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ABSTRACT 

 
 
Does education change people’s lives in a way that delays mortality? Or is education primarily a 

proxy for unobserved endowments that promote longevity? Most scholars conclude that the 

former is true, but recent evidence based on Danish twin data calls this conclusion into question. 

Unfortunately, these potentially field-changing finding—that obtaining additional schooling has 

no independent effect on survival net of other hard-to-observe characteristics—has not yet been 

subject to replication outside Scandinavia. We produce the first U.S.-based estimates of the 

effects of education on mortality using a representative panel of male twins drawn from linked 

complete-count Census and death records. For comparison purposes, and to shed additional light 

on the roles that neighborhood, family, and genetic factors play in confounding associations 

between education and mortality, we also produce parallel estimates of the education-mortality 

relationship using data on (1) unrelated males who lived in different neighborhoods during 

childhood; (2) unrelated males who shared the same neighborhood growing up; and (3) non-twin 

siblings who shared the same family environment but whose genetic endowments vary to a 

greater degree.  



 
 

The association between educational attainment and adult mortality in modern-day societies is 

well known and virtually universally observed (Elo and Preston 1996; Hummer and Hernandez 

2013; Hummer and Lariscy 2011; Kitagawa and Hauser 1968; Kitagawa and Hauser 1973; Lleras-

Muney 2005; Preston and Taubman 1994). Sizable educational gradients in individuals’ age at 

and cause of death have been detected across birth cohorts, in different population groups, and 

in many social and institutional contexts (Hayward, Hummer and Sasson 2015). What is less clear 

is why these educational gradients exist. Are educational attainment and human survival 

etiologically linked, such that obtaining more schooling causes people to enjoy lower levels of 

mortality and longer lives? Or are the two variables related to one another because common 

endowments influence both, generating a spurious (or partially spurious) association?  

Answering these questions is of profound scientific and policy significance. The magnitude 

of the association between education and mortality is large (Hummer and Lariscy 2011). If 

education causally affects mortality, investments in schooling could be an efficient and cost-

effective means to reducing the “longevity penalty” that some groups face. On the other hand, if 

obtaining more schooling on its own does not cause people to live longer, then even the best-

intentioned efforts to reduce mortality differentials would be of little value if education is treated 

as the policy lever (Hummer and Hernandez 2013). In the first scenario, education is a causal 

variable and could be the target of longevity-enhancing interventions. In the second, it is (at least 

partly) a proxy for the actual drivers of mortality. 

In this paper, we use probabilistic record-linking procedures to create a set of nationally-

representative longitudinal samples with linked mortality information. We then use these 

samples to derive causal estimates of the relationship between education and longevity.  The 
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unique data at our disposal, which we describe in more detail below, allow us to build up from a 

conventional covariate adjustment design to a more strenuous test of the causal relationship 

between education and mortality that accounts for hard-to-observe confounds at several 

theoretically-relevant levels of analysis. By comparing estimates obtained using different 

estimation strategies (and across different strategically selected subsamples of the adult 

population), we can (1) assess the degree to which specific early-life endowments confound the 

association between education and mortality and (2) evaluate variation in education effects 

across subgroups defined by their sociodemographic and geographic characteristics. We know of 

no prior work in the U.S. (or elsewhere) that has carried out such an exercise.  

Background 

Understanding the origins of educational gradients in mortality (and health more generally) has 

long been a priority on America’s research and public health agenda. Causal accounts have 

traditionally focused on the importance of resources, skills, and knowledge (Baker et al. 2011; 

Mirowsky and Ross 2003; Rodgers et al. 2013; Ross and Wu 1996; Schoeni et al. 2010) acquired 

through education and then translated into better health behaviors and outcomes (Denney et al. 

2010; Hayward et al. 2014; Hummer and Hernandez 2013). The basic conceptual model that 

underlies this account is summarized graphically in Figure 1, with causal arrows connecting 

education, E, to a series of mediating variables, R (economic and social resources), S (cognitive 

skills), and K (knowledge), which in turn influence health (through a variety of more proximate 

channels not shown) and mortality, M.  

Associations between education and mortality could also arise if the two variables share 

common causes, inducing a spurious (or partially spurious) relationship between E and M 
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(Behrman et al. 2011). Potential confounds include people’s social or economic background, their 

intelligence, their early-life health, and any other hard-to-observe endowments or contextual 

exposures that jointly predict educational attainment and survival (Hayward et al. 2014). Adding 

these variables—labeled B, I, H, and Z, respectively—to the causal diagram specified above, as in 

Figure 2, opens a series of backdoor (i.e., non-causal) paths that connect E to M (E←B→M, 

E←I→M, E←H→M, and E←Z→M), raising doubts about the causal nature of the association 

between the two variables. This concern has led some researchers to question whether 

education causally affects mortality (in the classic counterfactual sense of the word), or whether 

the observed association is merely the end state of a more complicated sequence of selection 

processes (Behrman et al. 2011; Gottfredson and Deary 2004). 

Empirically adjudicating between these perspectives is challenging. Most work has relied 

on covariate adjustments to rule out possible confounders and isolate (presumably causal) 

effects (Kitigawa and Hauser 1973). Findings from these analyses have shown that the association 

between education and mortality is robust to the inclusion of several covariates, including 

measures of intelligence (Link et al. 2008), race (Montez et al. 2011), childhood socioeconomic 

status (Hayward and Gorman 2004; Luo and Waite 2005; Montez et al. 2011), and early-life health 

endowments (Blackwell et al. 2001; Haas 2007; Montez and Hayward 2011). If these statistical 

controls are enough to eliminate the threat posed by omitted variable bias (i.e., all of the 

backdoor paths running from E to M can be closed by conditioning on observed confounds), then 

the parameter of interest (the effect of education) is identified and the conditional association 

between education and mortality can be said to be causal. 

Efforts to validate this assumption have taken several forms. One approach is to 
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instrument education using historical information about compulsory school attendance and/or 

child labor laws, mimicking an experimental setup where exogenous factors sort individuals into 

different levels of the treatment (educational attainment). Although early proponents of this 

strategy observed significant (and substantively large) effects associated with education (Lleras-

Muney 2005), attempts to replicate this finding have frequently failed (see, e.g., Black et al. 2015; 

Mazumder 2008). One reason could be the strength of the instrument: Compulsory schooling 

laws are, in many cases, only weakly related to variation in educational attainment (and are only 

relevant for the subsample of students who were induced to obtain additional schooling), making 

it difficult to estimate effects with sufficient precision (or to make claims about effects for 

students not on the margins) (Fletcher 2015). Studies that use birth registry data from outside 

the U.S. have sought to circumvent this problem by analyzing larger samples (Meghir et al. 2017; 

Lager and Torssander 2012), but findings there have been mixed as well. In some cases, 

researchers have observed sizable declines in mortality for birth cohorts (or jurisdictions) that 

were compelled to attend school for an additional year (Fischer et al. 2013; van Kippersluis et al. 

2011); in other cases, they have not (Braakman 2011; Clark and Royer 2010; Lager and Torssander 

2012; Meghir et al. 2018). Scholars have speculated that these discrepancies could be due, in 

part, to heterogeneity in the effects of education across birth cohorts and/or social and political 

contexts (Hayward et al. 2014), but even this hypothesis has been difficult to confirm. 

As an alternative to this approach, a small but growing number of studies have turned to 

within-twin pair comparisons as a way to “difference out” observed and unobserved factors (e.g., 

B, I, and Z) that could confound the association between education and mortality (see, e.g., 

Behrman 2011; Lundborg et al. 2016; Madsen 2010). Twins—even those who end up with 
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different levels of schooling—experience very similar social, economic, family, school, 

neighborhood and other environmental exposures and have identical (in the case of monozygotic 

or MZ twins) or similar (in the case of dizygotic or DZ twins) genes. If educational attainment is 

associated with mortality among pairs of twins that are concordant (or mostly concordant) with 

respect to these endowments, but discordant with respect to their educational attainment, the 

association is (conditional on several identifying assumptions) less likely to be spurious. All shared 

genetic and environmental exposures fall out of the model, providing (arguably) cleaner 

estimates of the independent effect associated with obtaining higher levels of education.    

Applications of this strategy have produced intriguing, and sometimes surprising, results. 

Using a large population-based data set from Denmark that included just over 2,500 identical 

(MZ) twin pairs born between 1921 and 1950, Behrman et al. (2011) showed that the causal 

effect of education on mortality in Denmark is reduced to zero when comparing the mortality 

outcomes of MZ twins who are discordant on education. That the same was not true for pairs of 

unrelated individuals suggests that shared early-life endowments and exposures (common within 

pairs of identical twins but not within pairs of unrelated adults) may explain, or partially explain, 

the existence of educational gradients in mortality. This inference is broadly consistent with a 

non-causal interpretation of the diagram presented in Figure 2. Other researchers who have used 

the same Danish data have generally reached similar conclusions, observing null or attenuated 

effects when modeling within-twin pair differences in mortality or related health outcomes 

(Madsen et al. 2010; Osler, McGue and Christensen 2007).  

We believe these findings are important and provocative, but we also see reasons for 

skepticism. First, it is unclear whether similar findings would hold if the same twin-differencing 
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models were fit using data from outside of the distinctive Danish context (Hayward, Hummer and 

Sasson 2015; Lundborg, Lyttkens and Nystedt 2016). It could be the case that Denmark’s set of 

social and educational policies render the education-mortality relationship less important than 

in the U.S. or other Western countries (Lundborg, Lyttkens and Nystedt 2016), where the social 

safety net is less secure. Until now, it has been impossible to replicate Behrman et al.’s (2011) 

results using U.S. data because there are no large, nationally-representative samples of U.S. twins 

with requisite information about education and mortality. Current U.S.-based twin data 

repositories (e.g., the NAS-NRC Twin Registry of WWII Military Veterans and the Minnesota Twin 

Registry) have been used for a variety of research on health gradients (Amin, Behrman and Kohler 

2015), but these studies pertain to particular sub-populations (e.g., WWII veterans) or to people 

in particular geographic regions (e.g., Minnesota or Southern California), and only the NAS-NSF 

data include mortality information for most respondents.  

Second, it is not clear that effects estimated using twin-differencing models pertain 

equally within all population subgroups. Prior twin-based estimates of the effects of education 

on health and mortality can be thought of as estimates of the average treatment effect (or ATE). 

A recent study by Heyward et al. (Hayward, Hummer and Sasson 2015), however, suggests that 

the association between education and mortality may be stronger for certain segments of the 

population; in particular, for men, for whites, and for younger adults. Under these conditions, 

estimates of the ATE of education on mortality, which represent a weighted average of all group-

specific estimates, could mask meaningful variation within the adult population. This in turn 

suggests that, even if Behrman et al.’s (2011) findings hold on average across the U.S. population, 

they may not hold within specific subgroups of individuals. 
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Finally, it is not known why twin-based studies have produced results that diverge from 

findings obtained using more conventional covariate adjustment designs and/or alternative 

identification strategies. In their conclusion, Behrman and colleagues (2011) write that education 

may serve as “a marker for parental family and individual-specific endowments that are 

uncontrolled in the usual estimates” (p. 1367), but they are unable to provide additional 

information about what those endowments might be. Because twins share the same (or most of 

the same) genetic, family, neighborhood, and school characteristics, finely grained analyses of 

individual confounds (i.e., the additional variables included in Figure 2) are generally not feasible. 

While this does not negate the overall contribution of their research, it does lead to a coarse 

assessment of the underlying causal model. 

RESEARCH DESIGN 

Data and Measures 

We address two of the above listed issues using a unique and (until now) untapped data resource: 

the digitized complete-count U.S. Censuses for 1920 and 1940. With support from NSF and NIH, 

and in collaboration with Ancestry.com, the Minnesota Population Center is finishing work on 

complete-count versions of the 1850-1940 census files (Ruggles 2014). From the 1920 U.S. 

Census, we have drawn samples of males aged 0-4, representing four different groups: (1) 

100,000 randomly selected males (“random”); (2) 50,000 randomly selected males, paired with 

the next enumerated age-appropriate male, conditional on different households but the same 

enumeration district (“neighbors”); (3) 50,000 singleton males from households with at least two 

age-appropriate singleton brothers, each paired with one randomly selected brother (“siblings”); 
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and (4) all same-sex male multiple births (“twins”).1 Using probabilistic record linkage methods, 

these samples were linked to the 1940 U.S. Census, from which information on educational 

attainment was obtained. Information on the individual’s age at death was then obtained by 

linking the 1920-1940 U.S. Census samples to death records in the Social Security Death Master 

File (SSDMF). In doing so, we are able to produce nationally-representative samples that are 

sufficiently large to identify even modestly-sized education effects, allowing for an original and 

sophisticated assessment of the magnitude of the causal effects of education on men’s mortality, 

variation in those effects, and the specific factors (if any) that confound their estimation.  

Below we describe in greater detail our strategy for identifying male panel members in 

the 1920 U.S. Census; for linking panel members across the 1920 U.S. Census, the 1940 U.S. 

Census, and mortality records; and for estimating he effects of education on mortality.  

Linking Records  

From the 1920 U.S. Census, we selected the “random” sample by taking a random draw of 

                                                 
1 We will not be able to distinguish MZ from DZ twins in our analyses, but a publication from the 

period in question (Hamlett 1934) estimates that among same-sex twin pairs, 50% will be MZ. 

Contemporary twin databases, such as the Swedish and Danish twin registry (Skytthe et al 2011, 

Ljungqvist et al 1998), however, suggest substantially lower shares of MZ twins among same-sex 

twin pairs, at around 35%.  These discrepancies could reflect differences across time and context 

in the composition of twin births. Either way, our inability to differentiate between MZ and DZ 

twins will tend to bias our results in favor of inferring effects of education on mortality, due to 

our inability to completely account for unobserved genetic confounds.  
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100,000 individuals from the universe of males who at the time of the census were between the 

ages of 0 and 4. We selected the “neighbor” sample by initially drawing a sample of 50,000 males 

from the same number of different households; we then selected the next enumerated age-

appropriate male, provided that he was residing in the same enumeration district but in a 

different household as the index individual. Due to some index individuals being in the last 

household for a given enumeration district, the sample amounts to 99,545 individuals. The 

“sibling” sample was created by first selecting households with at least two singleton males 

between the ages of 0 and 4. In order to ascertain that the siblings indeed were full siblings, we 

restricted the sample to individuals with unambiguous links to the same mother and father. From 

these households, 50,000 were again randomly selected, with a limit of one individual per 

household. We then randomly selected one brother per index individual, resulting in a sample of 

100,000 individuals in 50,000 brother pairs. Finally, for “twins,” we selected all multiple births in 

the designated birth cohorts, with the stipulation that the cases have (1) unambiguous links to 

the same mother and father (thus not being stepchildren) and (2) the same recorded age in years 

at the time of enumeration. While the census does contain the individual’s age in years as well 

as month for the birth cohorts we included, the amount of missing values on the latter variable 

was substantial. We are able to recover exact birthdays from death records, however, which we 

use in auxiliary analyses to establish the robustness of our results; these analyses are described 

in more detail below. Our initial sample of twins includes approximately 81,000 individuals, 

belonging to over 40,000 multiple birth pairs. Across all samples, we have restricted the 

population to individuals born in the United States. 

Linking 1920 to 1940 U.S. Census Records 
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Linking cases from our four sub-samples to the 1940 census requires that we first define the 

population of potential matches. In order to make the process more manageable and 

computationally tractable, we explicitly assume that sex and place of birth is reported accurately 

as well as consistently over time.2 As an example, when attempting to find Michael Corcoran, 

male, born in Massachusetts according to the 1920 Census, we limit the population of potential 

matches in 1940 to males who were reported as being born in that same state in the 20 years 

later. Since age (and year of birth) is reported in the censuses rather than date of birth, and 

because this type of information may have been reported less accurately at the time, we allow 

for deviations in birth year across data sources. In particular, we stipulate that birth years must 

be within +/- five years, implying that each unique individual who, according to the 1920 Census, 

was born in 1919 will be compared and possibly linked to individuals who in the 1940 Census, 

conditional on sex and place of birth being the same, were recorded as being born between 1914 

and 1924. Allowing for a broad a range of potential matches has advantages as well as 

disadvantages. One advantage is that we are able to successfully link individuals for whom the 

year of birth in either census was reported or digitized incorrectly by more than a few years. It 

needs to be emphasized that the census data on which the results of this paper are based contain 

errors. Considering the data generating process makes it easy to understand why this is the case, 

between reporting or enumerator error at the time of the census and poor quality digital images 

of the enumeration form, as well as errors on the part of personnel attempting to correctly 

                                                 
2 The place of birth assumption is probably not entirely accurate, but the implications thereof 

should not be important.  
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decipher hand writing of the era. One disadvantage of allowing for a larger window in terms of 

year of birth is the increased risk of false positives. Continuing the example from above, if the 

hypothetical Michael Corcoran, born in 1919 and observed in the 1920 Census, dies at the age of 

two, he will obviously not be enumerated in the 1940 Census. If his parents decide to have 

another child, born in 1924 and also name him Michael, this identically named but obviously 

different individual would be one of the candidates for the link to 1940. More generally, the wider 

the birth year window, the larger the pool of potential matches and, at the same time, the higher 

the probability of (1) finding the right individual and (2) making an incorrect link. This is an issue 

we will return to later in the paper. 

Our linking algorithm, following Feigenbaum (2016), begins by extracting a subsample of 

the population to be linked manually; this subsample provides “training data.” We use the 

training data to calibrate the algorithm and to evaluate its performance. To start, we randomly 

selected 2,500 individuals from the 1920 sample (representing all four subsamples); manually 

linked records to the relevant universe of possible 1940 Census matches; and then restricted the 

sample to matches where the name similarity scores (using the Jaro-Winkler algorithm) were at 

least 0.8. This results in a sample of 2,272 individuals, or 91 percent of the 2,500 we began with. 

Various methods for manually declaring matches have been proposed, i.e., when individual i from 

the 1920 Census is confidently declared to be the same individual as individual y in the 1940 

Census. We use a “logical” method, where we declare matches when all information on names 

match, and when there are no other possible matches available. When names are misspelled, we 

exercise more caution in declaring matches, but nevertheless try to be logical and consistent. In 

the training data, we manually declare 32.3 percent of the sample as uniquely matched across 
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the 1920 and 1940 censuses. To determine the most appropriate thresholds to use for matches 

in the full data set, we fit a simple probit model, where the variable containing manually declared 

matches was regressed on a selection of individual-level predictors. In training the algorithm, we 

repeatedly split the training data into two, estimating the model on one half and testing how it 

performs on the other half, where the “truth” is known. The algorithm declares a unique match 

based on (1) the greatest similarity between any 1-to-1 match within any given 1920 individual 

(technically the predicted probability based on the probit regression estimates) and (2) the 

relative difference between the best and the second best possible match within any given 1920 

individual. By looping multiple times over a range of realistic values on both parameters, and 

provided that the training data resembles the population it is meant to represent, we were able 

to choose values on both that optimized the overall performance of the algorithm. Here, our 

main objectives were to minimize the presence of false positives (incorrectly matched cases) 

while at the same time maximizing the amount of true positives (correctly matched cases) and 

true negatives (correctly unmatched cases).  

In selecting thresholds for declaring matches in our data, we use the Matthew’s 

Correlation Coefficient (MCC), which is an especially useful measurement for two-class data 

where the classes are not very balanced (Chicco 2017). This is definitely the case in our situation, 

where the 2,272 individuals in the training data are, on average, linked to 40.5 individuals in the 

1940 Census and are thus represented by a data set of 92,000 observations. In the data set, 734 

observations (less than 1 percent) were declared to be a match. The MCC, in Eq. (1) below, 

compares the predictions of the algorithm to all possible outcomes (true/false 

positives/negatives) and provides a single metric (ranging from -1 to +1) to be used to select 
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which thresholds to use. The formula is as follows, where TP represents true positive, TN 

represents true negative, FP represents false positive, and FN represents false negative: 

𝑀𝐶𝐶 =  
𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (1) 

After running multiple loops over all relevant potential threshold values, the mean optimized 

MCC value amounts to 76.5. Table 1 below shows the evolution of the sample, from the original 

1920 population and through determining unique links in the 1940 Census. Note that the table 

displays the share of confidently linked individuals across the sample, not conditioning on (for 

the neighbors, siblings and twins) at least two members within each unit being confidently linked. 

Naturally, this further diminishes the sample size. 

Linking Census Records to Mortality Records 

The strategy for linking the 1920-1940 sample to mortality records proceeds in a similar manner, 

with some slight differences due to differences in data availability. Most importantly, since the 

Social Security Death Master File (SSDMF) does not contain information on state of birth, nor on 

sex, the linkage requirements are somewhat less strict. In addition, while deaths are recorded 

from as early as the 1940s, it is only from well into the 1960s that the annual number of recorded 

deaths stabilize at a consistent level, at around 2,000,000 deaths annually. We are therefore de 

facto conditioning on survival until a point in time that is defined in a somewhat fuzzy way. The 

last recorded death in the file at our disposal occurred in December 2013. Another issue is that 

the file does not contain all deaths of individuals with social security numbers. Manual searches 

of Social Security claims and death records on Ancestry.com revealed instances where members 
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of our sample had died, but are absent from the SSDMF. Our manual lookups make us confident 

that this is not a pervasive phenomenon, but it nevertheless deserves to be mentioned. 

After observations with unambiguously female names were dropped from the SSDMF, 

individuals linked across 1920 and 1940 were linked to the SSDMF population on year of birth 

(+/- 5 years, as before). Since no restriction was possible on place of birth, the universe of possible 

matches becomes substantially larger. 

 The training data consists of 1,200 individuals from the linked 1920-1940 census sample 

who were linked to the universe of potential SSDMF matches. Since the universe of potential 

matches now includes age-appropriate individuals from the entire United States, the mean 

number of possible matches is considerably higher, at 423. Despite this, 36 percent of the 

individuals were uniquely linked to a record in the SSDMF, following the same linking logic as 

before. When calibrating the algorithm used to assign links in the main data, we fit a similarly 

specified probit model that also included a variable measuring the euclidian distance between 

the individual’s state of birth and the state where the potential match obtained their Social 

Security number. 

 The optimal MCC when linking the two datasets is 81.6, and Table 2, below, displays the 

final part of the linking procedure, thus the number of successfully linked individuals across all 

sources.  

Study Sample  

Our study sample conditions on being linked across all three data sources and, for all groups but 

the random sample, conditions on at least two individuals belonging to each clustering unit. This 

restriction entails dropping cases in incomplete twin, sibling, or neighbor pairs. We also drop a 
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small subset of pairs where an individual erroneously has been digitized as two unique individuals 

(with the same name and birth year). For the twins, displayed in Table 3, this restriction results 

in the sample size dropping further, to 2,036 unique individuals, in column [2].  

In the last step of sample selection, we drop pairs where at least one member of the pair 

is missing information on education. Furthermore, our methods of analysis (outlined in the next 

section) for twins, siblings and neighbors rely on within-cluster variation in both the educational 

attainment and the age at death variable. Consequently, a last sample restriction is that we drop 

twin/sibling/neighbor units that are not discordant on education, further diminishing the sample 

size to 1,976 individuals, in column [3]. 

One concern is that sample selection—occurring either through incomplete record 

linkage or missing data—results in an analytic sample that differs from the target population in 

nontrivial ways. Table 3 indeed shows differences by race and geographic region in the likelihood 

or remaining “in sample” after our various selection filters are in place. Non-white individuals 

and individuals born in the south are less likely to be in the linked sample than in the original 

1920 sample, with the opposite applying to whites and individuals from the northeastern part of 

the country. Apart from this, there does not seem to be any noteworthy selection on father’s 

occupation, nor on whether the respondent’s parents were native born.  

Empirical Strategy 

To estimate the effects of educational attainment on mortality, we use a standard fixed effects 

specification for within-pair estimation (we refer to twins here for convenience, but the same 

models will be fit for non-twin pairs as well, as we note below): 

 (2) ,ε+++β+α= ijjjijij GCSM
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where Mij is a continuous measure of age at death for individual i (i = 1, 2) in twinship j (j = 1, 2, 

…, N); Cj is a measure of unobserved contextual characteristics (e.g., family, peer group, or 

neighborhood attributes); Gj is a measure of unobserved genetic endowments; and εij is a random 

individual-level error term that is assumed to be uncorrelated with the other explanatory 

variables in the model.3  In a within-twin-pair model, the unobserved components in Eq. (2) are 

“controlled away” by modeling differences within pairs of identical or fraternal twins:  

 (3) 

where the ∆’s represent differences between variables for the jth twin pair (i.e., S1j – S2j). This 

approach eliminates the effects of unobserved contextual characteristics (Cj)—since the vast 

majority of twins experience the same family, school, and neighborhood environments while 

growing up. It also (at least partially) eliminates the effects of unobserved genetic endowments 

(Gj)—since MZ twins share 100% of their genes at birth and DZ twins, like non-twin siblings, share 

50% of their genes on average. 

The modeling strategy described above can be modified in three respects to assess the 

degree (and nature) of omitted variable biases in prior U.S.-based work that uses data on 

unrelated individuals and more standard estimation procedures. First, we can estimate OLS 

models of age at death for our sample of unrelated males who live in different neighborhoods. 

In these analyses, we include covariates for family socioeconomic origins, family structure and 

composition, and geography; we expect the results to reproduce findings of prior work. Second, 

                                                 
3 Supplementary analyses using survival analysis (i.e., stratified partial likelihood models) in place 

of the within-pair fixed effects estimator described above produced substantively similar results. 

,εΔΔβΔ21 jjjjj SMMM 
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we can estimate within-neighborhood fixed effects models for our sample of unrelated pairs of 

males who live in the same neighborhood. These models allow us to consider (at least tentatively, 

for reasons we discuss later) the degree to which the association between education and 

mortality is confounded by geographic and neighborhood factors. Third, we can estimate within-

family fixed effects models for our sample of pairs of male-male non-twin siblings. These models 

assess the degree to which the association between education and mortality is confounded by 

shared environmental and genetic conditions, but it is a less stringent test than the within twin 

pair analyses because non-twin siblings generally share fewer environmental and genetic 

endowments. Together with the estimates obtained using our sample of twins, these analyses 

will provide useful information about the magnitude of education effects on mortality and the 

role played by different confounds. 

RESULTS 

In Table 4 we present key descriptive statistics for education and mortality variables for each of 

the four analytic subsamples: Unrelated individuals (“random”), unrelated neighbors 

(“neighbors”), non-twin siblings (“siblings”), and twins.  The mean years of education is between 

10.27 and 10.59 across analytic samples. Within pairs, the rate of educational discordance—the 

percentage of pairs in which the two differed in their years of schooling completed—was high 

(77%) among neighbors, lower among siblings (63%), and lowest among twins (38%).  Likewise, 

the within-pair absolute difference in years of schooling was highest among neighbors (2.4 years), 

lower among siblings (1.5 years), and lowest among twins (1.0 years). The mean age at death is 

between 73.01 and 73.92 across the four groups. 
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In Table 5 we present estimates of the effect of education—expressed as years of 

schooling completed—on age at death. In the four leftmost columns of results we present 

unpaired models for unrelated people, neighbors, siblings, and twins.  That is, we treat people in 

these groups as individuals, and ignore pair structures; these models adjust for the race, family 

socioeconomic, parental nativity, region, and age variables listed in Table 2. As expected, across 

all four groups there is a positive and significant effect of education on age at death. Each 

additional year of schooling leads to between 0.30 and 0.52 more years of life. Importantly, this 

means that—in an unpaired model—twins who complete more schooling live longer. The 

estimated effect is actually larger among neighbors, siblings, and twins than among unrelated 

people. 

In the right three columns of results in Table 5 we present paired models—corresponding 

to Eq. 3 above—for pairs of unrelated neighbors, non-twin siblings, and twins. The model for 

neighbors adjusts for the same covariates as in the unpaired models (with the exception of state 

of residence); those for siblings and twins do not (because those things fall out of the model since 

siblings and twins are equal on all of those covariates). For non-twin siblings, the within-pair 

estimate of the effect of years of schooling on age at death (0.55) is about the same as the 

unpaired estimate (0.52). However, among pairs of twins, there is no statistically significant effect 

of years of schooling on age at death. Twins who complete additional years of schooling do not 

live longer (or shorter) than their twin pair with fewer years of schooling.  

In Table 6 we repeat the analyses in Table 5 using a categorical operationalization of 

education. Here, we classify people as having completed fewer than 12 years schooling, exactly 

12 years of schooling, or more than 12 years of schooling. That is, we classify people as either not 
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completing secondary school, completing it but going no further, or completing education 

beyond secondary school. In the unpaired models, there are sizable and significant effects of 

education on age at death. Compared to those who did not complete secondary school, those 

who only completed it lived between 1.64 years longer (for unrelated people) and 2.53 years 

longer (for non-twin siblings). 

In the right three columns of Table 6 we present pairs models for neighbors, siblings, and 

twins using this categorical operationalization of education. Among siblings and twins, the effects 

of completing more than 12 years of school remain significant but are modestly smaller in 

magnitude; the effects of completing only secondary school are significant for siblings but not for 

twins. In other words, even among pairs of twins, individuals who went beyond secondary school 

lived longer (almost 4 years longer) than those who did not complete secondary school. However, 

note that only 36 pairs of twins are discordant in this way; the vast majority of discordant pairs 

have one twin with fewer than 12 years of schooling and one with exactly 12 years of schooling. 

For that contrast, the coefficient is not significant (not is a joint test of the two dummies).   

Limitations and Robustness Checks 

A major concern about research based on linked historical records has to do with the quality of 

the links. This limitation is inherent in the process—we ultimate have no way of knowing with 

complete certainty that we have accurately linked individuals. However, to assess the robustness 

of our twin pair results, we re-estimated our models in two ways designed to increase our 

confidence in the quality of our links. 

First, we estimated twin pair models using data only on the 680 twin pairs who were 

confirmed to have exactly the same birthdate in Social Security records. Those with different 
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dates are probably still the correct individuals—dates in both the 1920 Census and Social Security 

records are subject to reporting errors—but we are less certain the quality of our links in those 

cases. As shown in Table 7 (which uses a continuous measure of education) and Table 8 (which 

uses a categorical measure) our results for twins are essentially unchanged when we limit the 

sample in this way. 

Second, we re-estimated all of the models in Table 5 after dropping records for which we 

were less certain of the quality of the link. Recall that we used a probabilistic record linkage 

algorithm. A product of this algorithm is a score assigned to each possible link that described the 

probability of a true match. For this analysis, we dropped cases in which that probability was 

relatively low; for neighbors, siblings, and twins we dropped entire pairs in which either 

member’s probability was relatively low. As shown in Table 9, however, the results are basically 

unchanged (as compared to Table 3). In unpaired models, years of schooling has a sizable and 

significant effect on age at death. In paired models, that effect persists for siblings but is greatly 

reduced in magnitude and no longer statistically significant for twins. 

QUALIFICATIONS AND NEXT STEPS 

Our research is potentially limited in some other respects, beyond the quality of our record links. 

Most obviously, our results pertain only to individuals born between 1915 and 1920. Whether 

our findings extend to more recent cohorts of adults is not knowable given the inherent lag time 

involved. We should note that this is an issue that is generic to all studies of educational gradients 

in mortality.  

Beyond this basic limitation, the within-pair comparison strategy described above for 

identifying causal effects of education on mortality has been subject to a number of important 
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critiques. Questions about measurement error, residual within-pair variation, and external 

validity have all been raised in response to prior studies, especially those that involve twins 

(Boardman and Fletcher 2015; Bound and Solon 1999; Gilman and Loucks 2014; Kaufman and 

Glymour 2011). To assess the sensitivity of our estimates to these concerns, we plan to carry out 

a series of additional robustness checks (the results of which are not yet available). We describe 

these checks below. 

Measurement Error. It is well known that attenuation bias is more pronounced in fixed-

effects models due to the less favorable signal-to-noise ratio (Ashenfelter and Krueger 1994; 

Griliches 1979). This leads to an increased chance of making a Type II error. Although our measure 

of education is presumably subject to less measurement error than typical measures (because of 

the relatively short recall period involved for most members of our sample), we will nevertheless 

mitigate against this problem by (1) identifying people who were double-enumerated in 1940 

and (2) linking members of our samples observed in the 1920 Census to the World War II Army 

Enlistment file. Both steps will provide second and independent measures of education for linked 

cases; we can then use that second measure to obtain reliability ratios and measurement-error 

adjusted estimates of β (the coefficient relating education to mortality). Similar approaches have 

been used in past work (Lundborg 2012). 

Residual Variation. The model specified in Eq. (3) differences out all characteristics that 

are shared by both members of a twin (or non-twin) pair, but it does not account for 

characteristics that vary between individuals within pairs. This could bias our estimates if there 

are unobserved individual-specific factors, Xij, that are correlated with both education and 

mortality (e.g., childhood health, intelligence, or genetic differences due to the presence of DZ 
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twins in our twin sample). The direction of the bias depends on the nature of the relationship: if 

Xij correlates with schooling and longevity in the same (opposite) way, our estimate of β will be 

an overestimate (underestimate) of the true effect (Kohler, Behrman and Schnittker 2011).4 

Although we cannot resolve this issue directly, we can (and will) determine how strong these 

associations would have to be in order to compromise our results using a modified version of the 

bounding approach described by Altonji et al. (Altonji, Elder and Taber 2005) and others.  

External Validity. A third concern raised—particularly about discordant twin studies—is 

that the results may not generalize to the broader adult population (Boardman and Fletcher 

2015; Conley, Strully and Bennett 2006; Kaufman and Glymour 2011). Twins—and in our case, 

twins that are discordant with respect to education—may be a unique and non-representative 

group. The design of our study allows us to examine this issue in two ways. First, as described 

above, we fit “unpaired” regression models that treat twins as if they are non-twin singletons 

(with standard errors clustered at the twin-level). As shown in the tables, the results obtained 

from these unpaired models resemble those obtained using the same techniques on our 

subsample of unrelated individuals. This implies that twins are unremarkable with respect to the 

processes in question.  

                                                 
4 We suspect that over-estimates are more likely than under-estimates, given that the most likely 

sources of within-pair variation (i.e., early-life health shocks) negatively correlate with 

educational attainment and longevity. If this speculation is correct, it would imply that the 

estimates presented in this paper are too large rather than too small, conditional on 

measurement error being small in magnitude. 
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As a second check, we plan to compare the marginal distributions of variables describing 

males in the twin pair sample to the marginal distributions of variables describing males in our 

non-twin pair samples. If the distributions look similar—or if we can cause them to look similar 

by utilizing post-stratification weighting techniques—we will be able to make stronger claims 

with respect to external validity.  

REFERENCES 

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005. "Selection on Observed and 

Unobserved Variables: Assessing the Effectiveness of Catholic Schools." Journal of 

Political Economy 113(1):151-84. 

Amin, Vikesh, Jere R. Behrman, and Hans-Peter Kohler. 2015. "Schooling has smaller or 

insignificant effects on adult health in the US than suggested by cross-sectional 

associations: New estimates using relatively large samples of identical twins." Social 

Science & Medicine 127:181-89. 

Ashenfelter, Orley, and Alan Krueger. 1994. "Estiamtes of the Economic Return to Schooling from 

a New Sample of Twins." The American Economic Review 84(5):1157-73. 

Behrman, Jere R. , Hans-Peter Kohler, Vibeke Myrup Jensen, Dorthe Pedersen, Inge Petersen, 

Paul Bingley, and Kaare Christensen. 2011. "Does More Schooling Reduce Hospitalization 

and Delay Mortality? New Evidence Based on Danish Twins." Demography 48(4):1347-75. 

Benjamini, Yoav, Abba M. Krieger, and Daniel Yekutieli. 2006. "Adaptive Linear Step-Up 

Procedures that Control the False Disovery Rate." Biometrika 93:491-507. 



24 
 

Boardman, Jason D., and Jason M. Fletcher. 2015. "To cause or not to cause? That is the question, 

but identical twins might not have all of the answers." Social Science & Medicine 127:198-

200. 

Bound, John, and Gary Solon. 1999. "Double trouble: on the value of twins-based estimation of 

the return to schooling." Economics of Education Review 18(2):169-82. 

Conley, Dalton, Kate W. Strully, and Neil G. Bennett. 2006. "Twin differences in birth weight: The 

effects of genotype and prenatal environment on neonatal and post-neonatal mortality." 

Economics & Human Biology 4(2):151-83. 

Elo, Irma T., and Samuel H. Preston. 1996. "Educational differentials in mortality: United States, 

1979–1985." Social Science & Medicine 42(1):47-57. 

Fu, Zhichun, H.M. Boot, Peter Christen, and Jun Zhou. 2014. "Automatic Record Linkage of 

Individuals and Households in Historical Census Data." International Journal of 

Humanities and Arts Computing 8(2):204-25. 

Gelman, Andrew, and John B Carlin. 2000. "Poststratification and weighting adjustments." in 

Survey Nonresponse, edited by R Groves, D Dillman, J Eltinge, and R Little. New York: 

Wiley. 

Gilman, Stephen E., and Eric B. Loucks. 2014. "Another casualty of sibling fixed-effects analysis of 

education and health: An informative null, or null information?" Social Science & Medicine 

118(0):191-93. 

Goeken, Ron, Lap Huynh, T.A. Lynch, and Rebecca Vick. 2011. "New Methods of Census Record 

Linking." Historical Methods 44(1):7-14. 



25 
 

Griliches, Zvi. 1979. "Sibling Models and Data in Economics: Beginnings of a Survey." Journal of 

Political Economy 87(5):S37-S64. 

Hayward, Mark D., Robert A. Hummer, and Isaac Sasson. 2015. "Trends and group differences in 

the association between educational attainment and U.S. adult mortality: Implications for 

understanding education's causal influence." Social Science & Medicine 127:8-18. 

Hummer, Robert A., and Elaine M. Hernandez. 2013. "The Effect of Educational Attainment on 

Adult Mortality in the United States." Population Bulletin 68(1):1-16. 

Hummer, Robert A., and Joseph T. Lariscy. 2011. "Educational Attainment and Adult Mortality." 

Pp. 241-61 in International Handbook of Adult Mortality, edited by Richard G. Rogers and 

Eileen M. Crimmins: Springer Netherlands. 

Jaro, Matthew A. 1989. "Advances in Record-Linkage Methodology as Applied to Matching the 

1985 Census of Tampa, Florida." Journal of the American Statistical Association 

84(406):414-20. 

Kaufman, Jay S., and M. Maria Glymour. 2011. "Splitting the Differences: Problems in Using Twin 

Controls to Study the Effects of BMI on Mortality." Epidemiology 22(1):104-06. 

Kitagawa, Evelyn M., and Philip M. Hauser. 1968. "Education Differentials in Mortality by Cause 

of Death: United States, 1960." Demography 5(1):318-53. 

—. 1973. Differential Mortality in the United STates: A Study in Socioeconomic Epidemiology. 

Cambridge: Harvard University Press. 

Kohler, Hans-Peter, Jere Behrman, and Jason Schnittker. 2011. "Social Science Methods for Twins 

Data: Integrating Causality, Endowments, and Heritability." Biodemography and Social 

Biology 57(1):88-141. 



26 
 

Link, Bruce G., Jo C. Phelan, Richard Miech, and Emily Leckman Westin. 2008. "The Resources 

That Matter: Fundamental Social Causes of Health Disparities and the Challenge of 

Intelligence." Journal of Health and Social Behavior 49(1):72-91. 

Lleras-Muney, Adriana. 2005. "The Relationship Between Education and Adult Mortality in the 

United States." The Review of Economic Studies 72(1):189-221. 

Lundborg, Petter. 2012. "The Health Returns to Schooling—What Can We Learn from Twins?" 

Journal of Population Economics 26(2):673-701. 

Lundborg, Petter, Carl Hampus Lyttkens, and Paul Nystedt. 2016. "The Effect of Schooling on 

Mortality: New Evidence From 50,000 Swedish Twins." Demography 53(4):1135-68. 

Madsen, Mia, Anne-Marie Nybo Andersen, Kaare Christensen, Per Kragh Andersen, and Merete 

Osler. 2010. "Does Educational Status Impact Adult Mortality in Denmark? A Twin 

Approach." American Journal of Epidemiology 172(2):225-34. 

Montez, Jennifer Karas, Robert A. Hummer, Mark D. Hayward, Hyeyoung Woo, and Richard G. 

Rogers. 2011. "Trends in the Educational Gradient of U.S. Adult Mortality From 1986 

Through 2006 by Race, Gender, and Age Group." Research on Aging 33(2):145-71. 

Montez, JenniferKaras, and MarkD Hayward. 2011. "Early Life Conditions and Later Life 

Mortality." Pp. 187-206 in International Handbook of Adult Mortality, edited by Richard 

G. Rogers and Eileen M. Crimmins: Springer Netherlands. 

Osler, M., M. McGue, and K. Christensen. 2007. "Socioeconomic position and twins' health: a life-

course analysis of 1266 pairs of middle-aged Danish twins." Int J Epidemiol 36(1):77-83. 



27 

Preston, Samuel H., and Paul Taubman. 1994. "Socioeconomic Differences in Adult Mortality and 

Health Status." Pp. 279-318 in Demography of Aging, edited by Linda G. Martin and 

S.amuel H. Preston. Washington, D.C.: National Academy Press.

Ruggles, Steven. 2014. "Big microdata for population research." Demography 51(1):287-97. 

Steinwart, Ingo, and Andreas Christmann. 2008. Support Vector Machines. New York: Springer. 

Stone, Mervyn. 1974. "Cross-validatory choice and assessment of statistical predictions." Journal 

of the Royal Statistical Society. Series B (Methodological):111-47. 

Vapnik, Vladimir N. 1995. Statistical Learning Theory. New York: Wiley-Interscience. 

Winkler, William E. 2004. "Methods for evaluating and creating data quality." Information 

Systems 29(7):531-50. 

Wooldridge, Jeffrey M. 2007. "Inverse probability weighted estimation for general missing data 

problems." Journal of Econometrics 141(2):1281-301. 



Table 1: 1920-1940 census linkage

(A) (B) (C)=(B)/(A) (D) (E)=(D)/(B)

1920 sample
1920-1940 

potential sample
%

1920-1940 linked 

sample
%

Twins 81,000 75,276 92.9 22,896 30.4

Siblings 100,000 92,503 92.5 28,427 30.7

Unrelated neighbors 99,545 92,252 92.7 27,356 29.7

Random sample 100,000 92,510 92.5 27,583 29.8



Table 2: 1920-1940 to SSDMF linkage

Linked individuals 1920-1940-

SSDMF

Twins 4564*

Siblings 4938*

Unrelated neighbors 8244

Random sample 8180

Note: * The number of linked individuals is out of the 

confidently linked pairs between 1920-1940



Table 3. Sample selection for twin sub-sample

Full sample [1] [2] [3]

N 81,193 4,564 2,036 1,976

White 89.09 96.23 97.74 97.77

Region

  New England 6.02 5.61 5.89 5.67

  Mid-Atlantic 17.84 14.59 17.09 17.21

  East North Central 18.46 24.56 28.00 28.34

  West North Central 13.54 20.77 18.66 18.12

  South Atlantic 15.20 9.36 8.94 9.11

  East South Central 10.14 7.34 6.29 6.38

  West South Central 11.82 9.38 7.56 7.69

  Mountain 3.22 3.07 2.85 2.83

  Pacific 3.76 5.32 4.72 4.66

Householder's occupation

  Blue collar 44.82 40.45 42.68 42.76

  White collar 7.36 8.33 9.04 9.01

  Farm (owner/tenant/manager 34.76 38.69 37.18 37.30

  Not classified 13.06 12.53 11.10 10.93

Family size (mean) 7.01 6.99 6.95 6.96

US born father 75.42 77.96 77.65 77.78

US born mother 77.62 81.75 82.51 82.54

Age in 1920 (mean) 2.38 2.47 2.54 2.55

Step of sample selection

Note: The steps of sample selection are [1] drop cases that cannot be uniquely linked to the 1940

census and/or the SSDI; [2] drop incomplete pairs (i.e., pairs where one member was linked but not

the other) and pairs made up of duplicate records; and [3] drop pairs where one or both members of

the twinship is missing information on educational attainment.



Random Neighbors Siblings Twins

Education

  Mean 10.27 10.59 10.28 10.35

  SD 2.95 2.81 2.70 2.71

  Percent discordant 77.83 63.28 37.85

  Correlation within pair 0.31 0.65 0.74

  Absolute mean difference within pair 2.41 1.51 0.95

  SD of absolute difference 2.25 1.68 1.71

Age at death

  Mean 73.01 73.60 73.44 73.92

  SD 11.87 11.83 11.84 1.71

  Percent discordant 96.31 96.46 97.37

  Correlation within pair 0.08 0.13 0.18

  Absolute mean difference within pair 12.46 12.17 11.55

  SD of absolute difference 10.16 9.83 9.17

n 7,996 812 2,146 1,976

Note: The subsamples are restricted to cases (in the random subsample) or pairs (in the neighbor, sibling, and twin

subsamples) where there is full information on education and age at death.

Table 4. Descriptive statistics, by subsample



Years of schooling 0.30 *** 0.36 ** 0.52 *** 0.42 *** 0.02 0.55 *** 0.19

(0.05) (0.17) (0.11) (0.10) (0.25) (0.21) (0.24)

White -0.81 -0.73 -1.87 -0.07 -2.97

(0.69) (3.20) (2.26) (1.85) (6.71)

Householder's occupation

  White collar 0.53 0.70 0.88 1.00 -1.11

(0.49) (1.36) (1.08) (1.01) (2.10)

  Farmers (owner/tenant/manager) 1.21 *** 1.33 2.15 *** 2.21 *** 0.97

(0.34) (1.11) (0.71) (0.72) (2.24)

  Not classified -0.30 -1.03 1.05 0.34 0.03

(0.41) (1.55) (0.80) (0.90) (1.89)

Family size -0.06 0.04 0.01 0.11 -0.13

(0.06) (0.21) (0.14) (0.12) (0.30)

US born father 0.11 -1.81 1.10 -1.77 ** -1.90

(0.46) (1.38) (0.73) (0.90) (1.97)

US born mother -0.65 1.28 -0.33 0.97 0.34

(0.49) (1.41) (0.79) (0.98) (2.23)

Age in 1920 0.37 *** 0.27 0.25 * 0.36 ** 0.44 0.33 *

(0.08) (0.26) (0.15) (0.16) (0.35) (0.18)

Constant 70.32 *** 67.06 *** 65.50 *** 64.95 *** 76.86 *** 66.88 *** 71.93 ***

(1.40) (4.54) (4.21) (3.35) (7.84) (2.23) (2.50)

   *** p < .01; ** p  < .05; * p  < .10

Table 5.. Unpaired (OLS) and paired (fixed effects) models predicting age at death, by subsample

Note: Unpaired models using the unrelated neighbor, sibling, and twin subsamples cluster standard errors at the pair level. All

unpaired models also included state dummies (not shown). The reference category for white is non-white. The reference category for

householder's occupation is blue collar. Sample sizes are as follows: random (n = 7,996), unrelated neighbors (n = 812), non-twin

siblings (n  = 2,146), twins (n  = 1,976). 

Unpaired Paired

Random Neighbors Siblings Twins Neighbors Siblings Twins



Educational attainment

  12 years 1.62 *** 1.84 * 2.53 *** 1.22 ** 1.06 3.11 *** 1.64

(0.31) (1.02) (0.61) (0.60) (1.42) (1.01) (1.30)

  More than 12 years 2.13 *** 1.76 3.87 *** 4.39 *** -0.76 2.90 * 3.93 **

(0.42) (1.39) (0.86) (0.86) (1.92) (1.55) (1.92)

  F -test of joint significance

  p -value

White -0.50 0.20 -1.22 0.37 -3.47

(0.69) (3.44) (2.34) (1.94) (6.72)

Householder's occupation

  White collar 0.55 1.02 0.90 0.76 -0.79

(0.49) (1.43) (1.07) (1.00) (2.14)

  Farmers (owner/tenant/manager) 1.19 *** 1.28 2.06 *** 2.10 *** 0.97

(0.34) (1.10) (0.70) (0.72) (2.24)

  Not classified -0.31 -0.93 1.01 0.06 0.10

(0.41) (1.56) (0.79) (0.90) (1.89)

Family size -0.06 0.02 0.01 0.10 -0.16

(0.06) (0.21) (0.14) (0.11) (0.30)

US born father 0.11 -1.90 1.05 -1.73 * -1.96

(0.46) (1.38) (0.73) (0.89) (1.97)

US born mother -0.63 1.30 -0.32 0.97 0.42

(0.49) (1.41) (0.79) (0.96) (2.23)

Age in 1920 0.38 *** 0.29 0.26 * 0.37 ** 0.45 0.38 **

(0.08) (0.26) (0.15) (0.16) (0.35) (0.18)

Constant 72.16 *** 68.90 *** 68.49 *** 67.64 *** 77.39 *** 71.14 *** 72.86 ***

(1.34) (4.51) (3.98) (3.28) (7.46) (0.69) (0.63)

   *** p < .01; ** p  < .05; * p  < .10

Note: Unpaired models using the unrelated neighbor, sibling, and twin subsamples cluster standard errors at the pair level. All

unpaired models also included state dummies (not shown). The reference categories are less than 12 years of education (educational

attainment), non-white (white), and blue collar (householder's occupation). Sample sizes are as follows: random (n = 7,996),

unrelated neighbors (n  = 812), non-twin siblings (n  = 2,146), twins (n  = 1,976). 

20.35

<0.01

1.87

0.16

14.35

<0.01

12.99

<0.01

0.58

0.56

4.96

<0.01

2.25

0.11

Twins Neighbors Siblings Twins

Table 6. Unpaired (OLS) and paired (fixed effects) models using a categorical measure of education

Unpaired Paired

Random Neighbors Siblings



Years of schooling 0.54 *** 0.26

(0.14) (0.31)

White (1.24)

(2.46)

Householder's occupation

  White collar 0.18

(1.18)

  Farmers (owner/tenant/manager) 2.73 ***

(0.87)

  Not classified 0.00

(1.08)

Family size 0.21

(0.13)

US born father 1.61

(1.07)

US born mother 0.90

(1.16)

Age in 1920 0.33 *

(0.19)

Constant 59.73 *** 71.59 ***

(3.76) (3.32)

   *** p < .01; ** p  < .05; * p  < .10

Note: In these models, the sample is restricted to pairs with matching day and month of birth, as

recorded in the SSDI (n = 1,360 cases). The unpaired model clusters standard errors at the pair level and

includes state dummies (not shown). The reference category for white is non-white. The reference

category for householder's occupation is blue collar. 

Table 7. Twin pairs with matching day and month of birth (continuous measure of education)

Unpaired Paired



Educational attainment

  12 years 1.93 *** 0.76

(0.73) (1.62)

  More than 12 years 5.04 *** 4.95 **

(1.04) (2.36)

  F -test of joint significance

  p -value

White 1.55

(2.57)

Householder's occupation

  White collar 0.09

(1.17)

  Farmers (owner/tenant/manager) 2.71 ***

(0.86)

  Not classified 0.34

(1.08)

Family size 0.19

(0.13)

US born father -1.69

(1.07)

US born mother 0.97

(1.15)

Age in 1920 0.36 *

(0.19)

Constant 63.37 *** 73.38 ***

(3.43) (0.80)

   *** p < .01; ** p  < .05; * p  < .10

Note: In these models, the sample is restricted to pairs with matching day and month of birth, as

recorded in the SSDI (n = 1,360 cases). The unpaired model clusters standard errors at the pair level and

includes state dummies (not shown). The reference categories are less than 12 years of education

(educational attainment), non-white (white), and blue collar (householder's occupation).

Table 8. Twin pairs with matching day and month of birth (categorical measure of education)

12.28

<0.01

2.23

0.11

Unpaired Paired



Years of schooling 0.33 *** 0.51 ** 0.51 *** 0.38 *** 0.18 0.55 ** 0.10

(0.05) (0.20) (0.12) (0.11) (0.28) (0.22) (0.26)

White -0.60 -0.20 -3.39 0.55 2.06

(0.75) (3.65) (2.26) (2.17) (7.87)

Householder's occupation

  White collar 0.41 -0.92 0.88 0.70 -2.91

(0.51) (1.45) (1.17) (1.08) (2.27)

  Farmers (owner/tenant/manager) 1.17 *** 1.63 2.31 *** 2.04 *** -0.28

(0.36) (1.27) (0.75) (0.78) (2.30)

  Not classified -0.41 -2.49 0.82 -0.18 2.82

(0.44) (1.67) (0.88) (0.93) (2.02)

Family size -0.06 0.05 0.00 0.03 -0.13

(0.07) (0.24) (0.15) (0.12) (0.33)

US born father 0.29 -1.54 0.80 -1.35 2.22

(0.48) (1.63) (0.79) (1.02) (2.12)

US born mother -0.64 1.97 -0.39 1.02 1.07

(0.51) (1.59) (0.85) (1.08) (2.38)

Age in 1920 0.36 *** 0.23 0.20 0.38 ** 0.27 0.30

(0.08) (0.29) (0.16) (0.17) (0.36) (0.19)

Constant 69.55 *** 64.73 *** 68.95 *** 64.12 *** 71.26 *** 67.09 *** 73.06 ***

(1.51) (4.74) (6.19) (3.58) (8.99) (2.36) (2.75)

   *** p < .01; ** p  < .05; * p  < .10

Note: Pairs where one or both members had low true match probabilities, i.e., Pr(True match = 1) < 0.2 on either the 1920-to-1940

link or the 1940-SSDI link were deleted, as were individual cases in the random subsample. Unpaired models using the unrelated

neighbor, sibling, and twin subsamples cluster standard errors at the pair level. All unpaired models also included state dummies (not

shown). The reference category for white is non-white. The reference category for householder's occupation is blue collar. Sample

sizes are as follows: random (n  = 7,181), unrelated neighbors (n  = 614), non-twin siblings (n  = 1,860), twins (n  = 1,688). 

Table 9. Results after dropping low-confidence links

Unpaired Paired

Random Neighbors Siblings Twins Neighbors Siblings Twins


