age of 60 then it provides some indirect support for the 

cumulative advantage perspective and it suggests that some of these cumulative advantage may have 

origins in genes linked to educational success. On the other hand, if the effect of the educational 

PGS on frailty decreases with increasing age then it provides some support for the age as a leveler 

perspective and importantly it stresses that age even levels the playing field with respect to genetic 

influence on the educational determinants of frailty.   

Material and Methods 

[Table 1 about here] 

Data  

The data comes from the Health and Retirement Study (HRS), a biannual panel study 

tracking physical, emotional, and economic wellbeing during the transition into older age (Juster & 

Suzman, 1995, Sonnega et al., 2014). These respondents were born between 1900 and 1970 with the 



interquartile range (IQR) of birth years spanning from 1930 to 1950. The HRS is sponsored by the 

National Institute on Aging (NIA U01AG009740) and is conducted by the University of Michigan. 

This study focuses on a sample of 5,344 HRS respondents with genotype data collected between 

2006-2008 and that had data for both frailty measures. Descriptive statistics for all variables are 

provided in Table 1. Because of complications due to population stratification and the use of the 

PGSeduc values across socially identified racial and ethnic groups, our analyses are limited to those 

who identify as non-Hispanic and white. Descriptive statistics for all variables used in the HRS are 

presented in Table 1.  

 

PGSeduc  

Genotypes were assessed using the llumina HumanOmni2.5 BeadChips, with coverage of over 2.4 

million genetic loci (i.e., single nucleotide polymorphisms [SNPS]). Standard quality control 

procedures were conducted (Ware et al., 2018). The PGSeduc was calculated using the sample 

excluding participants from the Social Science Genetic Association Consortium (SSGAC; Okbay et 

al., 2016). Scores were standardized within the sample.  

 

Frailty indices 

Two metrics of frailty were used to assess five waves of the HRS (2004-2012). These waves were 

selected due to consistency in item measurement, and have also been used in previous research on 

frailty (Mezuk et al., 2016). When possible, items were pulled from a harmonized longitudinal file 

prepared by the RAND Center on the Study of Aging (RAND, 2014). When unavailable in the 

RAND file, matching items were identified in the biannual files. For both metrics of frailty, scores 

are treated as both continuous and categorical. Continuous measures reflect an unweighted count of 

the number of health problems (i.e., symptoms, signs, functional impairments, or abnormal 



laboratory values), which are collectively referred to as “deficits.” Counting deficits stratifies 

respondents based on their level of functional decline, and thus, their degrees of vulnerability 

(Rockwood et al., 2005).  Categorical measures were treated as binary and are based on clinical 

cutoff that have emerged to classify an individual’s frailty status (i.e., frail or non-frail). Importantly, 

frail individuals have increased mortality compared to individuals of the same age (Vaulpel, Manton, 

& Stallard, 1979).While frailty is considered a reversible or dynamic state transitioning back from 

frailty is not common (Gill et al. 2006). The explanation for this is that once enough homeostatic 

reserve is lost it cannot be regained. 

 

Paulson-Lichtenberg frailty index (PLFI) 

As described by Paulson and Lichtenberg (2015), the frailty phenotype was designed to be a best-fit 

representation of the Fried et al. 2001 frailty phenotype using HRS data. The PLFI included five 

symptoms: wasting (i.e., individual reported loss of at least 10% of body weight over a 2-year 

period), weakness (i.e., “Because of health problems, do you have any difficulty with lifting or 

carrying weights over 10 pounds, like a heavy bag of groceries”), slowness (i.e., “Because of a health 

problem, do you have any difficulty with getting up from a chair after sitting for long periods), 

fatigue (i.e., “Have you had any of the following persistent or troublesome problems: sever fatigue 

or exhaustion?”), and falls (“Have you fallen down in the past 2 years”). The continuous PLFI 

measure had a range of 0-5, whereas the binary measure of frailty status used the established cut off 

of PLFI >3 as indicative of “frail” (Paulson & Lichtenberg, 2015).  

 

Deficit accumulation model frailty index (FI) 

Frailty in the HRS was also operationalized using the deficit accumulation model put forth by 

Rockwell et al. 2005, and Mitniski, Song, and Rockwood, 2013. The FI is a calculated ratio of health 



deficits out of the total number of possible deficits (e.g., 10 deficits present / 30 possible deficits 

indicates a FI of 0.33). The FI developed for use in the HRS uses 30 self-report health measures and 

was recreated using the item list published in Mezuk et al., 2016. Items included a variety of deficits 

such as difficulties with activities of daily living (e.g., dressing, bathing, toileting, cooing, shopping, 

changes activities of daily living), problems with pain (e.g., general pain, back pain, headache), 

problems with worsening memory or dementia, disturbances in sleep (e.g., persistent fatigue, 

problems falling or staying asleep), motor impairment (e.g., falling, impaired mobility, gross-motor 

impairment, fine motor impairment), and presence of health conditions (e.g., incontinence, cancer, 

arthritis, psychiatric conditions, depression, lung disease, respiratory problems, diabetes, stroke, 

angina, heart failure, heart attack, or high blood pressure). The continuous FI is a proportion ranging 

from 0-1, while the established cutoff of FI>0.25 defines frailty status (Rockwell et al. 2005).  

 

Statistical analysis 

Statistical analyses were conducted using R (version 3.4.1, Project for Statistical Computing; R Core 

Team, 2015) and Stata (StataCorp, 2011). Simple association of frailty score with polygenic score was 

done by chi-squared test of independence. Because frailty was repeatedly assessed we use all data 

across waves. In total we had 827 individuals with one observation, 1186 with two, 3330 with three, 

and 1 person had four frailty observations.  Multi-level regression with the xtmixed procedure in 

Stata was used to model the association of PGSeduc and frailty score in which observations are nested 

within people. We report the intra class correlation coefficient (ICC) for each model. Similarly, 

multi-level logistic regression was used with the xtmelogit command in Stata to model PGSeduc and 

frailty status (frail / non-frail). Level 1 error variance was assumed to be 
𝜋2

3
 (Guo and Zhao 2000). 

All models control for the top five principle components (PCs) to control for effects of population 



stratification or spurious association due non-causal allele frequency differences across ancestry 

groups (Patterson, Price, & Reich, 2006). 

Results 

[Table 2 about here] 

 Table 2 presents bivariate associations between PGSeduc (cut into quartiles) and the four 

metrics of frailty. These results provide the first evidence for our hypothesis linking genes related to 

educational outcomes and the indicators of frailty among older adults. The PLFI is the highest 

among those in the 1st quartile (lowest level) of the education PGSeduc (�̅� = 1.29) and the least frail 

are those in the 4th quartile of the PLFI (�̅� = 1.18). This difference is a small effect size (d = .09) but 

it remains statistically and substantively significant (the p-value for this test is derived from a one-

way ANOVA test and demonstrates that this relationship is statistically significant (p<.001). We 

show comparable estimates using the FI, a more comprehensive measure of frailty in which again, 

those with the lowest education PGSeduc have a frailty score (�̅� =  24.41) that is significantly higher 

than the frailty score among those with the highest education PGSeduc (�̅� =  23.07). As with the 

PLFI, the effect size remains quite small (d = .11) but important nevertheless. Table 2 also evaluates 

the same associations but at their respective thresholds to identify a state of frailty. While only 

14.68% of those with the highest education PGSeduc were in a frail state according to the PL score 

17.08% of those with the lowest education PGSeduc scores were in a frail PLFI state and this same 

association is seen with the threshold for the frailty index. Specifically, while 40.27% of those with 

low education PGSeduc were frail at the time of the interview, only 36.72% of those with high 

education PGSeduc scores were frail. As with the continuous indicators, both binary assessments of 

frailty status were statistically significant (pr. < .025 and < .008, respectively).  

[Table 3 about here] 



 Table 3 presents the results from multilevel analyses for the two continuous indicators of 

frailty described above in which observations are nested within individuals. For each measure we 

present the results of three models. The first regresses the frailty score on the education PGSeduc with 

controls for gender, age, and the top 5 PCs. The second introduces a control for years of education 

and the third introduces the interaction between the PGSeduc and age to evaluate the possibility of 

age related changes in the influence of the PGSeduc on frailty. Model 1 provides a baseline indicator 

for the effect of the education PGSeduc on PLFI. The effect (b = -.06) suggests that a one standard 

deviation increase in the education PGSeduc reduces frailty by .06 points. As with the bivariate 

associations this denotes a small effect size (d = .05) but again it remains a statistically significant and 

meaningful association. Model 2 introduces years of completed education as a mediating mechanism 

to link education PGSeduc to frailty. As expected, the PGSeduc coefficient is significantly reduced (b = 

-.03) but most importantly, the association remains statistically significant. This provides evidence 

for our primary hypothesis. Namely, that genes linked to educational attainment provide health 

protections that are above and beyond each additional year of formal education. Model 3 evaluates our 

interest in this association as individual’s age. Accordingly, we introduce an interaction between age 

and the education PGSeduc. As shown in Model 3, the interaction is positive and significant which 

suggests that the protective effects of the education PGSeduc on frailty diminish with age. To better 

gauge the meaning of this interaction, we used the postestimation margins command in Stata to 

retrieve parameter estimates and confidence intervals for age specific slopes for the education 

PGSeduc - Frailty association. These estimates are shown graphically in Figure 1a. The horizontal line 

represents the null hypothesis that there is no association between education PGSeduc and frailty. We 

show the largest effects (b = - .06) among those who are 65 years old, the average effect (b = - .03) 

among those who are 75, and non-significant associations among those who are 80 and 85.  

[Figure 1 about here] 



 A very similar story is shown in Models 4-6 in which the dependent variable is now the 

deficits accumulation model or FI. Here, the baseline association (b = -.84) is evident above and 

beyond controls for age, gender, and the five principal components and this effect is nearly cut in 

half after controlling for years of education in Model 5 (b = - .44). As with the PLFI, this association 

remains statistically significant despite controlling for education. Similarly, the association is reduced 

as people age as indicated by the positive interaction in Model 6 (b = .24) which is statistically 

significant. The functional form of this interaction and the age thresholds at which education 

PGSeduc is linked to frailty is nearly identical to the PL score despite using different and more 

comprehensive indicators of frailty.  

 The results presented in Table 4 replicate the models in Table 3 but use a binary indicator of 

a frailty status with an a priori threshold for each measure described above. As with the continuous 

indices, the education PGSeduc is significantly associated with reduced likelihood of frailty using the 

established cutoffs for the PLFI (b = -.16) and the FI (b= -.21). Statistical controls for years of 

completed education reduce these associations by more than one-half for both PLFI (b=-.07) and 

FI (b = -. 09) and rendering the main effect for the PLFI to drop below statistical significance (95% 

CI [-.16, .03]). As with the continuous indicators, the interaction with age is both positive and 

statistically significant. Figures 1c and 1d plot the fitted probability of each respective indicator of 

frail status as a function of age and education PGSeduc in which the solid line is among those with the 

lowest education PGSeduc (-2SD) and the dashed line is among those with the highest education 

PGSeduc (+2SD). In both cases, the story is nearly identical to the continuous indicators in which the 

effect is the most evident among those ages 75 and younger and non-existent among those 80 and 

older.  

 

Discussion 



 A breadth of work has established a link between educational attainment and health 

(Zajakova and Lawrence 2018). Recently, attention has been directed at extending this research to 

study the link between educational attainment and an age-related health outcome, frailty. To the best 

of our knowledge, this is the first study to explore whether genes related to educational attainment 

directly or indirectly influence health and aging, as measured by frailty. Specifically, we hypothesized 

that the PGSeduc would be predictive of frailty, and this association would exists above and beyond 

the direct effects of actual educational attainment. That is, if the genetic mechanisms are dependent 

on education then we would expect that the association of the PGSscore would be rendered non-

significant when controlling for education in the model. Alternatively, if the genetic mechanisms are 

influencing health above and beyond years of education then we should continue to see a significant 

association between PGSeduc. Indeed, that is what we observed. Across two frailty metrics we 

found that genes related to educational attainment predict frailty. That is, participants with higher 

PGSeduc scores had better general health (i.e., less functional decline) compared to participants with 

lower scores. This held true for both a comprehensive frailty index (FI) and the measure reflecting 

the frailty phenotype described by Fried (2002; PLFI). Similarly, participants with higher PGSeduc 

were less likely to be classified as “frail” based on established cut-offs. Standing alone, this finding 

may not be entirely surprising. As the PGSeduc is predictive of actual educational attainment, it is 

possible that that the genetic effects operate indirectly through exposure to education. Thus, we 

explored an alternative explanation in which the PGSeduc operates independently of actual 

educational attainment. 

  While we did not explore other intermediate phenotypes between the PGSeduc and frailty, 

several biological, cognitive, social, or psychosocial mediators have been put forth linking education 

to health. The bulk of these involve benefits derived from years of completed education. 

Accordingly, the residual effect of PGSeduc and frailty suggests that there is something critical in the 



education-health process that also operates above and beyond years of completed education. In their 

comprehensive review Zajakova and Lawrence (2018: 275) discuss what they call a “signaling or 

credentialing perspective” in which the attainment of specific degrees provides new sources of 

human and social capital that frames an individual as productive or skilled. Accordingly, it may be 

that individuals with higher PGSed scores present themselves in a manner that is concordant with a 

successful or productive individual and thus create a response from others in which these signals 

lead to a positive framing of an individual that exists above and beyond their years of education. 

This is what is referred to as an evocative gene-environment correlation because an individual’s 

cumulative genotype may evoke environments that are associated with both increasing education 

and reduced risks of frailty. This perspective is in line with our findings but our analyses cannot rule 

out other explanations.  

Other explanations include but are not limited to the following. The education PGS could be 

predicting health which then influences years of education. There is a large and growing body of 

work characterizing the rate of biological aging differences across social groups with a focus on 

education (Sanderson and Scherbov 2014; Mintinski, Howelett, and Rockwood 2017) and it is 

possible that those with higher education PGS scores are simply aging at a slower rate that those 

with lower PGS scores. A critical psychological mechanism could be the role of self-efficacy or 

mastery in which individuals with higher educational PGS may also have higher levels of efficacy 

that lead to both educational success, increased resilience, and delayed frailty onset (Stretton et al. 

2006). This same perspective is supported by work linking education to hopelessness and other 

indicators of sense of control (Mitchell et al. 2016). It is possible that the education PGS is involved 

in complex biological and psychiatric processes that reduce the sense of hopelessness and 

subsequently increase the likelihood of completing education. This same reduced hopeless is then 

instrumentally linked to reduced onset of frailty. We encourage future researchers to consider these 



pleitropic mechanisms but also the evocative rGE explanation in future work to better understand 

the cognitive, social, and psychological pathways through which genes associated with education 

may reduce the likelihood of frailty regardless of one’s level of education.  

 Another key finding of our study was that the association between PGSeduc scores and frailty 

diminished with age. That is to say, genes related to educational attainment are more strongly 

predictive of frailty for participants in their 60’s and 70’s, and the effect was nearly absent beyond 

age 80. This is an important finding that is consistent with previous analyses of age trends in 

allostatic load (Crimmins et al., 2003), where age-related increases in allostatic load flattened at the 

oldest ages (Seeman et al. 2008). For education-related differences in physical performance tasks 

(e.g., grip strength, balance, walking speed, and chair stands), the effect also diminishes at advanced 

ages (80+ years). Given that the direct effect of education on health diminishes with age, we would 

expect that genes associated with education would also have less of an effect on health at advanced 

ages. Several explanations, ranging from sociological to biological, supporting this expectation have 

been put forth. First, differences in increasing risk of frailty with age have been documented across 

birth cohorts within the HRS (Yang and Lee, 2010). However, when birth cohorts were combined 

Yang and Lee (2010) found evidence that rates of frailty decrease with age. Secondly, phenotypic 

variation increases with age, thus any predictors of late-life/aging phenotypes weaken with 

progressing age. Rates of frailty were found to decrease with age, and it is well known that mortality 

rates slow at advanced ages (80+ years, Greenwood and Irwin 1939; Horiuchi and Wilmoth 

1998; Thatcher 1999; Thatcher, Kannisto and Vaupel 1998; Gavrilova et al., 2017). Thirdly, this may 

reflect a survivor effect wherein those with worse physical function and lower education die at 

younger ages and are not included in the sample of aged participants (Welmer et al., 2013). Lastly, 

the relative importance of education on physical performance is less at older ages due to 

accumulation of deficits. Overall, the result that PGSeduc is less predictive of frailty beyond age 80 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696798/#R14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696798/#R15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696798/#R15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696798/#R23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696798/#R24


when birth cohorts are combined is supportive of the age as leveler hypothesis; although, attention 

should be paid to intracohort heterogeneity (Yang and Lee, 2010, Vaupel, Manton, Stallard, 1979).  

There are several strengths of our study. While frailty is an easy concept to define, it is 

surprisingly difficult to measure and therefore, difficult to study. There is no consensus on the 

optimal way to measure frailty (Cigolle et al., 2009; Chao et al., 2018), however, there are two 

predominant clinical frailty metrics, the FI and the PLFI. The utility of these frailty metrics has been 

validated in different populations (Yang and Lee, 2010, Wu et al., 2018). While separate indices are 

not always convergent, they are often treated as complementary as they all are valid predictors of 

subsequent morbidity and mortality (Cesari et al., 2013, Theou et al., 2013b, Blodgett et al., 2015, 

Theou et al., 2015). A major strength of this study is that we use two frailty metrics and find 

converging evidence for the independent effect of the PGSeduc, above and beyond years of 

education, on frailty. Similarly, we find that both models of frailty support the age as a leveler 

hypothesis for the effects of genes associated with education across the life course.  Finally, few 

studies have attempted to parse the effects of education from underlying genetic propensity for 

educational attainment. Unlike a majority of work, our study begins to disentangle this effect to 

illuminate possible underlying mechanisms.  

 Our study contributes to the larger body of work for studying the educational effects on 

aging, however, some limitations should be considered. We did not assess cohort differences in 

frailty dynamics. Others have shown that the genetic associations vary across birth cohort 

(Domingue et al. 2016) and historical periods (Boardman et al. 2010).  Thus, the predictive power of 

a PGS in a replication sample may be attenuated with differences across studies in genotyping 

platforms, environmental contexts, or demographic characteristics (e.g., age, cohort, sex, or 

ethnicity, Wray et al., 2013, Ware et al., 2017, Tropf et al., 2017, Boardman et al., 2018). That is, the 

PGSeduc score may be most predictive in replication samples that closely match the discovery sample. 



As the PGS was optimized for prediction in populations of European ancestry and may not 

replicated in other samples (Carlson et al., 2013, Martin et al., 2017), we too limited our sample. We 

encourage future work to evaluate comparable hypotheses with the full sample of respondents from 

the HRS.  

Finally, we evaluated our hypotheses with men and women together. Others have shown 

gender differences in genetic associations with factors associated with frailty such as psychological 

resilience (Boardman et al. 2008). We simple controlled for gender in our models to but we did not 

specifically evaluate the possibility that these associations are systematically different as a function of 

gender identity. Compared to men, women tend to evidence higher levels of frailty, become frail 

earlier in the life course, but the effect of frailty on mortality is significantly less among women 

compared to men suggesting the composition of frail individuals may be very different for older 

men and women (Germain et al. 2016; Gordon et al. 2017) We encourage future work to consider 

the role of gender as a key mechanism linking education PGS, education, frailty, and survival.  
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Table 1. Descriptive statistics for all variables used in the analyses (n = 5,344) 

  Mean/% SD/N 

Frailty Measures   
  PL Score 1.23 1.18 

  PL Score > 3 0.15 828 

  Frailty Index 23.59 12.66 

  Frailty Index >=25 37.85 2023 

Female 0.58 3106 

Age (years) 74.66 6.86 

Education (years) 13.04 2.55 

Education PGS (z) 0.00 1.00 

PC1 (z) 0.00 1.00 

PC2 (z) 0.00 1.00 

PC3 (z) 0.00 1.00 

PC4 (z) 0.00 1.00 

PC5 (z) 0.00 1.00 

     
Note: Data come from the Health and Retirement Study (HRS).  
  



Table 2. Bivariate associations between education PGS and frailty 
 

  Quartile of Education PGS   

  Q1 Q2 Q3 Q4 pr. < 

  PL Score 1.29 1.25 1.19 1.18 0.001 

  PL Score > 3 17.08 15.39 14.77 14.68 0.025 

  Frailty Index 24.41 23.79 23.08 23.07 0.000 

  Frailty Index >=25 40.27 37.67 36.72 36.72 0.008 

 
Note: Data come from the Health and Retirement Study (HRS).  
 



PGSeduc, Education, & Frailty 
 
Table 3.  Education related genes and continuous indicators of frailty  

  PL Frailty Index Frailty 100 Index 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Female 0.34 (0.28, 0.39) 0.31 (0.26, 0.37) 0.32 (0.26, 0.37) 2.36 (1.75, 2.97) 2.10 (1.50, 2.71) 2.11 (1.51, 2.72) 

Age 0.29 (0.26, 0.31) 0.28 (0.26, 0.30) 0.28 (0.25, 0.30) 3.49 (3.27, 3.70) 3.40 (3.18, 3.61) 3.39 (3.18, 3.60) 

PC1 -0.01 (-0.04, 0.01) -0.01 (-0.04, 0.01) -0.01 (-0.04, 0.01) -0.04 (-0.35, 0.26) -0.02 (-0.32, 0.28) -0.02 (-0.32, 0.28) 

PC2 0.01 (-0.02, 0.03) 0.01 (-0.01, 0.04) 0.01 (-0.01, 0.04) 0.22 (-0.08, 0.52) 0.26 (-0.04, 0.56) 0.26 (-0.04, 0.56) 

PC3 0.00 (-0.03, 0.02) -0.01 (-0.03, 0.02) -0.01 (-0.03, 0.02) -0.18 (-0.49, 0.12) -0.26 (-0.56, 0.04) -0.26 (-0.56, 0.04) 

PC4 -0.01 (-0.04, 0.02) -0.01 (-0.04, 0.02) -0.01 (-0.04, 0.02) -0.13 (-0.43, 0.18) -0.15 (-0.44, 0.15) -0.14 (-0.44, 0.15) 

PC5 0.04 (0.01, 0.06) 0.04 (0.01, 0.06) 0.04 (0.01, 0.06) 0.57 (0.27, 0.87) 0.56 (0.26, 0.86) 0.56 (0.26, 0.86) 
Education 
PGS -0.06 (-0.09, -0.04) -0.03 (-0.06, -0.01) -0.03 (-0.06, 0.00) -0.84 (-1.14, -0.54) -0.44 (-0.75, -0.13) -0.41 (-0.72, -0.10) 

Education    -0.13 (-0.16, -0.10) -0.13 (-0.16, -0.1)   -1.67 (-1.98, -1.36) -1.67 (-1.98, -1.36) 

PGS*Age     0.03 (0.00, 0.05)     0.24 (0.02, 0.45) 

Intercept 1.05 (1.01, 1.09) 1.06 (1.02, 1.10) 1.06 (1.02, 1.10) 22.46 (21.99, 22.93) 22.63 (22.17, 23.09) 22.61 (22.15, 23.08) 

             

level 1 0.83 (0.82, 0.84) 0.83 (0.76, 0.81) 0.83 (0.82, 0.85) 7.22 (7.11, 7.34) 7.23 (7.12, 7.34) 7.23 (7.12, 7.34) 

level 2 0.79 (0.77, 0.82) 0.78 (0.76, 0.81) 0.78 (0.76, 0.81) 10.07 (9.83, 10.31) 9.93 (9.69, 10.17) 9.92 (9.69, 10.16) 

Error Variance             

  Level 1 0.69 (0.67, 0.71) 0.69 (0.58, 0.65) 0.69 (0.67, 0.71) 52.20 (50.58, 53.86) 52.26 (50.64, 53.92) 52.26 (50.65, 53.93) 

  Level 2 0.63 (0.59, 0.67) 0.61 (0.58, 0.65) 0.61 (0.58, 0.65) 101.41 (96.69, 106.37) 98.59 (93.97, 103.45) 98.45 (93.83, 103.30) 

Rho 0.48   0.47   0.47   0.66   0.65   0.65   

 
Note: Data come from the Health and Retirement Study. Cell entries represent parameter estimates from a multilevel model in which observations are 
nested within individuals. Values in parentheses represent 95% confidence intervals.  
  



PGSeduc, Education, & Frailty 
 
Table 4.  Education related genes and binary indicators of frailty  

  PL Frail Frail 100 Index 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Female 0.99 (0.79, 1.19) 0.94 (0.74, 1.14) 0.94 (0.74, 1.14) 0.70 (0.50, 0.90) 0.63 (0.43, 0.82) 0.63 (0.44, 0.83) 

Age 0.79 (0.69, 0.88) 0.76 (0.67, 0.85) 0.76 (0.67, 0.85) 0.86 (0.77, 0.94) 0.82 (0.73, 0.91) 0.82 (0.73, 0.91) 

PC1 -0.02 (-0.11, 0.07) -0.01 (-0.11, 0.08) -0.01 (-0.11, 0.08) 0.01 (-0.09, 0.10) 0.01 (-0.08, 0.11) 0.01 (-0.09, 0.11) 

PC2 0.01 (-0.08, 0.11) 0.02 (-0.07, 0.12) 0.02 (-0.07, 0.12) 0.04 (-0.06, 0.13) 0.05 (-0.05, 0.15) 0.05 (-0.05, 0.15) 

PC3 -0.02 (-0.12, 0.07) -0.04 (-0.13, 0.05) -0.04 (-0.13, 0.05) 0.02 (-0.08, 0.12) 0.00 (-0.10, 0.10) 0.00 (-0.10, 0.10) 

PC4 -0.02 (-0.12, 0.07) -0.03 (-0.12, 0.07) -0.03 (-0.12, 0.07) -0.02 (-0.12, 0.07) -0.03 (-0.12, 0.07) -0.03 (-0.12, 0.07) 

PC5 0.17 (0.08, 0.27) 0.17 (0.07, 0.27) 0.17 (0.07, 0.27) 0.19 (0.09, 0.29) 0.19 (0.09, 0.29) 0.19 (0.09, 0.29) 
Education 
PGS -0.16 (-0.26, -0.07) -0.07 (-0.16, 0.03) -0.08 (-0.18, 0.00) -0.21 (-0.31, -0.11) -0.09 (-0.19, 0) -0.08 (-0.18, 0.00) 

Education    -0.40 (-0.50, -0.30) -0.40 (-0.50, -0.30)   -0.49 (-0.59, -0.39) -0.49 (-0.59, -0.39) 

PGS*Age     0.11 (0.03, 0.19)     0.14 (0.07, 0.22) 

Intercept -3.51 (-3.74, -3.29) -3.49 (-3.71, -3.27) -3.50 (-3.72, -3.28) -1.40 (-1.56, -1.24) -1.36 (-1.51, -1.2) -1.37 (-1.53, -1.21) 

Error Variance             
  Level 2 4.77 (4.08, 5.58) 4.64 (3.97, 5.44) 4.61 (3.94, 5.4) 7.71 (6.89, 8.64) 7.47 (6.66, 8.38) 7.46 (6.65, 8.36) 

Rho 0.59   0.59   0.58   0.70   0.69   0.69   

Note: Data come from the Health and Retirement Study. Cell entries represent parameter estimates from a multilevel model in which observations are 
nested within individuals. Values in parentheses represent 95% confidence intervals.  
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Figure 1a. PGS*Age interaction PL Frailty           Figure 1b. PGS*Age interaction Frail 100 Index 

                     
Note: Estimates derived from Table 3 Model 3.      Note: Estimates derived from Table 3 Model 6.  

 

 
Figure 1c. PGS*Age interaction on risk of frail status (PL)             Figure 1d. PGS*Age interaction on risk of frail status (F100) 

                         
Note: Estimates derived from Table 4 Model 3.      Note: Estimates derived from Table 4 Model 6.  

 

 


