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Abstract 36 

Background 37 

The addition of neonatal mortality targets in the Sustainable Development goals highlights the increased 38 

need for age-specific quantification of mortality trends, detail which is not provided by summary birth 39 

histories. Several methods exist to indirectly estimate trends in under-5 mortality from summary birth 40 

histories, however efforts to monitor mortality trends in important age groups such as the first month 41 

and first year of life have yet to utilize the vast amount of summary birth history data available from 42 

household surveys and censuses.  43 

Methods and Findings 44 

We analyzed 243 Demographic and Health Surveys (DHS) from 76 countries, which collected both 45 

complete and summary birth histories from 8.5 million children from 2.3 million mothers to develop a 46 

new empirically-based method to indirectly estimate time trends in age-specific mortality. We used 47 

complete birth history data to train a discrete hazards generalized additive model that was able to 48 

predict individual hazard functions for children based on individual, mother, and country-year level 49 

covariates. Individual-level predictions were aggregated over time by assigning weights to potential 50 

births of mothers from summary birth history data. Age-specific estimates were evaluated using cross-51 

validation, using an external database of an additional 243 non-DHS census and survey data sources, and 52 

overall under-5 mortality was compared to existing indirect methods.  53 

Our model was able to closely approximate trends in age-specific child mortality. Depending on age, the 54 

model was able to explain between 80% and 95% of the variance in the validation data. Bias was close to 55 

zero in every age, with median relative errors spanning from 0.96 to 1.09. For trends in all under-5s, 56 

performance was comparable to the methods used for the Global Burden of Disease Study, and 57 

significantly better than the standard indirect (Brass), especially in the five years preceding a survey.  58 

External validation using census and survey data found close agreement with concurrent direct 59 

estimates of mortality in the neonatal and infant age groups.  60 

Conclusions  61 

This new method for estimating child mortality produces results that are comparable to current best 62 

methods for indirect estimation of under-5 mortality, while additionally producing age-specific 63 

estimates. Use of such methods allows researchers to utilize a massive amount of summary birth history 64 

data for estimation of trends in neonatal and infant mortality. Systematic application of these methods 65 

could further improve the evidence base for monitoring of trends and inequalities in age-specific child 66 

mortality.  67 

 68 

  69 
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Author Summary  70 

Why Was This Study Done? 71 

• Recently, and particularly in light of the Sustainable Development Goals, there has been 72 

increased interest in rigorous measurement of neonatal and infant mortality trends at both 73 

national and subnational levels.  74 

• Summary birth histories are a widely available data source for child mortality but have only been 75 

validated to produce estimates of under-5 mortality and are not widely used to make estimates 76 

of mortality for other age groups.  77 

• A method was needed that would enable summary birth histories to be utilized in the 78 

estimation of age-specific (such as neonatal and infant) mortality trends.  79 

What Did the Researchers Do and Find? 80 

• We extracted data from 243 Demographic and Health Surveys (DHS) which contained complete 81 

birth histories – data from which age-specific trends could be directly estimated and from which 82 

summary birth histories could be produced. 83 

• We trained a discrete time survival model that could be used to predict mortality from summary 84 

birth histories and used both cross-validation as well as a systematic external validation on an 85 

additional database of 243 summary birth history only census and survey sources, in order to 86 

assess how well the model could reproduce age-specific mortality trends.  87 

• We found that in both out of sample DHS data and on a large database of external data, model 88 

predictions of age-specific mortality closely matched validation data, while also performing 89 

nearly as well as the current best model used for overall under-5 mortality. 90 

What Do These Findings Mean? 91 

• This method can help improve the empirical evidence base upon which global, national, and 92 

subnational neonatal, infant, and other age-specific child mortality estimates are made, 93 

including by making new use of publicly available summary birth history data on over 150 94 

million children already extracted and analyzed for this paper.  95 

 96 

  97 
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Introduction 98 

Monitoring levels and trends of child mortality is a key component to understanding progress in child 99 

survival, and for targeting additional policy and financial assistance to accelerate gains.[1] A complete, 100 

prospective, and continuous registration of births and deaths is the preferred source of information on 101 

child mortality,[2] but in countries where child mortality is highest, deaths often go unrecorded due to 102 

poor or nonexistent vital registration (VR) systems.[3] In the absence of quality VR data, trends in under-103 

5 mortality are typically estimated using retrospectively collected household sample survey and census 104 

data that ask mothers about births and deaths of their children.[4,5]  105 

Age-specific under-5 mortality varies widely both by and within-country,[4,6] and thus it is critical to 106 

estimate levels and trends by age group with as much data as possible. The implications have high 107 

national and global relevance, particularly as the UN Sustainable Development Goals explicitly 108 

emphasized neonatal mortality in addition to under-5 mortality.[7]  109 

Household survey and census-based child mortality questionnaires are available either as complete birth 110 

histories (𝐶𝐵𝐻), also sometimes known as full birth histories, or summary birth histories (𝑆𝐵𝐻). CBH are 111 

preferred over SBH because they capture detailed vital event histories on each child born to the 112 

surveyed mothers. Information on dates of birth and ages at death can thus be tabulated to directly by 113 

age group. In contrast, SBH surveys only ask each mother how many children she has birthed (𝐶𝐸𝐵), 114 

how many of her children have died to date (𝐶𝐷), her age, and sometimes about the time since first 115 

birth and/or marriage. Nevertheless, SBH are widely available in many censuses and other sample 116 

surveys, due in part to the relative simplicity of collecting them. To utilize this vast source of data, 117 

several methods have been developed to indirectly estimate trends in under-5 mortality (5𝑞0) from 118 

SBH.[8–11] However, such methods have yet to be specifically adapted for wider application to estimate 119 
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age-specific mortality among under-5s from SBH; subsequently, past assessments of neonatal and infant 120 

mortality have been informed by comparably less data, especially outside of VR settings.  121 

Indirect trends in child mortality from SBH are currently estimated using either the standard indirect 122 

method,[8,11–15] a version of which is used by the UN Inter-Agency Groups for Child Mortality 123 

Estimation (IGME), or the combination of two methods outlined by Rajaratnam and colleagues[9], used 124 

in the Global Burden of Disease (GBD) study. For detailed review on these methods see Supplementary 125 

Information section 1. In brief, the standard indirect method uses simulated coefficients applied to the 126 

ratio of 𝐶𝐷 to 𝐶𝐸𝐵, aggregated at different maternal age (or time since first birth) cohorts to estimate 127 

mortality rates and locate them in time. The GBD methods use pooled DHS survey data to inform two 128 

types of indirect estimation models which are then combined to produce final estimates. The maternal-129 

age cohort (MAC) based method is fundamentally similar to the standard indirect method. The 130 

maternal-age period (MAP) method uses empirical distributions, tabulated from DHS CBH data, 131 

describing the proportion of children born as well as the proportion of children died to mothers in each 132 

year preceding the survey. MAP distributions are produced by maternal age, 𝐶𝐸𝐵, and region. The 133 

period-specific aggregations of expected children died and born derived from these distributions are 134 

used to locate mortality risk in time in SBH data.  135 

Other methods, such as cohort change and birth history imputation have been proposed, [10,16]  but in 136 

general the development of new methods for indirect estimation of age-specific mortality has been 137 

understudied. Furthermore, none of the major existing methods have explored the use of predictive 138 

covariates measured at the individual mother or child level. The continued investment in collection of 139 

DHS surveys over the past 30 years has provided a massive dataset where both SBH and CBH are 140 

available, and thus the opportunity to train and test new methods. 141 
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In this paper we describe and test a novel method for indirect estimation of age-specific mortality using 142 

SBH, based on a discrete hazards survival analysis model. This approach differs from existing popular 143 

indirect methods in two main respects: it produces a cohesive set of age-specific trend estimates 144 

without reliance on model life tables, thus allowing for the flexibility to estimate mortality rates for 145 

younger age groups such as neonates, and it is fit and predicted at the individual level, utilizing time-146 

varying individual covariates.  147 

Methods 148 

 149 

Data 150 

 151 

We analyzed 243 DHS (https://dhsprogram.com/) surveys from 76 countries, collecting complete and 152 

summary birth histories on 8,504,688 children from 2,346,538 mothers. We included DHS surveys and 153 

related Macro Malaria Indicator Surveys conducted since 1988 and available by October 2017. A full 154 

listing of the surveys used with summary information can be found in the Supplementary Information 155 

table 1. 156 

Birth history data in DHS surveys are recorded as follows: women are asked a series of questions about 157 

how many sons and daughters they have given livebirths to, including how many live with them now, 158 

and how many have died. Certain probing questions are included to get more accurate responses. These 159 

data are aggregated to CEB and CD, forming the SBH component of the data. CBH are also collected for 160 

each child born to the mother. Month and year of birth are recorded, as is age if the child is still alive. If 161 

the child reporting on had died, age at death is recorded in days if the child was under one month at 162 

https://dhsprogram.com/
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death, in months if the child was under two years old at death, and in years if the child was two or older 163 

at death.  164 

We further analyzed an additional 243 censuses and household surveys from 93 low and middle income 165 

countries (LMICs), in order to demonstrate how the method can be applied in datasets where only SBH 166 

was collected, and to validate our results against concurrent CBH data. Of the SBH-only sources used, 71 167 

were census, 81 were Unicef Multiple Indicator Cluster Surveys (MICS), and the rest were from other 168 

household survey families such as Living Standards Measurement Surveys and other country-specific 169 

household surveys. The DHS datasets, as well as an additional 99 other CBH data sources were used for 170 

comparison.  171 

To identify data sources, we searched the Global Health Data Exchange (GHDx, 172 

http://ghdx.healthdata.org/) for national census and survey data in LMICs with the following key words: 173 

complete birth history, summary birth history, child mortality, and infant mortality. This was further 174 

supplemented by bespoke searches on national statistics agency websites. We used only data sources 175 

for which individual level data were available. A full listing of these data sources can be found in the 176 

Supplementary Information, along with their GHDx record identification number, where links to data 177 

distributors are provided. 178 

 179 

Statistical Model 180 

 181 

Our goal was to develop a model which could be used to predict age-specific trends in mortality using 182 

SBH data only. We used CBH data to train the model, since it allowed us to identify mortality risk in time 183 

and age. For independent variables, we only used attributes that were available from SBH, since we 184 
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ultimately wanted to use this model to estimate mortality trends in datasets where only SBH are 185 

available.  186 

We treated data from CBH as time-to-event, or survival data.[17,18] The goal of survival modeling is to 187 

estimate the underlying hazard or survival functions which describe the risk of event over exposure 188 

time. Special care is taken for data that are right-censored, where event status is unobserved after a 189 

certain period. In context of child mortality data, the 'event' of interest is a death, 'exposure time' is age 190 

since birth, and right-censoring occurs when a child is reported alive.  191 

Most survival models can be expressed in the general form ℎ(𝑎𝑔𝑒|𝛽𝑿) = ℎ0,𝑎𝑔𝑒𝑒𝛽𝑿, where 192 

ℎ0 represents the baseline hazard function over age, which is shifted by weighted effects of covariates 193 

𝑿. The baseline hazard function can be fit either parametrically, to a variety of smooth functions defined 194 

either by probability distributions or as flexible splines,[19] or discretely, either using arbitrary age bins 195 

or in data-defined age bins as in the widely-used Cox proportional hazards model. Covariates will 196 

generally shift the hazard function, and as such have a proportional effect across ages. This 197 

proportionality can be relaxed using age-varying covariates.  198 

For this analysis, we adopted a discrete time survival analysis (DTSA)[20] approach to modeling the 199 

baseline hazard function. In a DTSA model, age is split into discrete bins, which conforms well to the 200 

discrete nature of age reporting in CBH data. The baseline hazard function is flexibly parameterized 201 

using fixed effects dummies, 𝐼, for chosen discrete age bins. This is achieved by reshaping input data 202 

such that every row in the new dataset is associated with each age bin, 𝑎, entered into by each child, 𝑖, 203 

in the data. Censored age bins for any child are not included in the reshaped data. An indicator variable 204 

𝑌𝑖,𝑎  is included for each row and set to 1 if the child died in that age bin. A no-covariate baseline hazard 205 

could then be determined by fitting the following logistic regression model: 206 

 207 



9 
 

𝑌𝑖,𝑎  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞𝑎) 208 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑎) =  ∑ 𝐼𝑖,𝑎𝛽𝑎

𝐴

𝑎=1

 209 

Note that fixed effects are estimated for each age bin without an intercept term, so that each 𝛽𝑎 is in 210 

reference to zero, and thus each 𝑒𝛽𝑎 are interpretable as the probability of mortality in age group a, 211 

conditional on survival to age group 𝑎, or (𝑞𝑎). In the discrete case we thus refer to 𝑞𝑎as the probability 212 

of death within age bin 𝑎, though ‘mortality rate’ is often used interchangeably. This basic model can be 213 

extended to include individual-level covariates, random effects to account for hierarchical data, 214 

transformations or smoothing splines on covariates to improve prediction, and interactions with age-bin 215 

dummies in order to allow for non-proportional effects of covariates.  216 

For this application we used the following seven age bins for this analysis: livebirth to 29 days (Neonatal, 217 

NN), 30 days to 5 months inclusive (Post Neonatal 1, PNN1), 6 to 11 months inclusive (PNN2), 12 to 23 218 

months inclusive (1yr), 24 to 35 months inclusive (2yr), 36 to 47 months inclusive (3yr), 48 to 59 months 219 

inclusive (4yr). These bins were chosen to align in the way in which age information is collected in DHS, 220 

such that each age bin would have identifiable data on children entering and dying within it. We 221 

separated first year of life further into three age bins because there is a high and quickly changing 222 

mortality hazard during this period. The neonatal period during first month of life is further split because 223 

it is often of separate public health interest due to the unique epidemiology of causes of death during 224 

this period. Figure 1 shows this simple baseline hazard function fit to the 2011 Burundi DHS dataset for 225 

illustration purposes. 226 
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 227 

Figure 1 Illustrating the estimated pooled baseline discrete hazard and survival functions from the 2011 Burundi DHS dataset, fit 228 

using the seven age bins 𝑎 ∈  (1 = 𝑁𝑁, 2 = 𝑃𝑁𝑁1, 3 = 𝑃𝑁𝑁2, 4 = 1𝑦𝑟, 5 = 2𝑦𝑟, 6 = 3𝑦𝑟, 7 = 4𝑦𝑟). Note that we are 229 

estimating discrete hazards, and thus hazards (shown in panel B) are interpreted as a conditional probability rather than a 230 

conditional rate. The survival function (shown in panel A), showing estimated survival at the end of each age bin, is calculated 231 

directly from estimated hazards as 𝑆�̂�  =  ∏ (1 − 𝑞𝛼)𝑎
𝛼=1  232 

 233 

We trained the model on the pooled complete birth history database with the purpose of making 234 

predictions in situations where only SBH are available, as in census data. As such, we were limited to 235 

using covariates from the training data which were also available in SBH-only datasets. Certain 236 

covariates, such as year of birth and mother's age at birth were found to be highly predictive of 237 

mortality, but could not be ascertained directly from SBH data. In order to account for them, we 238 

approach predicting from the perspective of hypothetical child. Specifically, for any given woman in the 239 

target SBH data, we wished to predict hazard functions for all hypothetical children she could have had 240 

over the course of her child-bearing years. For example, if a 30-year-old woman was observed in a 241 

dataset collected in 2010, we could predict a separate hazard function for a potential child born to her 242 
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each year going back until she was 12 in 1992. Hazard functions for these hypothetical children could be 243 

differentiated by covariate values which vary over the mother's life.  244 

We specified the following generalize additive DTSA model for the conditional probability of death for 245 

every age bin 𝑎 of each child 𝑖 to each mother 𝑚: 246 

𝑌𝑚,𝑖,𝑎 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞𝑚,𝑖,𝑎) 247 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑚,𝑖,𝑎) =  ∑[𝐼𝑖,𝑎𝛽𝑎] + ∑[𝑔1,𝑎(𝑦𝑟𝑖 , 𝑆𝐷𝐼𝑐,𝑦𝑟,𝑖)𝐼𝑖,𝑎] + 𝑔2 (
𝐶𝐷𝑚

𝐶𝐸𝐵𝑚
, 𝐶𝐸𝐵𝑚,𝑦𝑟 , 𝑀𝑜𝑡ℎ𝐴𝑔𝑒𝑚,𝑦𝑟) + 𝜈𝑠𝑣𝑦 + 𝜂𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑎 

7

𝑎=1

7

𝑎=1

 248 

𝜈 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜈
2) 249 

𝜂 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜂
2) 250 

 251 

Where 𝑔∗(∙) represent thin plate regression spline smooths, with  𝑔1(∙) having separate smooths for 252 

each age bin 𝑎. 𝑦𝑟𝑖 represents the year of birth for child 𝑖. This is directly observed in the training data, 253 

but for prediction is assigned for each hypothetical child. 𝑆𝐷𝐼𝑐,𝑦𝑟,𝑖 represents the socio-demographic[21] 254 

index for the country 𝑐 that child 𝑖 was born in at their year of birth 𝑦𝑟. 𝑆𝐷𝐼 is a composite average, 255 

expressed on a scale of 0 to 1, of income per capita, average educational attainment, and fertility rates 256 

and has been found to be a strong predictor of child mortality.[21] The interaction of 𝑆𝐷𝐼 and year of 257 

birth allows the secular trend in mortality for each age bin to vary by the level of development in each 258 

country, allowing for prediction in countries without training data.  259 

The variables in the second smooth represent child and mother level covariates. 𝐶𝐷𝑚

𝐶𝐸𝐵𝑚
 is the ratio of 260 

children died to children ever born to each mother 𝑚 at the time of the survey. 𝑀𝑜𝑡ℎ𝐴𝑔𝑒𝑚,𝑖,𝑦𝑟 is the 261 

mother's age at the year of birth. This is observed in the training data and assigned for prediction of 262 

hypothetical children in the same way as 𝑦𝑟. Finally, 𝐶𝐸𝐵𝑚,𝑦𝑟  is the number of children born to the 263 

mother at the time of birth 𝑦𝑟 of child 𝑖. This is directly observed in the training data. For prediction we 264 
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use empirical probability of birth distributions,[9] to impute this value for each hypothetical child. Much 265 

in the same way that the standard indirect method interacts 
𝐶𝐷

𝐶𝐸𝐵
 with fertility ratios, this interaction is 266 

included to address the fact that the relationship between 
𝐶𝐷

𝐶𝐸𝐵
 and 𝑞 is mediated by the fertility 267 

experiences of the women reporting 
𝐶𝐷

𝐶𝐸𝐵
.[15] This differs from previous approaches which used 268 

aggregate levels of fertility, and instead depends on individual woman’s fertility experiences.  269 

Finally, 𝜈 and 𝜂 are independent normal random intercepts for each survey and each age bin within 270 

country. 271 

All covariates were centered and scaled by their standard deviations for model fitting. Models were fit 272 

separately by the same regions used by Rajaratnam and colleagues[9]. Uncertainty in predictions was 273 

ascertained by taking 1000 multivariate normal draws from the variance-covariance matrix of fitted 274 

model parameters, including fitted random effects values.[22] In cases where prediction data had 275 

random effects levels not used in the training data (for a new survey or a new country), estimated 276 

variances 𝜎𝜈
2̂ and 𝜎𝜂

2̂ were used to simulate 1000 independent normal draws. Models were fit using 277 

restricted maximum likelihood with the bam command from the mgcv in the R Statistical Computing 278 

Language Version 3.4.3.[23,24] 279 

 280 

Conversion to Trends 281 

 282 

Using the model described above, we estimated age-specific mortality hazards for individual 283 

hypothetical children to mothers responding to summary birth history questionnaires. These hazard 284 

functions of hypothetical children must then be converted into trends in age-specific mortality. To do so, 285 

we aggregated estimates of mortality among hypothetical children born in the period using weights 286 
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which indicated the likelihood that each hypothetical child actually existed. This process is illustrated in 287 

Figure 2. 288 
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 289 
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Figure 2: Illustration of procedure to convert discrete hazard functions for hypothetical children to population level age-specific 290 

trends. A) Discrete hazard functions are estimated for each hypothetical child from each mother in the target SBH dataset. Here 291 

we color all children born in the same year with the same color. Only three years are shown for simplicity in this example. In real 292 

data the years of birth of hypothetical children would vary by mother based on her age, such that there would be one 293 

hypothetical child for each year going back in time from the survey until the mother was twelve years old. B) Probability of birth 294 

distributions are applied to each hypothetical birth from each mother. These are derived from the empirical map distributions 295 

from Rajaratnam et al. 2010, where a different probability is available by woman’s age, 𝐶𝐸𝐵, region of residence, and year prior 296 

to the survey. These probabilities are multiplied by mother 𝐶𝐸𝐵 and carried through to subsequent age bins to estimate the 297 

expected number of children entering each age bin (𝐸𝐸𝐵) using estimated survival probabilities. As such, line thicknesses get 298 

slightly smaller with each subsequent age bin. The 𝐸𝐸𝐵 value for each hypothetical child’s age bin represents the number of 299 

children entering that age bin that hypothetical child represents for their given mother. C) All hypothetical children to mothers 300 

are grouped by year of birth. The estimated mortality probabilities for each age bin from all hypothetical children born in the 301 

same year are pooled and 𝐸𝐸𝐵 are used to calculate a weighted mean. Trends are drawn across �̂�𝑎 for each year, indicated here 302 

by a trend in the third age bin. This aggregation procedure can be done for any grouping of women to make estimates for a 303 

survey cluster, a district, or a whole country. 304 

 305 

From the model, we obtained estimates of �̂�𝑚,𝑎,𝑦𝑟: the probability of death in age bin 𝑎 for a 306 

hypothetical child born in 𝑦𝑟 to mother 𝑚. To obtain estimates of �̂�𝑚,𝑦𝑟: age-bin and period-specific 307 

hazards representative of the population surveyed, we weighted each child based on their probability of 308 

birth.  Each hypothetical child was assigned a probability of birth (𝑃𝑂𝐵𝑚,𝑦𝑟) using the birth distributions 309 

used for the GBD-MAP method. 𝑃𝑂𝐵 distributions are compiled from empirical distributions which 310 

describe, for each year preceding a survey, the probability of birth based on mothers' age, 𝐶𝐸𝐵, and by 311 

region. Distributions were matched based on geographical region, mothers age, 𝐶𝐸𝐵, and 𝑦𝑟 to each 312 

hypothetical child.  313 

We then assigned a weight to each age bin of each hypothetical child. We defined the expected number 314 

of children entering each age bin 𝑎, for child born in year 𝑦𝑟 from mother 𝑚 as: 315 
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𝐸𝐸𝐵𝑚,𝑎,𝑦𝑟 = 𝑃𝑂𝐵𝑚,𝑦𝑟 ∗ 𝐶𝐸𝐵𝑚 ∗ �̂�𝑚,𝑎,𝑦𝑟 316 

Where �̂�𝑚,𝑎,𝑦𝑟is the estimated survival until age bin 𝑎, and 𝐸𝐸𝐵 is the estimate of the number of 317 

children entering each age bin for the hypothetical child born to mother 𝑚 in year 𝑦𝑟, given each 318 

mother’s overall fertility and the estimated mortality experiences of her children over time.   319 

We aggregated our estimates across �̂�𝑚,𝑎,𝑦𝑟 by taking a weighted mean such that: 320 

�̂�𝑎,𝑦𝑟 =  
∑ �̂�𝑚,𝑎,𝑦𝑟𝐸𝐸𝐵𝑚,𝑎,𝑦𝑟

𝑀
𝑚=1

∑ 𝐸𝐸𝐵𝑚,𝑎,𝑦𝑟
𝑀
𝑚=1

=
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑒𝑎𝑡ℎ𝑠𝑎,𝑦𝑟

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐸𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑎,𝑦𝑟
 321 

The benefit of predicting at the individual level is that weighted means can be aggregated for any 322 

population desired. Also, this procedure conveniently provides not only estimates of �̂�𝑎,𝑦𝑟 and expected 323 

children entering each bin, but also the numbers of expected deaths. For nationally representative 324 

estimates, survey weights can also be included into this procedure by multiplying weights into the 325 

summands. Finally, age bins can be combined as independent conditional probabilities to produce 326 

trends in wider age bins that may be of interest, such as 1�̂�0 or 5�̂�0. 327 

Uncertainty in aggregate estimates all quantities are calculated by repeating the aggregation procedure 328 

1000 times based on the predictive draws of �̂�𝑚,𝑎,𝑦𝑟. We report the 2.5% and 97.5% quantiles.  329 

 330 

Validation and Verification 331 

We developed two approaches to model validation. We first used cross-validation on the DHS data in 332 

order to assess how well age-specific mortality trends estimated from our method could reproduce 333 

those directly estimated from CBH data. In our second approach we applied the method to national-334 

representative non-DHS surveys which only collected SBH and compared those results to 335 

contemporaneous direct estimates. 336 
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We developed the first model validation framework to assess out-of-sample predictive validity, holding 337 

out entire DHS surveys from the database and using their SBH variables to produce indirect age-specific 338 

time trends. We then used direct estimates from the CBH of these held surveys to reproduce age-339 

specific trends to serve as a basis for validation.  340 

For each country in the DHS database, we held out the most recent DHS survey.. We fit the model, used 341 

the fitted parameters to make indirect estimates from SBH, and compared to direct estimates from CBH. 342 

This was repeated for each country. Using the most recent survey represents a particularly difficult test 343 

because doing so requires several years of out of sample projection from the time since the penultimate 344 

survey in that country.  345 

Our aim was to minimize the bias and magnitude of errors (the difference between estimates and 346 

validation data). We used the following 5 metrics to assess out of sample predictive performance: (1) 347 

Mean Error (ME) to capture systematic bias. A mean error of zero indicates a perfectly unbiased 348 

estimate. ME is an absolute metric, and thus cannot be compared across age bins. (2) Standard 349 

deviation of the errors (SDE) to capture how much variation there is in out of sample errors across 350 

countries and years. The smaller the SDE, the more precise the errors are. Again, SDE is an absolute 351 

metric. (3) Median relative error (MRE) to capture relative bias. MRE is simply the ratio of estimate to 352 

validation data, and as such an MRE close to one indicates no bias. MRE allows us to compare bias on a 353 

relative scale across age bins. (4) Median absolute percentage error (MAPE) to capture the relative scale 354 

of errors. This is calculated as the ratio of the absolute error to the direct validation estimate multiplied 355 

by 100. The MAPE represents overall relative accuracy of the estimates, with a value close to zero 356 

indicating high accuracy. (5) The coefficient of determination (𝑅2) represents the percentage of total 357 

variance in the directly tabulated hazards explained by the modelled estimates. Each of the metrics 358 

were assessed for each age bin, as well as for 5𝑞0. 359 
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Single-year age-specific direct tabulation of CBH have relatively small sample sizes and can produce 360 

somewhat noisy estimates of a 'truth' for comparison. Since we are interested in modelling the actual 361 

underlying trend and not the noisy observed values, very good predictive performance in this case could 362 

actually signal over-fitting. Furthermore, mean-based metrics are sensitive to large outliers in errors, 363 

which could emerge spuriously where validation data are noisy. In other words, validation data with a 364 

larger sample size is expected to produce a precise approximation of the true underlying mortality 365 

hazard. We dealt with this in two ways. First, following Rajaratnam and colleagues,[9] we smoothed the 366 

noisy validation trends using loess (with 𝛼 set to 0.85). Second, we weighted all of our metrics of 367 

predictive performance by the sample sizes (number entering each age bin) of the raw validation data. 368 

We also used this same validation approach to evaluate our estimates of the numbers of children 369 

expected to enter each age bin, or 𝐸𝐸𝐵. This is done by comparing 𝐸𝐸𝐵 with the direct tabulations of 370 

numbers of children entering each bin, in each year, from the validation data.  371 

With increasing interest in subnational child mortality estimation,[6,25–28] it is also critical to assess the 372 

validity of these results at subnational levels of aggregation. Most summary birth history data is 373 

geographically identifiable to the first administrative level - typically referred to as states or regions in 374 

most countries.[6] We aggregated to the first administrative unit, defined using the Global 375 

Administrative Unit Layers (GAUL) shape file made available by the FAO 376 

(http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691). In order to obtain large enough 377 

sample sizes for stable comparison in the validation, we also aggregated data into five-year bins 378 

preceding each survey. As such, each administrative area only supplied three estimates, and thus we did 379 

not smooth them. 380 

We also compared how well the proposed method estimated trends in 5𝑞0 relative to existing methods, 381 

since a well-behaving method for age-specific trends should also be able to accurately reproduce trends 382 
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in 5𝑞0. We thus compared out-of-sample trends in 5𝑞0 estimated from our test data to those produced 383 

by the GBD methods, as well as the standard indirect method. GBD-combined indirect estimates for 384 

each available survey were taken from Global Burden of Disease mortality database (Available online: 385 

https://vizhub.healthdata.org/mortality/), and were produced by combining MAP and MAC estimates. 386 

For the standard indirect method, we matched model life tables to countries as used by IGME. We 387 

included two variants of the standard indirect method, one based on maternal age cohorts (MAC), and 388 

one based on time since first birth (TSFB), see [11]. 389 

We also used this cross-validation framework to compare our model to several other specifications. 390 

These results are presented in the Supplementary Information Section III.A.  391 

Finally, in order to better establish external validity of this method, we also sought to understand its 392 

performance on non-DHS data. By nature of joint data collection, CBH and SBH data from DHS are 393 

presumed to be highly consistent. Thus, for a more practical perspective on the performance of this 394 

method in settings where it is intended to be used (i.e. in data where only SBH was collected), we 395 

compared estimates from these data to directly estimated mortality, where concurrent CBH data were 396 

available. We used the same set of metrics described for the cross-validation assessment, and again 397 

smoothed CBH estimates.  398 

 399 

 400 

Data and Code Availability 401 

 402 

https://vizhub.healthdata.org/mortality/
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All datasets used for this analysis are listed in the Supplementary Information. Source availability 403 

information is available from the Global Health Data Exchange (GHDx, http://ghdx.healthdata.org/) for 404 

each source used.  405 

All code for the analyses and figures in this manuscript is available at 406 

https://github.com/royburst/sbh_agespecific_indirect_paper_code. In the near future, we plan to 407 

release a package for R which allows users to apply this indirect method to any SBH dataset.  408 

 409 

 410 

Results 411 

 412 

Table 1 shows summary statistics from our cross-validation. The table shows the mean estimates of age 413 

specific mortalities, 𝑞𝑎,  across all countries and age bins, along with aggregated out of sample 414 

predictive validity metrics for estimates of 𝑞𝑎. We find little bias across all ages, as indicated by very 415 

small MEs and MREs close to one. The bias that does exist tends to be slightly over in the younger age 416 

bins and slightly under in the older age bins. We also see relatively small SDE across all age bins, 417 

indicating that on average there is a not large variation in out of sample errors across countries and 418 

years. Relative variance in errors, measured by MAPE, increases as 𝑞𝑎 decreases as a function of age.  419 

 420 

Age-bin �̅�𝒂 ME SDE MRE MAPE 𝑹𝟐 

NN 0.031 0.0022 0.005 1.05 9.5% 0.82 

PNN1 0.015 0.0010 0.004 1.09 15.9% 0.80 

http://ghdx.healthdata.org/
https://github.com/royburst/sbh_agespecific_indirect_paper
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PNN2 0.013 0.0004 0.004 1.08 17.3% 0.82 

1yr 0.013 0.0002 0.004 1.02 18.2% 0.88 

2yr 0.009 -0.0001 0.002 1.00 16.2% 0.93 

3yr 0.006 -0.0002 0.002 0.96 20.7% 0.88 

4yr 0.003 -0.0001 0.001 0.97 20.6% 0.81 

5q0 0.083 0.0033 0.010 1.05 8.8% 0.95 

Table 1: Overall out of sample predictive validity metrics for each age bin and mean direct estimates of 𝑞𝑎 across all country 421 

years in the DHS database, for the 15 years prior to the survey being taken.  422 

Figure 3 plots the agreement between age-specific mortality rates from the validation data compared to 423 

out of sample estimates. We also see relatively high proportion of variance explained as measure by 𝑅2, 424 

with all age bins above 0.80. Predictive validity metrics for the combined 5𝑞0 age-bin perform better 425 

than for the smaller age bins, as the model can explain 95% of the variance in input data. This is likely 426 

due to several reasons: errors are averaged over when collapsing across ages, relative metrics are less 427 

sensitive with a larger overall 𝑞𝑎, age bins with larger relative errors tend to have lower hazards, which 428 

contribute less overall mortality, and thus impact metrics in the combined group less, and larger sample 429 

sizes leading to more stable estimates.  430 
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 431 

Figure 3: Out of sample predictions of mortality probability compared against loess-smoothed validation data. Each point 432 

represents a country-age mortality estimate (𝑞𝑎,𝑦𝑟) for each held-out survey from the DHS database. Red line indicates unity.  433 

 434 

Figure 4 compares 𝐸𝐸𝐵 with the observed number of children entering each age bin from the validation 435 

data. There was high agreement across age groups, with MRE ranging from 1.015 to 1.032 and MAPE 436 

ranging from 6.8% to 11.0%, indicating small errors, and potentially a very slight upward bias in the 𝐸𝐸𝐵 437 

estimates. There is no clear difference in 𝐸𝐸𝐵 performance across age bins. Overall 𝑅2 was 0.97. This 438 

indicates that empirical probability of birth distributions can be reliably used to approximate sample 439 

sizes for indirect estimates. This also adds support to the favorable validation results shown above, as 440 

𝐸𝐸𝐵 weights are an important component of aggregating trends to the national level, and because 441 

empirical probability of birth distributions are used to impute 𝐶𝐸𝐵 at birth for prediction. 442 
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 443 

Figure 4: Comparison of 𝐸𝐸𝐵, expected number of children entering each bin, and observed children entering each age bin from 444 

CBH validation data. Each point represents a survey-year-age bin, both axes are on log 10 scale. 𝑅2 = 0.97. 445 

 446 

At the subnational level, model performance was somewhat weaker. There was a similar pattern in 447 

direction of bias across the ages, though bias remained minimal overall. There was more variability in 448 

the errors, with MAPE ranging from 20.0% in the neonatal group to 38.0% in 4 year olds. Percent of 449 

variance explained was also somewhat lower than at the national level. 𝑅2 of the subnational 5𝑞0 450 

estimates was 0.91. Some of this difference was likely due to smaller sample sizes in the subnational 451 

data compared to the national validation. Our validation data, which were based on direct estimates 452 

from CBH, represent realizations of the underlying probability, and thus the empirical probability from 453 
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the validation is measured with noise. Despite aggregating to 5 year bins, the average number of 454 

children born in each 5-year aggregated subnational observation was 520, compared to 1769 in each 455 

annual national observation, and 4148 (27%) of each survey-administrative area-age bin observation 456 

had no observed deaths. Supplementary Information section III.B replicates our national level figures 457 

and tables for the first administrative subnational level.  458 

Figure 5 shows the out of sample estimated trends in age-specific mortality rates estimated using the 459 

2013 Nigeria DHS and compared to the directly estimated validation data. In the Supplementary 460 

Information we provide similar plots for each country with extended discussion on those results. Overall, 461 

the model was able to reproduce trends in the validation data in Nigeria and in most other countries. 462 

Performance was suboptimal in cases where test and train data differed significantly (i.e. in Benin), and 463 

where trends were unique to a given country (i.e. Lesotho), see Supplementary Information attachment 464 

for figures.  465 
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 466 

Figure 5: Trends in mortality for each age bin from the 2013 Nigeria DHS. Thick blue lines are validation data, hatched lines are 467 

the 95% uncertainty bounds on the out of sample predictions. Sampling variation is evident in the blue line through year on year 468 

spikes. The target of prediction was the overall time trend, leading to a smoother prediction. Axis scales are fixed except for 5q0, 469 

which is the combination of the mortality rates from the seven age bins. Similar plots for each country in the validation data are 470 

available in in the Supplemental Information. 471 

 472 

We compared predictive validity in our out of sample estimates to indirect estimates of trends in 5𝑞0 473 

made from the same SBH holdout data, using the GBD-combined method and the standard indirect 474 

method. Figure 6 compares predictive validity metrics for the three methods over the 15 years 475 

preceding the survey. Confirming results from Rajaratnam and colleagues,[9] we find unstable estimates 476 

from the standard indirect method in the most recent five-years preceding surveys. Near overlap in the 477 

MRE and MAPE over time indicates that the new method and the GBD-combined methods generally 478 

produce similarly performing results. Supplementary Information figure 3 shows trends for each survey 479 

in the testing data. We note that for certain surveys with no GBD-combined estimates, such as Malawi 480 
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DHS 2016, we are able to produce accurate trends using the new method. It is possible that the non-481 

GBD methods would have performed even better by comparison if these were included. Furthermore, 482 

several of the surveys in the testing set were used to train the GBD-combined models, while remaining 483 

out of sample for the new method and the standard indirect method, potentially giving the GBD-484 

combined method a slight advantage in this comparison. 485 

 486 

 487 

Figure 6 Comparing predictive validity metrics across different methods for indirect estimation of 5q0. Both the GBD-combined 488 

and new methods greatly out-perform the standard indirect methods, particularly in the most recent five years.  489 

 490 

For external validation, we identified 243 censuses and surveys from 93 countries, in which only SBH 491 

was collected. As a basis for comparison, we identified 316 CBH datasets (see supplementary 492 

information tables 1 and 2 for a full source lists). Applying our method, we estimated trends from each 493 

SBH-only data source, and identified 16,527 estimate pairs for which we had contemporaneous SBH- 494 

and CBH-derived estimates in a single country-year. Estimates for any year after 1990 and within 15 495 
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years of the survey data were kept. We further identified 2,694 country-year-age pairs of data from 524 496 

unique country-years where only SBH data were available. For comparison, we also identified 10,655 497 

country-year-age pairs where two concurrent CBH direct estimates were available.  498 

Full trend plots for each country with available data are in the Supplemental Information Figure 6. In the 499 

majority of cases, trends from SBH-only data closely match contemporaneous trends from CBH data. 500 

There are several SBH-only surveys that exhibit overall source-level bias relative to concurrent trends.  501 

Table 2 summarizes our findings for these paired comparisons for neonatal, infant (under-1), and under-502 

5 mortality. We find close agreement across validation metrics. Overall variance was slightly higher and 503 

unadjusted 𝑅2 was slightly lower than in the cross-validation assessment. Much of this additional 504 

variance could be explained by survey; by simply controlling for data source, we find large 505 

improvements in 𝑅2, with each age bin around 0.96. We further found these results to be robust across 506 

SBH data type (census, MICS, and other surveys), see Supplementary Table 4. 507 

Age-bin �̅�𝒂,𝒄𝒃𝒉 �̅�𝒂,𝒔𝒃𝒉 ME SDE MRE MAPE 𝑹𝟐 𝑹𝟐 source corrected 

Neonatal 0.030 0.033 0.0026 0.011 1.06 17.7% 0.52 0.96 

Infant 0.061 0.064 0.0030 0.019 1.05 16.4% 0.64 0.96 

Under-5 0.093 0.096 0.0029 0.029 1.04 16.4% 0.74 0.97 

Table 2 Summary results for the external validation comparisons across 16,527 country-year data pairs where a CBH and SBH 508 
estimate were both available.  509 

 510 

Figure 7 shows a scatterplot of each country-year concurrent estimate.  We also plot the same 511 

comparison for country-year pairs for which two direct CBH estimates are available. The comparison of 512 

CBH to CBH estimates represents a theoretical baseline difference we would expect to see in concurrent 513 

estimates. The similarity between the two sets of scatterplots highlights that much, though not all, of 514 
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the variation we see between indirect and direct also exists between direct estimates and would be 515 

expected even given the best available survey data from which direct estimates could be made. 516 

 517 

Figure 7. Each country-year concurrent estimate for neonatal, infant, and under-5 mortality. The top row compared concurrent 518 
estimates from the SBH-only data with CBH direct estimates. The bottom row shows the same comparison from concurrent CBH 519 
estimates, theoretically representing a baseline level of variance we would expect in concurrent estimates. Comparing Red lines 520 
indicate unity.  521 

 522 

 523 

 524 

 525 

Discussion 526 

 527 
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Our new method for indirect estimation produces age-specific mortality trends consistent with those 528 

produced using complete birth history data in most cases at the country and first administrative unit 529 

level, as well as producing 5𝑞0 estimates that improve on the standard indirect method and are closely 530 

comparable in performance with the current best performing method.[9] We applied the method to 531 

external summary birth history data and found considerable agreement where comparisons could be 532 

made to contemporaneous estimates from complete birth histories. This new method greatly expands 533 

the potential utility of summary birth history data and fills a critical gap in the literature on indirect 534 

methods, extending indirect mortality estimation toward specific age bins of interest.  535 

There are two main methodological innovations introduced by this new approach: using hierarchical 536 

survival analysis to model individual level hazard functions and developing a hybrid approach to locating 537 

mortality risk in time. By viewing complete birth histories as time-to-event data, we were able to directly 538 

model the quantity of interest, the conditional probability of death 𝑞 at various ages from birth until age 539 

5. Leveraging existing data from millions of complete birth histories, we inferred hazard functions that 540 

vary across countries, surveys, mothers, and their individual children using only covariates that were 541 

available in SBH. These hazard functions, built up from flexibly chosen discrete age bins, then allowed us 542 

to produce indirect age-specific estimates for children born at various times. Since these estimates are 543 

made at the individual level, they could then be aggregated to any population. Furthermore, 544 

accompanying model uncertainty is included in all predictions.   545 

All indirect methods must rely on some approximation in order to locate mortality risk in time, since SBH 546 

does not provide explicit information on time of birth or death. Maternal age cohort methods such as 547 

GBD-MAC and the standard indirect approach rely on observed fertility patterns to locate the mean time 548 

of risk for each maternal age group. They typically assume unchanging fertility and furthermore ignore 549 

recent mortality experiences to children from older mothers. The GBD-MAP method relies on empirical 550 

distributions of births and deaths to distribute risks in terms of years prior to survey. This allows older 551 



30 
 

mothers to contribute information from more recent births, but also runs the danger of overgeneralizing 552 

trends to the level at which data were pooled. Our new method utilizes several sources of information in 553 

order to locate mortality risk and to overcome some of the limitations with previous methods. First, 554 

secular trends over time are incorporated in the model but are allowed to vary by country-SDI to avoid 555 

overgeneralization and allow for prediction in countries not in the training data. Second, individual level 556 

time-varying covariates allow us to predict hazard functions for hypothetical children born throughout 557 

different times in each mother's life - so that all potential children, including recent births to older 558 

women, are incorporated. In order to aggregate trends, we use weights derived for the GBD-MAP 559 

method, which put more weight on hypothetical children that were more likely to have existed. 560 

In applying our method to a variety of SBH-only data sources, we found that performance varied across 561 

sources, and validation metrics in the external data were slightly worse than in the DHS cross-validation 562 

assessment. It could be argued that the utility of any indirect method will depend on the quality of 563 

summary birth history data used.[15] Though to the contrary, indirect methods such as ours, which have 564 

been validated externally as well as against high quality DHS data, can also serve as a tool to assess the 565 

quality of these data sources. Modelling groups such as IGME and GBD regularly exclude data sources 566 

due to quality concerns and the data synthesizing models used by such groups can account for source-567 

level biases using fixed or random effects.    568 

As global child mortality has declined rapidly in recent years, it has become clear that improvements 569 

have not been equal across all ages in early childhood.[21] The Sustainable Development Goals now 570 

have an explicit target of reducing neonatal mortality to 12 deaths per 1000 livebirths.[7] Until now, 571 

estimates of neonatal mortality have depended mostly on CBH data, or VR where it is available. If no 572 

data are available, estimates are completely modeled based on external information. Until complete 573 

and reliable VR data are available from all countries, SBH data should be considered an 'inexpensive' 574 

alternative to costlier CBH surveys. As we have demonstrated through extensive and systematic external 575 
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validation, this new method now opens the possibility of leveraging a huge amount of SBH data 576 

available from surveys and census for monitoring progress toward the neonatal mortality SDG. 577 

 578 

Limitations and directions for future research 579 

 580 

These results should be interpreted within the context of several limitations. First, despite being widely 581 

seen as high quality, and thus the basis for many child mortality estimates, DHS CBH data can suffer 582 

from certain issues such as selection biases[29] and misplacement of births.[30] By serving as the 583 

empirical basis upon which our model was trained, potential issues in these data could be reflected in 584 

the resulting application of it. Future research should focus on quantify such issues and adjusting 585 

empirically-based indirect methods to accommodate them. Second, the method presented here relies 586 

on formalizing existing relationships between covariates in the data to drive predictions. As such, where 587 

these relationships do not hold, predictions can suffer. Given the lack of period-based information in any 588 

one given SBH survey, it is expected that indirect estimates will poorly capture rapid changes in 589 

mortality.[9] This is partially mitigated in our approach by incorporating individual-level covariates, in 590 

which case mortality experiences from younger mothers will be more heavily weighted in recent 591 

periods. Third, by using GBD-MAP probability of birth distributions, we assume that fertility experiences 592 

are relatively stable over time among women in the same region, age, and number of children ever 593 

born. Our preliminary analyses indicate this is generally true (see Supplementary Information section 594 

III.E). Future research should focus on modelling these distributions at the individual level as well, 595 

potentially jointly fit within one model. Fourth, subnational predictions could likely be improved in the 596 

future by using subnational level, rather than national level covariates, as well as implementing models 597 

which account for spatial autocorrelation in residuals. Fifth, by relying on concurrent SBH and CBH 598 



32 
 

estimates as basis for external validation, we could not ascertain the performance of this method in 599 

locations where only SBH exists, and thus our sample may be somewhat biased toward higher quality 600 

data. Finally, we validated the new model on one specific set of age bins, chosen to align with data 601 

collection and the typically used age breakdowns in previous research on child mortality. Future 602 

research can further validate other age bins and consider further distinguishing trends by sex.  603 

 604 

Conclusions 605 

 606 

This new method introduces a novel approach to indirect estimation of child mortality. It produces 607 

results comparable to current best methods for indirect estimation of under-5 mortality, while 608 

additionally producing age-specific estimates, at both national and subnational levels, supplying 609 

researchers a tool with which to utilize a massive amount of summary birth history data for estimation 610 

of trends in neonatal and infant mortality, at various geographic levels. Systematic application of these 611 

methods could further improve the evidence base for monitoring of trends and inequalities in age-612 

specific child mortality.  613 
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