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Rethinking Mortality Deceleration 

Giambattista Salinari 

Almost two hundred years ago, Benjamin Gompertz (1825) proposed the first analytical model for the 

increase of mortality with age: in Gompertz’s model the force of mortality among adults (i.e. after 

childhood) was assumed to increase as an exponential function of age. Gompertz himself, however, 

recognized that his model could not fully capture what happened at older ages, above 75 or 80 years 

(Horiuchi and Wilmoth 1998), when ageing tended to slow down. Even though, very few people 

survived to be that old in the early nineteenth century, the biodemographic literature that flourished 

after Gompertz stressed the relevance of this deceleration: examples, listed by Olshansky (1998), 

include Makeham (1867), Brownlee (1919), Perks (1932), Greenwood (1928), and Strehler (1960). 

In the 1990s, a team of researchers (Kannisto, Lundstrom, Thatcher, and Vaupel, among others) 

systematically collected age-specific mortality rates, from thirteen Western European countries, for 

those in their eighties and older. The database they built permitted them to prove that, at older ages, 

mortality deviates from its predicted exponential trend (Vaupel 1997; Vaupelet al. 1998): it increases 

less and less, until it reaches an “old-age mortality plateau” around age 110, which Gampe (2010) and 

Barbi et al. (2018) later estimated at about 0.5. 

In the meantime, data on the evolution of the mortality of animals had started to be gathered in. 

Economos (1979) was probably the first to discover that mortality deceleration was not unique to 

humans, but also characterized four invertebrate species and three different types of rodents. Later 

on, these results were confirmed for Drosophila (Curtsinger et al. 1992), for Caenorhabditis elegans 

(Vaupelet al. 1994), for Mediterranean fruit flies (Carey et al. 1992, Carey et al. 1995) and for yeasts 

(Jazwinski et al. 1998; Vaupel et al. 1998), too.  

Finally, a process of deceleration was also identified in the progressive dysregulation of several 

physiological indicators, such as blood pressure, body-mass index, total cholesterol etc.: these are, of 

course, indicators which characterize ageing phenotypes (Crimmins et al. 2003; Crimmins et al. 2006). 
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In short, by the end of the 1990s, the scientific community had to admit that Gompertz’s model could 

describe the evolution of adult mortality only up to a point, and that new ideas were needed. 

Today probably the most influential explanation for late-life mortality deceleration calls selection into 

play (Beard 1959; Vaupelet al. 1979; Yashin et al. 2002). If cohorts are heterogeneous and some 

individuals more resilient than others, the frailest die earlier while the strongest survive, and the 

composition of the cohort changes over time. This line of reasoning, which led to the formulation of 

frailty models (Hanagal 2011), implies that mortality deceleration does not necessarily occur with 

individuals: it is only observable at the aggregate (cohort) level. 

A different explanation was suggested, as far back as 1939, by Greenwood and Irwin: namely, 

behavioral change. “Even the juvenile of 60, if ordinarily intelligent, eschews the violent exercises of 

the child of 40” (Greenwood and Irwin, 1939:14). The interesting point here is the assumption that 

individual frailty can be modified and that individuals are not passive in the face of ageing. This idea 

contradicts, to a certain extent, selection theory and frailty models where individual frailty is 

considered to be a lifelong constant. The literature on the behavioral changes that take places at older 

ages is large. One of its conclusions is that both attitudes to risk (Dohmen et al. 2005; Rolison et al. 

2013; Dohmen 2015; Josef et al. 2016) and social networks (Bhattacharya et al. 2016) tend to decline 

with age. These changes have sometimes been attributed to hormonal transformation: e.g., the 

reduction of free testosterone (Ferrini and Barrett-Connor 1998; Harman et al. 2001; Yeap 2009), 

which regulates aggressiveness, risk-taking behavior and sociality (Herbert 2015), and the increase in 

cortisol (Larsson et al. 2009), a hormone associated with stress, fear and anxiety (Mehta and Josephs 

2010). Put in the simplest possible terms, hormonal change may lead to behavioral changes that slow 

down mortality. 

The evolution of car-passenger mortality by age seems to be consistent with the behavioral hypothesis. 

Figure 1, for instance, describes the situation in the US at the beginning of the 1990s. Both panels 

compare two different types of mortality rates: the number of deaths per 100 million miles; and the 
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number of deaths per 100,000 licensed drivers. Panel 1.A uses a fixed base index (16-19 years mortality 

= 100) while panel 1.B illustrates the percentage change in these two indexes from one age group to 

the next. Mortality due to car accident increases sharply after 60-64 years, probably because of ageing 

(delay in reaction time, partial visual impairment, partial hearing loss, higher physiological fragility, 

etc.). This increase, however, is steeper if it is gauged by the first index (deaths per million miles), which 

nets out the decline with age in the average number of miles driven per year (Figure 2.A), a typical 

behavioral change. This is a first indication that behavioral changes may slow mortality progression. 

Finally, a third hypothesis (Horiuchi and Wilmoth 1998) is that mortality may actually increase more 

slowly, or not at all, once individuals have reached a certain age (physiological slow-down). This 

hypothesis derives mainly from the observation that several forms of cancer and cardiovascular 

diseases tend to decline (in absolute term) after 80 or 85 years (Harding et al. 2012; Akushevichet al. 

2016). This is true both in terms of cohort incidence and prevalence, things which does not seem to be 

entirely attributable to selection (Anisimov et al. 2005). 

These three explanations (selection, behavioral change and physiological slow-down) were considered 

to be of comparable importance for some time (see, e.g., Vaupel 1997). Subsequently, however, 

something changed. Perhaps because of the popularization of frailty models, the selection hypothesis 

became more and more popular (Billari 2015; Salinari and De Santis 2014; Zarulli 2016,2013) and 

behavioral change and physiological slow-down gradually disappeared as explanations. 

To the best of my knowledge, however, no quantitative assessment of the role played by selection in 

the process of ageing deceleration has yet been proposed for humans1.   

                                                           
1 Things are different for non-human species. Curtsinger (2016), for instance, makes a similar argument to the one 

here presented about human mortality for fruit flies. 
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Figure 1. Fatal Involvement Mortality by Age 

 

Source: Massie and Campbell (1993) 

 

Figure 2. Average Miles Driven and Licensure Rate by Age 

 

Source: Massie and Campbell (1993) 
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Therefore, in the rest of this note I run a simple test to verify whether selection can be regarded as 

being uniquely responsible for the mortality deceleration process in old age. 

 

The test 

To test whether mortality deceleration exists at the individual level it is necessary to acquire 

information on the shape of the individual hazard function. This may be done in different ways 

according to the different hypotheses introduced. We can, for instance, assume that all individuals in 

a cohort share the same hazard function (the homogeneity assumption). In these settings, we can 

easily estimate the individual survival function by resorting to the Kaplan-Meier estimator or other 

similar techniques. The problem with this kind of approach is, of course, that the homogeneity 

assumption is too strong a hypothesis, because individuals differ in their individual death risks. A 

different approach might then be represented by employing a Cox regression and by considering the 

baseline hazard function estimated through this model as an approximation of the individual hazard 

function. This approach is, however, justified only if the individuals who present a given combination 

of covariates also share the same hazard function (Hanagal 2011). In other words, to use the Cox 

regression to produce a reliable estimate of the individual hazard function we must include all relevant 

risk factors in the model. Unfortunately, no empirical analysis appears able to do this. Usually Cox 

regressions can explain only a limited part of the overall variability in the age at death, because 

individuals who shares the same covariates may, in any case, differ in many other unobserved respects 

(unobserved heterogeneity). The problem of unobserved heterogeneity led Vaupel et al. (1979) to 

introduce the concept of frailty.  

In selection theory frailty denotes an unobserved random factor defined as the ratio between the 

hazard function of a given individual and that of the standard individual of the cohort. Individual frailty 

is supposed to remain constant through life and to affect the baseline hazard function multiplicatively. 

Frailty is usually assumed to be gamma-distributed in human populations. This hypothesis was 
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probably originally introduced (Beard 1959; Vaupel et al. 1979) for mathematical convenience. 

However, some recent theoretical and empirical results, appear to support this hypothesis. From a 

theoretical point of view, Abbring and van den Berg (2007) were able to prove that proportional hazard 

models, if frailty distribution is characterized by a regular-varying density, spontaneously converge on 

a gamma distribution. Later, Missov and Finkelstein (2011) proved that if mortality levels off at older 

ages (the mortality plateau), then frailty is characterized by a regular-varying density. The recent 

discovery (Gampe 2010; Barbi et al. 2018) of the old age mortality plateau, thus, provides important 

empirical support in favour of the gamma hypothesis (Missov and Vaupel 2015). 

In this paper it is assumed that frailty in a cohort is gamma-distributed. This will allow for the 

estimation of the slope of the individual log-hazard function across four age intervals (80-84, 85-89, 

90-94, 95-99). The comparison of these four slopes will eventually allow for a test on the existence of 

an individual level process of mortality deceleration. 

By assuming that frailty is gamma-distributed it can be shown analytically (Vaupelet al. 1979; Vaupel 

and Missov 2014) that the aggregate (cohort) force of mortality 𝜇(𝑥) at age x is given by: 

𝜇(𝑥) = 𝜇(𝑥)[𝑠(𝑥)]𝛾     (1) 

Where 𝜇(𝑥) represents the baseline individual hazard function, 𝑠(𝑥) is the aggregate (cohort) survival 

function and 𝛾 indicates the initial variance of frailty. Taking the logarithm of eq. (1) we get: 

ln 𝜇(𝑥) = ln 𝜇(𝑥) + 𝛾[ln 𝑠(𝑥)]    (2) 

In human populations (Jones et al. 2014) the individual hazard function 𝜇(𝑥) is generally assumed to 

be, at adult age, a monotonically increasing function of age, so its log must also increase monotonically. 

Notice, however, that in eq. (2) the term 𝛾[ln 𝑠(𝑥)], which captures the process of mortality 

deceleration, is non-positive (because ln 𝑠(𝑥) ≤ 0 and 𝛾 ≥ 0 ). This implies that, at cohort level, the 

log force of mortality increases more slowly than at the individual level.  

By differentiating eq. (2) with respect to age we get: 
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𝑏(𝑥) = 𝑏(𝑥) − 𝛾𝜇(𝑥)     (3) 

The quantity 𝑏(𝑥) is generally known as life-table ageing rates (LAR; Horiuchi and Wilmoth 1998), while 

𝑏(𝑥), the rate of ageing, represents the relative derivative of the baseline hazard function. The value 

of 𝑏(𝑥) at age x can be estimated from ordinary lifetables by differentiating the annual mortality rates: 

𝑏𝑥 = ln 𝑚𝑥 − ln 𝑚𝑥−1. The value of 𝜇(𝑥) can, instead, be estimated as the geometric mean of two 

adjacent annual mortality rates: 𝜇𝑥 = √𝑚𝑥𝑚𝑥−1. Note, that in the previous formulas suffix notation 

is adopted for 𝑏𝑥 , 𝜇𝑥, because they denote the estimates of 𝑏(𝑥) and 𝜇(𝑥) derived from a life table. 

Ordinary regression analysis can now be used to get some insights into the shape of the baseline hazard 

function:  

𝑏𝑥 = 𝑏0 + ∑ 𝜉𝑥,𝑘𝛽𝑘
𝐾
𝑘=1 − 𝛾�̅�𝑥 + 𝜀𝑥   (4) 

where each 𝜉𝑥,𝑘 indicates a dummy variable, whose value is one when x belongs to a given age interval 

(for instance, ages 85-89) and otherwise 0. In practice, by means of the 𝜉𝑥,𝑘s, the age interval on which 

the analysis extends has been “segmented” in K+1 segments, each characterized by its specific rate of 

ageing. In the present analysis four segments are used, for the ages 80 to 99,2 each of five years. In this 

framework, 𝑏0 represents the mean value of the rate of aging in the first segment of the hazard 

function (80-84), whereas the 𝛽𝑘 (k=1, …, K) coefficients gauge the variation in the rate of aging in the 

following K segments (85-89, 90-94, 95-99). The mean rate of ageing 𝑏𝑘 experienced by the cohort 

during the k-th segment (85-89) can be calculated as  𝑏𝑘 = 𝑏0 + 𝛽𝑘. In the following I will refer to the 

𝑏𝑘  coefficients as the age-specific rate of ageing. 

For the empirical estimation of eq. (4), I resorted to the yearly life tables of the female cohorts born 

between 1878 and 1915 in nine countries (Denmark, England and Wales, Finland, France, Italy, the 

                                                           
2 A different possibility would have been to estimate the individual rate of ageing by means of a P-spline smoothing 

technique, as in Barbi and Camarda (2011a, 2011b), but this would be at the cost of a more complex formal 

development. 
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Netherlands, Norway, Sweden, and Switzerland), for ages 80-99. The data come from the last release 

of the Human Mortality Database (HMD). 

The analysis takes only female cohorts to protect results from the smoking pandemic, which affected 

male cohorts more heavily than female cohorts (Pampel 2010). The analysis stops at age 99 because 

the raw data employed by the HMD for building cohort lifetables frequently present an open-ended 

class (100+). 

Eq. (4) was estimated from these data for one cohort at a time. In this way I got an overall number of 

estimates of (1915-1878+1)×9 = 342. Eq. (4) was estimated through ordinary least squares (OLS), 

because, in the present context, this method seems preferable to other concurrent methods such as 

weighted least squares (WLS). Actually, according to Brillinger (1986) the sample variance of the log 

mortality rates is given by the inverse of the absolute number of deaths,1/D𝑥, which entails that the 

sample variance of 𝑏𝑥 can be approximated (assuming independence) by 
2

𝐷𝑥
. This means that at older 

ages, when the absolute number of deaths is smaller (because most of the cohort is already extinct) 

the sample variance of 𝑏𝑥 grows. This does not pose a real problem, in the present settings, because 

the OLS estimates of the coefficients of eq. (4) remain consistent even with heteroscedasticity3. If WLS 

is used instead of OLS, there are two possibilities. Either the weights to be used in the estimation 

procedure are correctly specified, and thus the coefficients estimates must coincide with those 

estimated through OLS; or, alternatively, the weights are mis-specified, entailing a bias in the estimate 

of the coefficients of the model. In neither case does using WLS help, as the goal is to estimate the 

coefficients of eq. (4). 

To test if the process of mortality deceleration can be entirely attributed to selection, I simply 

regressed on k (a linear transformation of age), the estimated age-specific rate of ageing �̂�𝑘,𝑐  (c =

1, . . . , n) in the n = 342 cohorts under scrutiny: 

                                                           
3This is not true, of course, for the standard error of the model, which may be biased by the presence of 

heteroscedasticity, but which are not of great interest in this part of the analysis. 
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b̂𝑘,𝑐 =  𝛿0 + 𝛿1𝑘 + 𝜀𝑘,𝑐     (5) 

If the slope (𝛿1) of this simple linear regression model proves to be significantly negative, then we can 

conclude that a process of mortality deceleration is taking place at the individual level, as well as at 

the cohort level as implied by selection theory. This time, however, it is important to control for the 

potential bias produced by heteroscedasticity on the standard errors of the model coefficients. Indeed, 

the focus is now on performing a test based on the magnitude of the standard errors. To protect this 

part of the analysis from heteroscedasticity and to get unbiased standard errors, the 

heteroscedasticity-corrected (HC) sandwich estimator was employed (Cribari-Neto 2004). 

 

Results 

The frequency distribution of the estimated age-specific rates of ageing (�̂�𝑘) for the female cohorts 

under scrutiny are shown in Figure 3. By looking at this Figure it becomes apparent that these estimates 

present much variability, and that this variability increases by age. This phenomenon is mainly a 

consequence of working on the 80-99 age range, during which the absolute number of deaths follows 

a decreasing trend. Since the sample variance of log mortality rates depends on the inverse of the 

absolute number of deaths (Brillinger 1986; Horiuchi and Wilmoth 1998), the estimates become 

increasingly uncertain as we reach older and older age classes. What is more, the procedure of 

differentiation introduced to get eq. (3), further amplify this uncertainty (see on this the previous 

section). 

The mean values of the age-specific rate of ageing are shown in Figure 4. This Figure identifies a general 

declining trend in the age-specific rate of ageing. These estimates decline from a mean value of 0.1 in 

the first age class (80-84) to a mean value of 0.08 in the last age class (95-99). As shown in Table 1 the 

observed decline in the age-specific rate of ageing proves to be statistically significant, though not 

strongly so. 
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This result applies, however, on average. To verify whether most, if not all, of the individual hazard 

functions analyzed present a deceleration pattern, the first differences of the age-specific rates of 

ageing were calculated for each cohort c: ∆b̂1,𝑐 = b̂2,𝑐 − b̂1,𝑐 , ∆b̂2,𝑐 = b̂3,𝑐 − b̂2,𝑐   and  ∆b̂3,𝑐 = b̂4,𝑐 −

b̂3,𝑐. If all these three quantities turn out to be negative, this will imply that the individual hazard 

function of cohort c undergoes a continuous process of deceleration from age 80 to age 99. Figure 5 

presents the frequency distribution of the cohorts according to the number of deceleration phases 

identified in it. This analysis shows that 52% of the cohorts present at least two phases (out of three) 

of individual-level deceleration, while 67% of cohorts present at least one phase of deceleration. The 

surprising result of this analysis, however, is that about one third of all cohorts present a protracted 

acceleration process in the three phases here considered. 

These results seem also to be confirmed by the analysis of the γ parameter of eq. 4 for which Table 2 

presents some descriptive statistics. The mean value of this parameter across the 342 cohorts analyzed 

is 0.217 that confirms that most cohorts are experiencing a process of mortality deceleration. 

Furthermore, γ shows a significant positive time trend (results not shown). Younger cohorts generally 

present a larger initial variance of frailty than older cohorts. The standard deviation associated with 

this parameter is, however, quite large, 0.608, so that the first quartile of the distribution turns out to 

be a negative number, -0.263.  This seems to confirm that, for a small but not negligible number of 

cohorts, a process of mortality deceleration cannot be identified. 

Overall these results apparently lend credit to the hypothesis that selection is not the only 

phenomenon involved in mortality deceleration: there must be something else, which leaves room for 

behavioral adjustment and, possibly, for slower ageing at very old ages at the individual level. This may 

happen because people do not accept ageing passively and so they try to counter it in a variety of 

ways: by giving up smoking; by reducing alcohol consumption; by going to the gym; by eating better; 

by avoiding risks like those connected with driving or other dangerous activities...  
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It is worth remembering, however, that the estimates for the age-specific rates of ageing have been 

produced here under the general assumption of a gamma-distributed frailty. As we have seen this 

hypothesis has recently found support with the discovery of the mortality plateau. This 

notwithstanding, it cannot be definitely excluded that the observed processes of 

deceleration/acceleration in the individual hazard function might also depend on the fact that frailty 

does not always conform to a gamma distribution. 
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Figure 3.Distribution of the estimated age-specific rate of ageing (�̂�𝑘) by age class in female cohorts 

 

Source: Author’s elaboration of HMD data. 
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Figure 4. Mean age specific rate of ageing by age class in female cohorts 

 

Source: Author’s elaboration of HMD data. 

Note: On the horizontal axis the number 82.5, 87.5, …,97.5 refers respectively to the mid points of the 
age-class 80-84, 85-89, …, 95-99. Each point represents the mean value of the age specific rate of 
ageing estimated in a given age class. The grey area indicates the 95% confidence band. 
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Table 1. Regression analysis of the age-specific rates of ageing (see eq. 5) 

 Estimate SE t value P value 

Intercept 0.101 0.0040 25.42 0.000*** 

Slope -0.006 0.0037 -1.72 0.043* 

 

Source: Author’s elaboration on HMD data. 

Note: The table presents the estimate of the coefficients of eq. 5. The standard errors have been 
computed by the heteroscedasticity-corrected (HC) sandwich estimator (Cribari-Neto F. 2004). The p 
value of the slope refers to a one-tail t test (H0: 𝑠𝑙𝑜𝑝𝑒 ≥ 0;H1: 𝑠𝑙𝑜𝑝𝑒 < 0). 

 

Figure 5. Frequency distribution of cohorts according to the number of decelerating phases. 

 

Source: Author’s elaboration of HMD data. 

Note: To identify the phases of mortality deceleration in a given hazard function c, the first differences 

of the age-specific rates of ageing were calculated: ∆b̂1,𝑐 = b̂2,𝑐 − b̂1,𝑐 , ∆b̂2,𝑐 = b̂3,𝑐 −

b̂2,𝑐   and  ∆b̂3,𝑐 = b̂4,𝑐 − b̂3,𝑐. The number of decelerating phases emerges as the number of 

differences ∆b̂ℎ,𝑐 which presents a negative value. 
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Table 2.  Summary statistics for the distribution of the γ parameter of eq. 4 

 Mean SD Q1 Q2 Q3 

γ 0.217 0.608 -0.263 0.054 0.428 

 

Source: Author’s elaboration of HMD data. 

Note: Summary statistics of the estimates of the γ parameter of eq. 4 in the 342 cohorts analyzed. SD 

indicates the standard deviation while Q1-Q3 are the quartiles of the distribution. 
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