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ABSTRACT 

Cognitive ability is one of the most potent and contentious human traits. Many issues 

surrounding cognitive ability especially those related to heredity is highly charged. Yet, all of 

the discussion on heredity has been based on non-DNA evidence. It is largely neglected that 

DNA and environmental data at individual level are indispensable for understanding the 

development of cognitive ability. In this article, we report findings from a study that uses data 

from Add Health with genomic measures or polygenic scores (PGS) on cognitive ability. A 

social-science model including a rich set of SES measures predicts verbal ability well 

yielding an R2 of 23.5%. Adding a PGS for education and a PGS for intelligence increases 

this R2 by 1.0%. The effects of SES context and the two PGSs are largely independent. 

Family, school, and neighborhood remain important to verbal ability after an early measure 

of verbal ability is included as a predictor. Although the influence from the genome is 

evident, the influences of social environment are critical and cannot be dismissed.  
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INTRODUCTION 

Cognitive ability is one of the most potent human traits. It is potent for at least three 

reasons. Arguably, cognitive ability is the hallmark of humans that separates them from the 

other species in the natural world. It is ubiquitous and vital for basic subsistence in deep 

human history and for contemporary physical and economic well-being. Evidence suggests 

that more than an inconsequential portion of ability is related to heredity (e.g., Bouchard 

1998; Bouchard and McGue 1981). Cognitive ability is as controversial as it is potent. Many 

issues surrounding cognitive ability especially those related to heredity is highly charged 

(e.g., Fischer et al. 1996; Herrnstein and Murray 1994; Jensen 1969). Yet, all of the empirical 

analysis concerning heredity has been based on non-DNA data. It is largely neglected that 

DNA evidence in combination with socioeconomic (SES) contextual information at 

individual level is indispensable for understanding how heredity and SES context jointly and 

interactively mold human cognitive ability. Such DNA evidence just became available 

recently (Lee et al. 2018; Okbay et al. 2016; Savage et al. 2018; Sniekers et al. 2017). 

Understanding the roots of cognitive ability is relevant and important. Cognitive 

ability has been shown to be one of the best predictors of life outcomes such as educational 

attainment, occupation achievement, income, wealth, and health (e.g., Farkas et al. 1997; 

Farkas and Vicknair 1996; Jencks et al. 1979; Taubman and Wales 1974; Taubman and 

Wales 1972; Wraw et al. 2015). Cognitive ability remains important even if its predictive 

power for later life outcomes tends to be markedly reduced once education attainment is 

adjusted. This is so because cognitive ability is a key predictor of academic performance in 

school as well as educational attainment itself and because it exerts an effect on labor market 

outcomes independent from education attainment (Jencks et al. 1979; Kerckhoff, Raudenbush 

and Glennie 2001; Rosenbaum 2001; Spilerman and Lunde 1991). Tests of cognitive ability 

and related cognitive achievement are routinely and nearly universally used in elementary 
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and secondary education, college admissions, and admissions of graduate schools and 

professional schools in the United States (Hauser 2010; Lemann 1999). 

The interpretation of the effects of cognitive ability has been intensely contentious. At 

the heart of the matter is how much weight should be placed on inheritance relative to after-

birth learning. Arthur Jensen is considered a leading advocate of the inheritance position. His 

early work stated, “(t)he best evidence indicates that the means for changing intelligence per 

se lie in the province of biology rather than psychology or education (Jensen 1969).” He later 

concluded, “(t)he variance attributed to shared or between-families, environmental factors, 

which is considerable throughout childhood, gradually shrinks to near-zero between early 

adolescence and maturity (1997, p.57).” After showing that cognitive ability was a sweeping 

associative factor  of a variety of life outcomes from poverty to educational attainment and to 

occupational successes, Herrnstein and Murray (1994) professed the view that the differences 

in intelligence were mostly at the hand of nature and there was little that government policies 

could change. 

Diametrically opposite to Arthur Jensen was Claude Fischer and colleagues (e.g., 

1996). They regarded a cognitive test such as the Armed Forces Qualification Test (AFQT) 

as a test of academic performance from school learning, which is was heavily influenced by 

SES context. Most other commentators on the topic held a view between these two positions, 

considering cognitive ability a composite outcome that was shaped by both natural 

endowment and environmental conditions (e.g., Jencks et al. 1979; Scullin et al. 2000; 

Winship and Korenman 1997).  

A fundamental weakness in all previous work on the origin of cognitive ability is the 

lack of DNA data. As a substitute, biometric studies based on genetic relatedness of twins 

and sibling were used to estimate the heritability of cognitive ability. Heritability is the 

proportion of the total variance in a trait due to genetic factors. It estimates the level of 
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importance of un-identified genetic factors relative to that of non-genetic factors in a trait. It 

cannot estimate the effects of genotype side by side with the effects of SES context. 

Biometric studies yielded a heritability estimate that ranges between 0.2 to 0.8 (e.g., 

Bouchard 1998; Velden 1997) and a shared non-genetic influence that quickly reduces to 

zero after childhood (Bouchard 1998; Jensen 1997).   

The policy arguments of Jensen (1969) and Herrnstein and Murray (1994) were based 

on a loose extrapolation of these biometric estimates. Persuasive evidence for policy 

arguments regarding individuals must be based on necessary genotype and social-context 

data at individual level. Such analysis cannot be carried out when only biometric data are 

available. Without such empirical work linking genotype to cognitive ability at individual 

level, heritability estimates can be easily loosely and even incorrectly interpreted.      

With the advent of DNA data and genome-wide association studies (GWAS) on 

outcomes closely related to cognitive ability, analysis becomes feasible that explicitly 

incorporates genomic measures. In this article, we report findings from a study that 

investigates how human genome and environment, especially socioeconomic context, jointly 

and interactively shape verbal intelligence.  

BACKGROUND 

Verbal Ability 

At Waves I and III, Add Health implemented an abridged version (AHPVT or PVT) 

of the Peabody Picture Vocabulary Test-Revised (PPVT-R). Our analysis used the percentile 

rank of PVT ranging 0-100 that was translated from the raw PVT score. PPVT was first 

published in 1959 and has been revised three times (Dunn and Dunn 2007). Psychological 

literature considers PPVT an estimate of verbal intelligence (Beres, Kaufman and Perlman 

1999; Campbell and Dommestrup 2010). The correlations between PPVT and full-scale 

intelligence tests were found to be between 0.40 to 0.60 (Beres, Kaufman and Perlman 1999). 
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Carvajal et al. (1993) empirically estimated the correlation between the Wechsler Intelligence 

Scale for Children-III and the Peabody Picture Vocabulary Test-Revised among children 

enrolled in Grades 3, 4, and 5. They obtained statistically significant correlations of .75, .76, 

and .60, between PPVT and the Wechsler Vocabulary subtest scaled scores, the Wechsler 

Verbal scores, and the Wechsler Full Scale IQ scores, respectively. Bell et al. (2001) 

compared PPVT-III and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) using a 

sample of 40 adults aged 18-41 with a mean of 22 years. Their results showed that PPVT-III 

was statistically significantly correlated with the WAIS-III full-scale IQ (FSIQ, 0.40) and 

verbal IQ (VIQ. 0.46), and that PPVT-III is uncorrelated with performance IQ (VIQ). 

Compared with full-scale intelligence tests, PPVT is easier-to-use and time-saving. These are 

decisive advantages in a setting of a large survey like Add Health that includes a large 

number of survey items besides a verbal ability test. 

Cognitive Ability and Life Outcomes 

Cognitive ability has a strong positive association with academic performance in 

school. Examining six longitudinal studies, Jencks et al. (1979, p.102) concluded that the 

correlational association between the two ranged from 0.40 to 0.63. Using a large, nationally 

representative and prospective data source of more than 70,000 British students, Deary et al. 

(2007) showed that cognitive ability measured at 11 years old was a strong predictor of 

school achievement measured by national examinations on 25 subjects at 16 years old.  

The positive association between cognitive ability and educational attainment is also 

evident. In a study that assembled eight large datasets including several massive state-wide 

datasets in the United States, Taubman and Wales (1972, p 20) reported a strong positive 

association between cognitive ability and continuing to college. While about 40-50% of the 

high school graduates at the 50th percentile of an ability test continued to college, the 

percentage continuing to college at the 90th percentile reached 80-90% in late 1950s and 
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1960s when the U.S. higher education expanded. Data from the Wisconsin Longitudinal 

Study (WLS) showed a positive association between an ability test score and length of 

schooling (Hauser 2010, p103). 

The effect of cognitive ability on later life outcomes becomes complicated when the 

role of education is taken into account. Drawing data from the National Longitudinal Study 

of Youth (NLSY),  Scullin et al. (2000) investigated the predictive power of AFQT 

administered when the respondents were 15 to 17 years old, together with educational 

attainment and race. They reported that although AFQT was predictive of labor market 

outcomes such as personal incomes, hourly wage, and occupational socioeconomic index 

(SEI), the predictive powers were substantially reduced when years of schooling was added 

to the models. The ethnicity analysis showed that cognitive ability had a much smaller effect 

and educational attainment had a much larger effect for African Americans than for white 

Americans. Examining about 10,000 Wisconsin high school students followed since their 

graduation in 1957, Hauser (2010) concluded that the associations of cognitive ability with 

job performance, occupational prestige, income, and wealth largely disappeared once levels 

of schooling were adjusted.  

The relationship between ability and personal health resembles that between ability 

and labor market outcomes. When family SES is adjusted and self educational attainment is 

not adjusted, ability proved to be a strong predictor of general health conditions. A 50-year 

Scottish longitudinal study on more than 27,000 adults reported that low cognitive ability at 

11 years old was strongly associated with higher mortality before age 65 after adjusting for 

social class and deprivation category (Gruer, Hart and Watt 2017). Using the NLSY-79, 

Wraw et al. (2015) showed that AFQT was predictive of an array of health indicators 

measured at age 50 including three overall measures of general health, nine measures of 

diagnosed illness conditions, and two measures of self-reported conditions after family SES 
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in childhood was adjusted. Once the respondents’ own SES in adulthood including education, 

income and occupation were adjusted, ability remained a significant predictor for the three 

overall measures of general health, but for many specific illness conditions, the effects sizes 

were reduced markedly.  

SES Context and Other Environmental Roots of Cognitive Ability 

Among social-contextual factors, formal schooling is commonly viewed as the most 

direct and essential determinant of cognitive ability. Tests of cognitive ability are hardly 

meaningful out of the context of modern education. In a longitudinal study of the effects of 

family SES, racial mix, and summer breaks on children’s mathematics achievement, Entwisle 

and Alexander (1992) concluded that “when school is in session, poor children and better-off 

children perform at almost the same level. Schools seem to be doing a better job than they 

have been given credit for (pp.82.)” They demonstrated the effect of schooling by showing 

the loss in mathematics scores after every summer break on the part of children in poverty 

relative to children not in poverty. Through a natural experiment, Cahan and Cohen (1989) 

reported a schooling effect distinct from the effect of biological age on an IQ test score that 

included measurement of fluid intelligence. The study compared fourth graders and fifth 

graders who were of nearly the same age. Winship and Korenman (1997) reviewed the 

literature that estimated the effect of education on cognitive ability and carefully reanalyzed 

the NLSY data used by Herrnstein and Murray (1994). They concluded that each year of 

education increased 2.7 points of IQ units. 

Estimating the effect of education on cognitive ability is challenging because the two 

are intertwined. While academic training in school contributes to cognitive ability, cognitive 

ability is also related to how fast and efficiently academic subjects are absorbed and to 

eventual educational attainment. In this project, we estimated the effect of education on PVT 

measured at Wave 3 after controlling for the exact same version of PVT administered at 
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Wave 1. A similar strategy was used when estimating the effect of education on cognitive 

ability in the absence of DNA data (Winship and Korenman 1997, p 220).  

Socioeconomic status is a composite concept with multiple dimensions that comprises 

family financial resources, knowledge, social connections, and the larger social context. SES 

is typically measured by parental income, education and occupation, one vs two biological 

parents in the household, sibship size, quality of neighborhood, and quality of school (e.g., 

Braveman et al. 2005; Link and Phelan 1996). In a meta-analysis of adoption studies of IQ, 

Locurto (1990) showed that adoption into high SES families raised the adopted children’s IQ 

by 10-12 points. These adoptive children tended to come from low SES families. Entwisle 

and Alexander (1992) concluded that family SES status had a larger impact than the 

interruption of schooling from summer breaks on cognitive test scores in the context of 

elementary education.   

Mechanism studies explained why SES context makes a difference in cognitive test 

scores. Guo and Harris (2000) investigated the mechanisms through which family SES 

affected children’s cognitive ability. Using data from the National Longitudinal Survey of 

Youth (NLSY), they showed that the effect of family SES was completely mediated by the 

intervening mechanisms measured by the latent factors of cognitive stimulation in home, 

home physical environment, parenting style, and child health at birth. Cognitive ability in that 

study was measured by four Peabody tests including a reading recognition test, a reading 

comprehension test, and a mathematics assessment test, and PPVT. Hart and Risley (1995) 

observed children in 42 families for one hour per week for two and a half years and their 

calculation suggested that large differences exited in the total number of words heard by 

children from birth to age four across professional families (45 millions), working class 

families (25 millions), and families in poverty (13 millions). Using the children of the 

NLSY79, Farkas and Beron (2004) showed that by 36-month of age, large gaps in vocabulary 
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already emerged across social classes and racial/ethnic groups, and the gaps were not closed 

afterwards.   

Macro historical trend of intelligence tests provides another source of evidence for 

environmental influences on cognitive ability. The well-known Flynn effect documented the 

historical rise in intelligence scores (e.g., Flynn 1987). The rise was interpreted as a result 

from a societal change that placed a great value on rational reasoning (Flynn 2007) as well as 

general improvements in education, nutrition and health (Flynn 2009). Recent studies 

reported a leveling off and even a decline in IQ test scores in developed countries starting in 

the 1990s (Sundet, Barlaug and Torjussen 2004; Teasdale and Owen 2005).  

Researchers have long examined the connections between problem behaviors and 

academic potential (e.g., Hinshaw 1992; Kessler et al. 1995; Malinauskiene et al. 2011; 

McLeod and Kaiser 2004). Our full models added measures of binge drinking, marijuana use, 

smoking, and serious delinquency.  

Genomic Roots of Cognitive Ability 

For decades, the genomic influences on cognitive ability were estimated via biometric 

studies. The estimated heritability or the proportion of the phenotypic variance in cognitive 

ability due to genetic factors has a vast range, depending on factors including sample size, the 

environment associated with the particular population from which the analysis sample is 

drawn, non-additive genetic variance, the assumptions of assortative mating and equal 

environment, and whether the data are based on a single genetic-relatedness such as adoptive-

apart data or more than one genetic-relatedness such as the classic twin data (e.g., Bouchard 

and McGue 1981; Plomin and Loehlin 1989; Velden 1997). Heritability estimates, however, 

cannot be used to investigate the effects of environmental and genomic roots at the individual 

level.  
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The efforts linking DNA variation to ability began in earnest in the early 2000. By 

then, it was evident that intelligence was a complex trait having a polygenic architecture, 

meaning it is subject to the influences of a large number of genes each with a tiny effect 

(Glazier, Nadeau and Aitman 2002). The challenge to find specific genes for cognitive ability 

was enormous. A human genome consists of millions of genetic variants. Testing whether 

each one of them predicts ability and setting the critical value for significance at the level of 

0.05 would by chance generate a huge number of false positive findings. Although the 

genome is large, it is finite. The solution was to set a stringent critical value of 5x10-8 for 

significance at genome-wide level and to request a replication of a discovered genetic variant 

in an independent data source. Initial successes of these genome-wide association studies 

(GWAS) employing several thousands of individuals were performed on human traits such as 

type 2 diabetes and body mass index (BMI) (Frayling et al. 2007; Zeggini et al. 2007). The 

number of GWAS-identified genetic loci were small, but tended to be replicated. 

It soon became clear that by far the single most important factor in GWAS was 

sample size. The most readily available large samples were for anthropometric measures such 

as human height and body mass index (BMI). The 2010 (Allen et al. 2010) and 2014 (Wood 

et al. 2014) height GWAS, respectively, had a sample size of 183,727 and 253,288 and 

identified 180 and 423 genetic loci, respectively. A 2017 study based on 711,428 individuals 

discovered additional 83 rare (minor allele frequency [MAF]<1%) and low-frequency 

(1%<MAF<5%) coding variants associated with height (Marouli et al. 2017). The 2010 

(Speliotes et al.) and 2015 (Locke et al.) GWAS on BMI, respectively, identified 32 and 97 

genetic loci. The later round of GWAS generally included all the observations used in a 

previous round of GWAS. For example, the 2015 BMI GWAS included all the individuals 

used in the 2010 BMI GWAS. It was of no surprise that a later GWAS tended to replicate the 

loci identified in an earlier GWAS.   
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The prospect of discovering specific genes for intelligence appeared more daunting 

than the genes for anthropometric measures. Human intelligence seems to be much more 

complicated than height and weight. Even how intelligence is measured can be highly 

contentious. The candidate-gene approach was called into question when Chabris et al (2012) 

reported that they could not replicate the previously published associations between 12 

specific genetic variants and cognitive ability. An early GWAS based on 3,511 individuals 

targeting at intelligence failed to find any signal that was genome-wide significant at  

P<10x5-8 (Davies et al. 2011). In about the same period, genome-wide SNP data analyzed via 

GREML (Yang et al. 2010; Yang et al. 2011) continued to yield heritability estimates of 

intelligence about 40-50% (Chabris et al. 2012; Davies et al. 2011). 

A 2013 GWAS study of education based on a discovery sample of 101,069 obtained 

three SNPs with genome-wide significance, one of the three associated with years of 

education and the other two with a college degree (Rietveld et al. 2013). The effect sizes of 

these SNPs were about one tenth of those of height and weight. A polygenic score (PGS) 

from all common SNPs explained about 2% of the variance in both educational attainment 

and cognitive function. Two subsequent GWAS of educational attainment in 2016 (Okbay et 

al.) and 2018 (Lee et al.) assembled 293,723 and 1.1 million individuals, and reported 74 and 

1,271 independent genome-wide significant SNPs associated with years of education, 

respectively. The PGS constructed from all common SNPs in the latest GWAS (Lee et al. 

2018) obtained an R2 of about 12% using data from Add Health. Many of the genetic loci 

were implicated in biological pathways that played a role during prenatal brain development. 

The estimated genetic overlap or the shared genetic influences between years of education 

and cognitive performance was about 70% (Supplementary Table 3.1, Okbay et al. 2016), 

suggesting that the education-based GWAS-identified genetic variants aught be reasonable 

predictors of cognitive ability.   
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Two successive GWAS of cognitive ability in 2017 (Sniekers et al.) and 2018 (Savage 

et al.) employed 78,308 and 269,867 individuals, respectively. The 2018 GWAS identified 

205 independent genome-wide significant loci, which included the 15 identified in the 2017 

GWAS. The PGS based on the 2018 GWAS obtained an incremental R2 of about 5% when 

predicting cognitive ability. The study used a variety of tests measuring cognitive ability 

because of the analysis sample was assembled from more than a dozen cohorts. These tests 

either measure fluid intelligence or were used to calculate the Spearman’s g. The genetic 

correlation between intelligence and education was estimated again to be about 0.70 with 

P=2.5x10-287 by the whole-genome LD score regression (Bulik-Sullivan et al. 2015), which 

computed the correlation between the genetic influences behind intelligence and those behind 

education. The GWAS-identified genes were mostly expressed in brain tissues. In the present 

analysis, the latest findings of GWAS for intelligence and the findings of GWAS for 

educational attainment were used to construct the genomic measures to be included in models 

predicting verbal ability.  

In addition to the two genomic measures of educational attainment and intelligence, 

we tested a number of other genomic measures. Previous work documented the association 

between academic achievement and educational attainment with obesity (Della Bella and 

Lucchini 2015; Roskam et al. 2010), general health (Ickovics et al. 2014), health behavior 

(McLeod and Kaiser 2004), personality (Lynn and Gordon 1961; McKenzie, Taghavi-

Khonsary and Tindell 2000; Phillips and Endler 1982), stress (McEwen 2000), and brain size 

(Pietschnig et al. 2015). To assess the effects of these potential predictors of cognitive ability, 

we included a number of PGSs that underlie the phenotypic predictors. These PGSs consist of 

those based on GWAS for general health-related birthweight (Okbay et al. 2016), BMI 

(Locke et al. 2015), number of cigarettes smoked per day (Furberg et al. 2010), head 

circumference (Taal et al. 2012), and each of the big five personality traits (agreeableness, 
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conscientiousness, extraversion, neuroticism, and openness) (de Moor et al. 2012). We 

included the PGSs that underlied these traits rather than observed traits themselves to reduce 

the difficulty of interpretation. For example, an observed BMI at 15 years old is likely a result 

of a host of genetic and environmental influences the individuals experienced up to that point 

in life. Some of these environmental influences are likely to be correlated with those that 

affect cognitive development. 

Analysis Plan 

We conducted two sets of analyses. In the first set, the outcome comprised two 

measures of verbal ability at Waves 1 and 3 from each individual. A random-effects model 

was implemented to investigate how verbal intelligence was molded separately and jointly by 

genomic legacy as well as SES context. Our final models in the first set of analyses added a 

set of measures on general health, risk health behaviors, a set of PGSs for general health, 

BMI, smoking, brain size, and personality traits, and a gene by SES-context interaction 

analysis testing the hypothesis that SES resources increased genomic effects on verbal 

intelligence. The second set of analyses parallel the first set with one major modification. The 

outcome in these analyses consisted of only one measure of verbal ability at Wave 3 for each 

individual and the measure of verbal ability at Wave 1 was included in the model as a 

predictor. The analyses took advantage of the twice-measured PVT, once at Wave 1 when the 

respondents were 7th-12th graders and the second time at Wave 3 about 7-8 years later. The 

inclusion of an earlier verbal ability as a baseline enabled us to test the hypothesis whether 

SES context continued to exert an effect after earlier verbal ability was conditioned in the 

model. The inclusion of the baseline verbal intelligence was crucial for testing the effect of 

education on ability because of the effect of ability on education.   

DATA, MEASURES AND METHODS 

Data Source 
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We used data from the National Longitudinal Study of Adolescent to Adult Health 

(Add Health) (http://www.cpc.unc.edu/projects/addhealth/), which is an ongoing longitudinal 

study of a nationally representative sample of more than 20,000 adolescents in grades 7-12 in 

1994-95 in the United States who have been followed for more than 20 years through 

adolescence and the transition to adulthood. Over the years, Add Health has conducted one 

in-school survey in 1994-1995, and five in-home interviews in 1994-1995 (Wave 1), 1996 

(Wave 2), 2001-02 (Wave 3), 2008 (Wave 4), and 2016-8 (Wave 5). Add Health includes 

more than 3,000 individuals who are identical twins, fraternal twins, full siblings, and half 

siblings. Add Health has a multiracial and multiethnic sample. The original purpose of Add 

Health was to understand the causes of health, health behavior, and educational development 

with special emphasis on the role of social context at the levels of family, neighborhoods, and 

communities. 

We started with a sample of 9,975 individuals for whom GWAS measures were 

available. Our analysis sample was reduced to 8,116 who were individuals with at least one 

of the two verbal ability measures. Our final analysis sample consisted of 8,116 individuals. 

A total of seven individuals have missing values in one of the following covariates: whether 

the respondent was in school before the interview, binge drinking, and marijuana use and 

smoking. The small number of missing values were replaced by the sample means. Fifty-one 

samples with missing values in race/ethnicity were reclassified into the category of Hispanic 

and others. Missing values in parental SES variables were coded into a separate category. 

In January 2015, Add Health completed genome-wide genotyping on the Wave IV 

participants who consented to archive their DNA for future studies. Of the 15,701 

respondents interviewed, 12,200 of the eligible respondents agreed to archive their DNA for 

future analysis “related to long term health.” The consent was largely uniform across 

racial/ethnic groups and yielded more than 12,000 samples for genome-wide genotyping. 
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Add Health utilized two Illumina platforms for GWAS: the Illumina Human Omni1-Quad 

BeadChip at first and the Illumina Human Omni-2.5 Quad BeadChip at a later time. The two 

platforms utilized tag SNP technology to identify and included >1.1 million and 2.5 million 

genetic markers, respectively, derived from phases 1—3 of the International HapMap Project 

(Altshuler et al. 2005) and the most informative markers from the 1,000 Genomes Project 

(1KGP) (Altshuler et al. 2010).  

Measures of Verbal Ability, SES Context and Other Covariates 

Verbal Ability was measured by an abridged version (PVT) of the Peabody Picture 

Vocabulary Test-Revised (PPVT-R) implemented twice at Waves 1 and 3 at Add Health. 

PVT included 87 or half of the items of PPVT-R. Our analysis used the PVT percentile rank 

as the outcome variable. The variable was constructed by computing the unsmoothed 

percentile rank for the same-age peers at each Add Health Wave. The resulting percentile 

rank was comparable across age groups at the same Wave.  

SES Context. Mother’s and father’s education were, respectively, coded into a four- 

category categorical variable with less than high school, high school graduation and some 

college, at least college degree, and missing. Mother’s and father’s occupation originally had 

16 categories. They were combined into five categories of none and other, which were two of 

the original categories of Add Health; manual or blue collar; sales, service, or administrative; 

professional or managerial; and missing. Household income was total family income obtained 

from the parental questionnaire at Wave 1 in 1994. Household income was coded into a six-

category variable with cutoff points at 20th, 40th, 60th, and 80th percentile plus a category of 

missing. Family structure was measured by a dichotomous variable taking the value of one if 

the respondent lived with two biological parents and zero if the respondent was from a 

household of single parent, stepparent, adopted families, and foster homes at Wave 1. Sibship 

size was the number of children living in the household at Wave 1. 
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 To capture contextual disadvantage at the neighborhood level, we followed the 

approach previously used by Wodtke, Harding and Elwert (2011). Neighborhood 

disadvantage was measured by the first principal component from a principal component 

analysis of six neighborhood measures that included the proportion of households living 

below the poverty line, the proportion of adults who were unemployed, the proportion of 

female-headed households, the proportion of adult residents without a high school diploma, 

the proportion of residents with a college degree, and the proportion of workers holding 

managerial or professional jobs. In school was coded as one when the respondent was in a 

school session when interviewed or the respondent was in school in the past school year 

when interviewed in a summer break; and in school was coded as zero otherwise. 

In generating covariates, we took advantage of the longitudinal design of Add Health. 

Whenever possible, we created time-varying covariates using repeated measures of Add 

Health. For example, we generated two measures of neighborhood disadvantage derived from 

two rounds of principal component analysis using data at Waves 1 and 3, respectively. These 

two measures of neighborhood disadvantage were included longitudinally in our first set of 

analysis. Similarly, parental education and occupation were also measured at Waves 1 and 3 

and included as time-varying covariates in the first set of analyses.  

General Health and Health Behaviors. Self-reported health measured general health 

of the respondents at Waves 1 and 3 and was based on an answer to the question of "(I)n 

general, how is your health?” The answer had five categories of 1=excellent, 2=very good, 

3=Good, 4=fair, and 5=Poor. To facilitate interpretation, the variable was reversely coded so 

that 1=Poor, 2=Fair, 3=Good, 4=Very good, and 5=Excellent, and treated as a continuous 

variable in analysis. Binge drinking was measured by the number of days the respondents 

drank 5 or more drinks in a row throughout a year at Waves 1 and 3. The survey response 

categories of binge-drinking every day or 3 to 5 days a week, 1 or 2 days a week, 2 or 3 days 
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a month, 3 to 12 times in the past 12 months, 1 or 2 days in the past 12 months, and never 

were coded into 6-categorical category variable with never as the reference category. 

Marijuana use was measured by the number of times the respondents used marijuana during 

the past 30 days at Waves 1 and 3. Those who skipped the question legitimately were coded 

as 0 and the variable had a range of 0 to 900. Then the variable was recoded into categories of 

0, 1-5, 6-15, 16-30, and 31 or more. Smoking was measured by the number of cigarettes 

smoked per day over the past 30 days. Those who skipped the question legitimately were 

coded as 0 and the variable ranged from 0 to 100. The variable was recoded into categories of 

0, 1-5, 16-30, and 31-100.  

Serious delinquency was constructed from a delinquency scale using 12 questions at 

Waves 1 and 3. The scale was similar to those widely used in delinquency and criminal 

behavior research (Thornberry and Krohn 2000). The 12 questions were about physical 

fighting that resulted in injuries needing medical treatment, use of weapons to get something 

from someone, involvement in physical fighting between groups, shooting or stabbing 

someone, deliberately damaging property, pulling a knife or gun on someone, stealing 

amounts larger or smaller than $50, breaking and entering, and selling drugs. Respondents 

were asked to report how many times they had been engaged in the delinquent behaviors in 

the past 12 months. The answers are none, 1 or 2 times, 3 or 4 times, and 5 or more times. We 

recoded them into 0, 1, 2, and 3, respectively, for each item. The scores were then summed 

up and divided it by twelve. The results were rounded up and coded into categories of none, 1 

or 2 times, 3 or more times, and missing. Demographic variables included gender, age at 

Waves 1 and 3, and race and ethnicity,  

Genomic Measures 

The genomic measure on educational attainment and the genomic measure on 

cognitive ability drew from the estimates of the 2018 GWAS of years of schooling (Lee et al. 



19 

 

2018) and those of 2018 GWAS of intelligence (Savage et al. 2018), respectively. In the case 

of educational attainment, the GWAS separately regressed each of a large number of single 

nucleotide polymorphisms (SNPs) on years of schooling where SNPs were a particular type 

of genetic variables taking values 0, 1, or 2. The value represented the number of risk alleles 

at the genetic loci for the phenotype. The GWAS obtained one 𝛽 of a SNP from each of the 

large number of regressions, with one regression for each SNP. The study identified 1,271 𝛽s 

significant at the genome-wide level of 5× 10−8. To tap all the predictability of a GWAS, a 

polygenic score (PGS) for individual i is often constructed using all 𝛽s from a GWAS as 

weights for observed number of risk alleles Χ𝑖𝑗: 𝑃𝐺𝑆𝑖 = ∑ 𝛽𝑖𝑗Χ𝑖𝑗
𝑛
𝑗=1 , where i indexes 

individual,  j indexes SNP, and n stands for the total number of SNPs used in the calculation. 

The total number of SNPs included in the calculation were a subset of the GWAS SNPs. The 

subset was obtained from pruning and clumping the original GWAS SNPs. The SNPs in the 

subset were uncorrelated or weakly correlated with one another. Pruning is used to remove 

some of the highly correlated SNPs and clumping is used to keep only one SNP in a section 

in which the SNPs are highly correlated. When n is equal to the entire set of SNPs, it is 

equivalent to setting P=1 when constructing a PGS from GWAS findings, where P is the 

critical value in a SNP regression. 

To facilitate interpretation, a PGS is typically standardized into a Z score: 𝑃𝐺𝑆𝑖
𝑠 =

[𝑃𝐺𝑆𝑖 − 𝑀]/𝜎, where M is the mean PGS averaged over all individuals in the sample and 𝜎 

is the standard deviation of the PGS. When 𝑃𝐺𝑆𝑖
𝑠 is included in a regression model predicting 

verbal ability, its coefficient can be interpreted as the effect of one standard deviation of the 

PGS on ability. Thus, the standardized PGSs are a way to estimate the overall genomic 

influence on a phenotype. We have similarly constructed standardized PGSs for intelligence, 

BMI, head circumference, cigarette smoke per day, birthweight, and the Big Five personality 



20 

 

traits of agreeableness, conscientiousness, extraversion, neuroticism, and openness. In the rest 

of this article, we used PGSi to represent 𝑃𝐺𝑆𝑖
𝑠 for simplicity. 

ANALYTICAL STRATEGIES 

Our Add Health data had a hierarchical structure that induces correlation in the 

outcome variable and that must be addressed statistically in a regression setting (e.g., Diggle, 

Liang and Zeger 1994). One source of the hierarchy was due to the inclusion of the two 

measures of verbal ability per individual. The other source of the hierarchy originated from 

the study design of Add Health, which included a genetic-informative sample consisting of 

full siblings, DZ twins, MZ twins, and other related individuals. When these siblings were 

first collected, they were the source of information on inheritance for biometric studies. In the 

present study, they were complications that needed to be addressed. In our analysis, we 

addressed the hierarchy of the data using mixed regression models (Raudenbush and Bryk 

2002; Searle 1971; Searle, Casella and McCulloch 1992), which are also referred to as 

random-effects models or multi-level models. The mixed models have long been established 

in the statistical literature for analysis of data that are not independent. We implemented two 

types of mixed models written below in the form of multilevel models for the two sets of 

analyses discussed earlier. The first was a three-level model for the first set of analyses that 

addressed the repeated measures of verbal ability in addition to the sibling clusters:  

𝑉𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡𝑖𝑗 = 𝛽0 𝑖𝑗(𝑠) + 𝑺𝑬𝑺𝒊𝒋

′
𝜝𝟏 + 𝑮𝒊𝒋

′
𝜝𝟐 + 𝑪𝒊𝒋

′
𝜝𝟑 + 𝑒𝑡𝑖𝑗 ,    (level 1 model)    

𝛽0𝑖𝑗(𝑠) = 𝛽𝑗(𝑠)+𝜈𝑖𝑗 ,        (level 2 model)                                                                 (1) 

 𝛽𝑗(𝑠) = 𝛽0 + 𝜇𝑗(𝑠),     (level 3 model), 

where Vability stands for verbal ability; the subscripts t, i, j, and s index Add Health 

Wave, individual, sibship and type of sibship, respectively; SES, G and C are, respectively, 

vectors of SES measures, PGSs, and other variables including demographic indicators and 
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principle components for addressing population admixture; B1, B2, and B3 are vectors 

representing the effects of these observed variables; and 𝑒𝑡𝑖𝑗, 𝜈𝑖𝑗 , and 𝜇𝑗(𝑠) are random effects 

at the level of Add Health Wave, individual and sibship, respectively. We estimated models 

that distinguished different types of sibship and models that did not make that distinction, 

which was equivalent to ignoring (s). The two sets of estimated coefficients of observed 

variables were essentially identical. We only presented estimates from the models that did not 

make the distinction. 

 Our mixed model for the second set of analyses was a two-level model that 

used verbal ability at Wave 3 as the dependent variable and estimated the effects of the same 

set of predictors while controlling for verbal ability at Wave 1:  

𝑉𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊3𝑖𝑗 = 𝛽0 𝑗(𝑠) + 𝜶𝑉𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊1𝑖𝑗 + 𝑺𝑬𝑺𝒊𝒋

′
𝜝𝟏 + 𝑮𝒊𝒋

′
𝜝𝟐 + 𝑪𝒊𝒋

′
𝜝𝟑 +

𝑒𝑖𝑗,    (level 1 model)  𝛽0𝑗(𝑠) = 𝛽0 + 𝜇𝑗(𝑠),     (level 2 model).                 (2)                                                   

Both (1) and (2) were random-intercept models. Conditional on the random intercepts at the 

individual level and the level of sibling clusters, the siblings and repeated measures were 

assumed to be independent. 

Population admixture or population stratification is a major concern in genetic 

association studies. Population groups separated over the past 50,000-100,000 years are likely 

to have developed private genetic variants that differ across population groups and that are 

unrelated to cognitive ability. If these population groups differ in ability test scores for social-

contextual and other environmental reasons and if these variants are not controlled properly, 

the association between the private variants and test scores could be erroneously interpreted 

as causal. The error can be avoided by the common practice of including the ten or so largest 

principle components (PCs) in the regression that links genetic variants to a phenotype (Price 

et al. 2006). The PCs represent ancestral genetic differences among population groups and 
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are highly correlated with self-reported race/ethnicity. Gene-environment interaction terms 

can be added to models (1) and (2) readily. 

FINDINGS 

Table 1 showed the means and the standard deviations of the continuous variables, 

and the percentage distribution of categorical variables used in the analysis. The descriptive 

statistics were provided for Wave 1 data, Wave 2 or Wave 3 data and the combined data from 

Waves 1, 2 and/or 3. The predictors measured at two Waves were used as time-varying 

covariates when verbal ability at Waves 1 and 3 were used in the first set of analyses.   

Table 1 about here 

Table 2 presented the coefficients and their standard errors of a 3-level random-effects 

model of verbal ability. The three levels were, respectively, at ability measure for either Add 

Health Wave 1 or Wave 3, individual, and family sibship. The random effects at the 

individual level accounted for the correlation of the two measures of verbal ability at Waves 

1 and 3 from one person. The random effects at the family level addressed the unobserved 

effects at the level of family sibship. Little surprise that the two random effects at the 

individual level and family level were highly statistically significant. Alternative models were 

estimated that replaced a single random effect at the family level by a number of random 

effects characterizing different types of sibship. The resulting effects of observed covariates 

and their standard errors remained largely unchanged. Seven of the ten principal components 

that were meant to control for population admixture were statistically significant and most 

were highly significant. In each of the four models, 8,116 individuals contributed 15,766 

measures of verbal ability, indicating that only about 5% of the individuals contributed a 

single measure. 

Model 1 was a traditional social-science model that did not consider genomic 

influences. Controlling for demographic factors, all social-contextual characteristics 
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significantly and simultaneously predicted verbal ability in directions consistent with 

expectation. Individuals whose mothers with at least a college degree scored 10.7 points 

higher on the verbal ability test than those whose mothers with an education less than high 

school. The effect of father’s education was weaker. Those whose fathers with at least a 

college degree scored 3.5 points higher than those whose fathers with an education less than 

high school. Individuals whose mothers holding a professional and managerial job scored 

about 1.6 points higher than those whose mothers have a manual or blue-collar job. The 

effect of father’s occupation was larger. The comparable effect of fathers holding a 

professional and managerial job was about six points relative to a manual and blue-collar job. 

The effect of household income was substantial. Individuals living in a household in the top 

20% income group scored about 10 points higher than those in the lowest 20% income group. 

Individuals living in a household with 3 to 5 siblings scored six points lower than those who 

were the only child in a family. An increase in one standard deviation in the index of the 

neighborhood disadvantage was associated with a decrease of 0.7 point of verbal ability 

score. Those who were in a school session when taking the verbal ability test scored 5.5 

points higher than those who were not in a school session. 

Models 2, 3 and 4 showed that when only random-effects and principal components 

are included in the model, one standard deviation of the education PGS and the ability PGS 

were associated with 6.2 and 2.0 points of verbal ability, respectively, when these PGSs were 

singly included in the model. The comparable effects were 6.0 and 1.4 points when the PGSs 

were simultaneously included in the same model. These results established the importance of 

the two PGSs.  

Table 2 about here 

Models 1 through 6 in Table 3 added a component of SES context at a time allowing 

the effect of each of the SES components to be evaluated when the education PGS and the 
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ability PGS were already in the model. All of the SES components were significantly 

predictive of verbal ability. The effects of these SES components were larger than in Model 1 

in Table 2 because the SES components in Models 1 through 6 were not adjusted one another 

as they were in Model 1 in Table 2. Since the two PGSs were included in the models, these 

results were the first indicator of the extent to which the SES components were associated 

with the included genomic measures. 

Model 7 in Table 3 included all SES components simultaneously as well as the two 

PGSs. This model could be compared with Model 1 in Table 2 to assess the impact of the two 

PGSs on the effects of SES factors. All SES components that were significant in the model 

without the PGSs remained significant in the model with the PGSs. As expected, the 

inclusion of the PGSs attenuated the SES effects, but the attenuation was moderate. In most 

cases, the inclusion of the PGSs reduced the SES effects in Model 1 in Table 2 by about 10% 

or less. For example, the two categories of mother’s education “high-school graduation/some 

college” and “at least college degree”, respectively, were associated with 5.24 points and 10.7 

additional points in the verbal ability test score relative to “less than high school” in the 

model without the PGSs. In comparison, the two comparable estimates in the model with the 

two PGSs were 4.95 and 10.1, which represented reductions of 5.5% and 5.6%, respectively. 

The models in Table 3 demonstrated the importance of both SES context and the two PGSs 

for verbal ability. The models also showed that the correlations between the SES predictors 

and the two PGSs were modest and that the SES factors and the education PGS predicted 

verbal ability by and large independently.   

Table 3 about here 

The social-science model (Model 1 in Table 2) had an R2 of 0.235. The three R2s in 

Models 2, 3, and 4 were 0.152, 0.137, and 0.154, respectively. Models 2, 3, and 4 added the 

education PGS alone, the ability PGS alone, and both PGSs, respectively, without including 
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the SES predictors. The estimated two R2s were consistent with the estimated effect sizes and 

levels of significance for the two PGSs. The ability PGS did explain a significant part of the 

variation in verbal ability net of the education PGS, but the latter seems dominated the 

genomic effects. With the full social-science model plus the two PGSs, Model 7 in Table 3 

had an R2 of 0.255. Subtracting this R2 of .235 from Model 1 in Table 2 yields an incremental 

R2 of .020 (.255-.235=.020). Part of this incremental R2 of 2.0% was due to the included PCs 

measuring population admixture. These PCs were highly correlated with race/ethnicity and 

the inclusion of the PCs was responsible for the dramatic reduction in the effects of 

race/ethnicity. Excluding the R2 due to PCs, the two PGSs accounted for an incremental R2 of 

1%.  

Models 1 in Table 4 added a set of predictors measuring general health and health 

behaviors and a set of PGSs measuring genomic influences on general health, body mass 

index, number of cigarettes smoked per day, head circumference, and each of the Big Five 

personality traits to Model 7 in Table 3. The estimated effects tended to be modest or non-

existent. Self-reported health was positively associated with verbal ability, an increase of 

each category in a 5-category scale associated with an increase of one half-point of the ability 

score. Those who used marijuana 16-30 times over the past 30 days had a verbal ability score 

about 2.7 points lower than those who did not use the drug in the same period. Those who 

smoked 16-30 cigarettes per day scored about two points lower than those who did not 

smoke. Out of the nine PGSs, only PGS for conscientiousness was significantly associated 

with verbal ability.  

 The gene-SES interaction analysis included all the interactions between the education 

PGS and SES components. The chi square test using the loglikelihood values between the 

model without the interaction terms (Model 1 in Table 4) and the model with the interaction 
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terms (Model 2 in Table 4) had a chi square value of 30 for 26 degrees of freedom, which is 

not significant at the level of 5 percent.  

Table 4 about here 

Table 5 presented the findings of our second set of analyses. The table displayed 

coefficients and their standard errors of random-effects models predicting verbal ability 

measured at Wave 3 conditional on verbal ability measured at Wave 1. Otherwise, the models 

paralleled the models presented in Tables 2, 3, and 4. In other words, these models estimated 

the effects of SES factors, the education and ability PGSs, and other predictors on verbal 

ability measured at Wave 3 while controlling for the same version of verbal ability measured 

at Wave 1 about seven years ago. The sample size or the number of individuals included in 

the analysis was reduced to 7,647 from 8,116 because an individual had to contribute two 

measures of verbal ability to be included in the analysis. 

Model 1 in Table 5 showed the baseline effects of the education and ability PGSs. As 

expected, the PVT score at Wave 1 was highly predictive of the PVT score at Wave 3. An 

increase of one point in the Wave-1 test score was associated with an increase of 0.65 point in 

the Wave-3 test score. The effect of one standard deviation of the education PGS was reduced 

from 6.0 points in Model 4 in Table 2 to 2.2 points in Model 1 in Table 5 and the PGS for 

intelligence lost its significance. Model 2 in Table 5 added the full set of SES predictors. 

Consistent with expectation, the SES findings tended to diminish in effect size and level of 

significance. Out of all SES predictors that continued to exert their importance after Wave-1 

verbal ability was controlled, years of schooling by Wave 3 and neighborhood disadvantage 

at Wave 1 were the most remarkable. Each additional year of schooling was associated with 

almost two points on the PVT test. Neighborhood disadvantages at Wave 1 and 3 were both 

included in the same model. It was neighborhood disadvantage in earlier life that turned out 
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to be negatively associated with verbal ability. Living with two biological parents was 

negative and marginally significant. 

Table 5 about here 

DISCUSSION AND CONCLUSION 

Our social-science model predicted verbal ability well. After age, gender and 

race/ethnicity were adjusted, mother’s education, father’s education, mother’s occupation, 

father’s occupation, household income, sibship size, neighborhood disadvantage, immigration 

status, and in school over the past year were all significantly and largely independently 

associated with verbal ability. This social-science model had an R2 of 0.235. 

However, Model 1 in Table 2 is not a “pure” social-science model. Parental genomes 

likely have a role in shaping parental SES such as parental education, occupation, and income 

as well as the neighborhood the family lives and the schools children attend. These SES 

characteristics are expected to be correlated with children’s PGSs predicting verbal ability. 

The cause of the correlation can be traced to parental genomes which at the same time 

influence SES environment and transmit 50% of the maternal genetic materials and 50% of 

paternal genetic materials to children.   

Adding children’s PGSs to the social-science model tests the relative importance of 

individuals’ own genome vs. the importance of social context. When both in a model (Model 

7 in Table 3), both continued to be significantly predictive of verbal ability. All SES 

predictors that were predictive of verbal ability without the PGSs remained significantly 

predictive of verbal ability with the PGS. The model that included both SES factors and the 

ability-related PGSs yielded an R2 of .255, which represented an increase of an R2 of 1% over 

the social-science model, excluding the impact the PCs. The correlation between SES and the 

PGSs was expected to reduce both estimates when both are in the same model. This was what 

we observed in the empirical estimates. Both the effect of the education PGS and the effect of 
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the intelligence PGS were reduced about approximately 23% from 6.00 to 4.59 and from 1.43 

to 1.10, respectively. The reductions in effects of SES context were mostly about 10% or less. 

The side by side inclusion of the two PGS predicting verbal ability and SES context in 

the same model yields a number of insights. First, after the two PGSs are taken into 

consideration, SES still dominates the influences on verbal ability, with the PGSs accounting 

for an additional R2 of 1.0%. Second, given the moderate correlation between SES context 

and the PGSs, the two seem to influence verbal ability largely independently. Third, even if 

some of SES context is genomic, the non-genomic SES context seems pivotally important.  

The empirically estimated moderate correlation between the two PGSs and SES context 

suggests that most of the hugely important SES context is social rather than genomic. How 

much of SES context is social and how much is genomic will be estimated more accurately 

and more directly when data become available on both maternal genome and paternal 

genome. Fourth, when both SES context and the PGSs were included in a model, the effects 

of both were estimated with greater accuracy. The estimated effects of SES context were less 

contaminated by parental genomic sources and more truly the effects of non-genomic SES 

context. The effects of the PGSs predicting verbal ability were, to an extent, purified of 

parental genomic sources and became more truly a reflection of children’s own genome 

rather than his or her parents’ genomes.  

Adding measures of general health and health behaviors showed that general health 

was positively associated with verbal ability and, smoking and marijuana use were negatively 

associated with verbal ability. These effects were small and adding these factors to the model 

did not affect the estimates of SES and PGS predictors already in the model. Compared with 

parental SES factors, general health and health behaviors seemed to be of less consequences 

to verbal ability. The influences of these classes of predictors appeared to be mostly 

unrelated. 
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Adding PGSs for BMI, birthweight, head circumference, number of cigarettes smoked 

per day, and personality traits hardly yielded any additional significant explanatory power to 

the model. Two explanations explained the lack of significant findings. First, some of the 

GWAS were based on a data source that was not sufficiently large to generate a reliable PGS. 

For example, the GWAS from which the PGSs for the personality traits were derived was 

based on about 20,000 individuals (de Moor et al. 2012). In contrast, the successful GWAS of 

educational attainment and cognitive ability were all based on a data source at least several 

times larger. Second, our findings showed that SES predictors tended to be more impactful 

than other predictors such as general health and health behaviors. These PGSs were PGSs of 

non-SES factors. Even if the PGS for BMI was based on a sufficiently large data source 

(Locke et al. 2015), the link between BMI and verbal ability was likely to be weak or even 

non-existent. Previously identified link between observed BMI and cognitive ability is worth 

revisiting because the phenotype of BMI is likely have been subject to substantial SES 

influences.  

Including interaction terms between the education PGS and SES did not add 

additional explanatory power to the model. Gene-environment interaction analysis holds a 

particularly prominent position in social genomics that aims to understand the importance of 

social-contextual environment while taking into consideration of genomic influences. Our 

analyses indicated that sufficient power of GxE interaction analysis was difficult to come by 

unless one or a very small number of GxE interaction terms were targeted theoretically to 

reduce the number of tests. 

Fresh insights were obtained by conditioning the analyses on Wave-1 verbal ability. A 

coefficient of about 0.6 of Wave-1 PVT suggested that the Wave-1 verbal ability predicted 

the Wave-III verbal ability with 60% accuracy. With the Wave-1 verbal ability included in 

the model as a predictor, the estimated effects of the education PGS, SES predictors, and 
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other predictors carried a distinct meaning. These effects represented the effects above and 

beyond Wave-1 verbal ability, or above and beyond the effects of the measured and 

unmeasured PGSs and SES and other predictors that had already acted upon Wave-1 verbal 

ability. 

The PGS for education was still significantly predictive of Wave-3 verbal ability, but 

the effect size was reduced by about two thirds. Out of the SES factors, number of years of 

schooling by Wave 3 and neighborhood disadvantage were significantly predictive of Wave-

3 verbal ability at the level of 0.001; and living with two biological parents were predictive of 

verbal ability at .10. These three social-structural influences were at the levels of family, 

school, and neighborhood, respectively. The large effect of year of schooling by Wave 3 was 

particularly noteworthy. The coefficient of 1.94 implied that each additional year of 

schooling was associated with about two points of verbal ability. Assessing causal effects of 

schooling on verbal ability was difficult. While more schooling helps grow verbal ability, 

individuals with higher verbal ability are likely to seek and attain more education. We took 

three measures to address the difficulty. First, the model controlled for an earlier version of 

verbal ability. Second, the model controlled for age at which Wave-3 test was taken. Third, 

we measured schooling by the number of years of schooling before verbal ability was taken 

at Wave 3.  

Our analysis demonstrated the importance of genomic and social-contextual roots of 

verbal ability. Unlike the indirect measurement used in biometric studies, our analysis 

measured genomic roots by the education PGS and the ability PGS based on molecular SNP 

data at individual level. Though the two PGSs accounted for only about one percent of the 

variance in verbal ability, the estimated effects were substantial in size, highly significant, 

and largely invariant to whether the model included variables of SES context, general health 

and health behaviors, and other PGSs.  
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In all probability, the measurement of genomic root of verbal ability will improve. 

Substantially larger samples than currently used could be assembled to hunt more genes in 

fresh GWAS, which focus common alleles with MAF greater than 5%. A recent study 

(Marouli et al. 2017) showed that SNPs with MAF<5% can be examined when an extremely 

large sample is available and that these rare variants tend to have much larger effects than 

those common variants. These foreseeable advances plus unforeseeable advances will in all 

likelihood raise the percentage of variance that can be explained by genomic measures.  

The cluster of SES factors proved to be of foremost importance to verbal ability with 

the two GPSs in the model. Social and educational context continued to be important to 

verbal ability measured between ages 18 and 25 after Wave-1 verbal ability measured at ages 

12 and 19 were conditioned in the model. Before the era of molecular genomics, the 

identification of genomic root of cognitive ability relied on biometric studies. Unequipped 

with molecular genetic measures at individual level that are naturally correlated to individual-

level SES-contextual measures, biometric studies undervalue the importance of environment 

including SES context. The results from biometric studies are often cited as evidence to 

support the dismissal of the importance of SES context in policy discussion (Herrnstein and 

Murray 1994; Jensen 1997). 

Social scientists have long considered SES context fundamentally important in 

shaping life outcomes including cognitive ability (e.g., Duncan, Brooksgunn and Klebanov 

1994; Fischer et al. 1996; Hauser 2010; McLeod and Shanahan 1993). With genomic 

influences measured at individual level and included in the model, we confirmed the 

fundamental importance of SES context. After all, the worth of cognitive ability including 

verbal ability depends heavily on the context of modern education and society. At the same 

time, the modern educational system and society depend on the social fabrics such as family, 

schools, and neighborhoods to bring about the intellectual potential of individuals. The 
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eminence of these social fabrics will persist unless their functions are served by institutions 

other than family, schools, and neighborhoods.   
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Table 1. Descriptive statistics: Add Health by wave 

  
Wave 1  

(N=7,674) 

Wave 2 or 3  

(N=8,092) 

Wave 1 & Wave 2 or 3  

(N=8,116) 

Variable Mean or % S.D. Mean or % S.D. Mean or % S.D. 

PVT Percentile Score (Verbal Ability) 50.2 28.7 50.6 29.3 50.4 29.0 

Polygenic Scores (PGS) Predicting Cognitive Ability  

  
    

PGS for education 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for cognitive ability 0.0 1.0 0.0 1.0 0.0 1.0 

SES Context 
      

Mother's education       

Less than high school 15.1  15.0  15.0  

High school graduation/some college 54.7 
 

54.4 
 

54.6 
 

At least college graduation 25.8 
 

26.5 
 

26.1 
 

Missing 4.4  4.1  4.3  

Father's education       

Less than high school 15.0 
 

14.8 
 

14.9 
 

High school graduation/some college 52.9 
 

52.9 
 

52.9 
 

At least college graduation 24.8  25.5  25.1  

Missing 7.3  6.8  7.1  

Mother's occupation 
      

None & other 29.0 
 

21.1 
 

25.0 
 

Manual or blue collar 16.5  19.3  17.9  

Sales, service, or administrative 22.0  25.5  23.8  

Professional or managerial 27.4 
 

29.8 
 

28.6 
 

Missing 5.1  4.3  4.7  

Father's occupation       

None & other 14.1  9.5  11.7  

Manual or blue collar 32.4 
 

37.2 
 

34.8 
 

Sales, service, or administrative 5.1 
 

5.9 
 

5.5 
 

Professional or managerial 20.4  22.8  21.6  

Missing 28.0  24.8  26.4  

Household income  
      

0-20 percentile 13.9 
 

13.8 
 

13.9 
 

20-40 percentile 13.6  13.5  13.5  

40-60 percentile 17.1  16.9  17.0  

60-80 percentile 17.7 
 

17.6 
 

17.6 
 

80-100 percentile 16.6 
 

16.6 
 

16.6 
 

Missing 21.1  21.6  21.4  

  Family Structure       

  Live with Two Biological Parents 0.48  0.48  0.48  

Sibling size       

No sibling 4.1  4.0  4.1  

1 to 2 sibling(s) 49.0  49.0  49.0  

3 to 5 siblings 28.6  28.7 
 

28.7 
 

6 to 20 siblings 18.2  18.2  18.2  

Other and Missing 0.1  0.1  0.1  

  Neighborhood Disadvantages 0.0 1.0 0.0 1.0 0.0 1.0 

  In School 0.9 0.3 0.1 0.4 0.5 0.5 

Demographics       

  Age 16.0 1.7 22.3  1.8 19.2 3.6 

  Gender        

  Female 0.5  0.5  0.5  

  Male 0.5  0.5  0.5  

  Race & Ethnicity       

  White 59.9  60.0  59.9  

  Black 20.1 
 20.1  

20.2 
 

  Asian 5.4 
 5.4  

5.4 
 

  Hispanic 14.2  14.1  14.1  

  Native American & Others 0.5  0.5  0.5  
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  Immigration Status       

  US Born 0.69  0.68  0.68  

  Speaking English at Home 0.92  0.92  0.92  

General Health and Health Behaviors 
      

Self-reported General Health 3.9 0.9 4.0 0.9 3.9 0.9 

Binge Drinking       

  0 times a year 73.5  50.8  73.6  

  1 to 12 times a year 15.6  27.3  15.5  

  2 or 3 days a month 4.7  9.0  4.6  

  1 or 2 days a week 3.7  8.8  3.8  

  3 to 5 days a week/(Almost) Every day 2.5  4.0  2.5  

Marijuana Use        

  0 time in past 30 days 84.7  77.2  80.9  

  1 to 5 times 10.4  11.3  10.9  

  6 to 15 times 2.0  3.7  2.9  

  16 to 30 times 2.1  6.3  4.3  

  31 times and above 0.8  1.4  1.1  

Smoking        

  0 cigarettes per day 74.2  65.3  69.6  

  1 to 5 cigarettes 16.8  12.9  14.8  

  6 to 15 cigarettes 6.4  12.8  9.7  

  16 to 30 cigarettes 2.4  8.5  5.5  

  31 to 100 cigarettes 0.3  0.6  0.5  

Serious Delinquency       

None 50.5  71.5  61.3  

1 or 2 times 46.0  25.2  35.3  

3 or more times 2.2 
 

0.4 
 

1.3 
 

Missing 1.4 
 

2.8 
 

2.1 
 

Other Polygenic Scores  
      

PGS for Birthweight 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for BMI 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Head Circumference 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Number of Cigarette Per Day 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Agreeableness 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Conscientiousness 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Extraversion 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Neuroticism 0.0 1.0 0.0 1.0 0.0 1.0 

PGS for Openness 0.0 1.0 0.0 1.0 0.0 1.0 
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Table 2. Coefficients (standard errors) of random-effects models predicting verbal ability by SES context 

and ability-related PGSs, with two measures of verbal ability for each individual at Waves 1 and 3 
  Model 1 Model 2 Model 3 Model 4 

 SES context Education PGS Ability PGS Both PGSs 

Predictors  coefficient (S.E.) coefficient (S.E.) coefficient (S.E.) coefficient (S.E.) 

PGSs Predicting Cognitive Ability 
   

 

PGS for Education  6.200(.45)***  6.007(.45)*** 

PGS for Cognitive Ability   2.029(.39)*** 1.434(.38)*** 

SES Context     

Mother's Education 

    Less than high school -    

High school graduation/some college 5.242(.99)***    

At least college graduation 10.746(1.23)***    

Missing -0.415(1.81)    

Father's Education 

    Less than high school -    

High school graduation/some college 3.391(.96)***    

At least college graduation 3.473(1.18)**    

Missing 1.275(1.70)    

Mother's Occupation 

    Manual or blue collar -    

None & Others 0.231(.70)    

Sales, service, or administrative 1.320(.72)+    

Professional or managerial 1.611(.74)*    

Missing -0.313(1.47)    

Father's Occupation 

    Manual or blue collar -    

None & Others 0.468(.75)    

Sales, service, or administrative 2.848(1.03)**    

Professional or managerial 6.082(.67)***    

Missing 1.040(.73)    

Household Income Wave 1 

    0-20 percentile -    

20-40 percentile 3.989(1.02)***    

40-60 percentile 6.034(1.00)***    

60-80 percentile 7.757(1.04)***    

80-100 percentile 9.800(1.10)***    

Missing 1.646(.93)+    

With 2 Biological Parents Wave 1 -0.295(.65)    

Sibship size  

    No sibling -    

1 to 2 siblings -3.918(1.32)**    

3 to 5 siblings -6.439(1.35)***    

6 to 20 siblings -7.967(1.41)***    

Other and Missing 13.343(7.31)+    

    Neighborhood Disadvantages -0.713(.18)***    

    In School 5.479(.56)***    

Demographics     

  Age 0.732(.08)***    

  Female -2.238(.51)***    

  Race and Ethnicity 

      White -    

  Black -18.055(.72)***    

  Asian -7.801(1.23)***    

  Hispanic -8.686(.92)***    

  Native Americans and Others -7.695(3.71)*    

  Immigration Status     

     US Born 4.422(.55)***    

     Speaking English at Home 3.954(1.20)***    

Population Admixture     

PC1  -374.485*** -694.361*** -295.294*** 

PC2  357.307*** 241.943*** 339.937*** 

PC3  -385.081*** -432.084*** -391.083*** 

PC4  44.477+ 56.369* 48.011+ 

PC5  171.596*** 184.998*** 176.640*** 

PC6  -101.202*** -98.751*** -92.553*** 
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PC7  35.205 13.758 38.405 

PC8  -79.652** -80.670** -79.474** 

PC9  -18.876 -41.840 -18.592 

PC10  24.839 15.807 24.627 

Constant 22.773(2.68)*** 50.374(.28)*** 50.404(.28)*** 50.375(.28)*** 

Random Effects     

   𝜎𝑢
2, family-level 2.692(0.04)*** 2.833(.03)*** 2.858(.03)*** 2.831(.03)*** 

   𝜎𝑣
2, person-level 2.544(0.05)*** 2.542(.05)*** 2.537(.05)*** 2.541(.05)*** 

   𝜎𝑒
2, wave-level 2.796(0.01)*** 2.790(.01)*** 2.790(.01)*** 2.790(.01)*** 

Model-level Parameters     

  (-2)LogLikelihood 143,432 144,287 144,451 144,273 

  Person-observations 15,766 15,766 15,766 15,766 

  Number of Families 7,324 7,324 7,324 7,324 

  Number of Persons 8,116 8,116 8,116 8,116 

  OLS R-squared 0.235 0.152 0.137 0.154 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

Only indicators of level of significance are provided for the estimated PCs.   
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Table 3. Coefficients (standard errors) of random-effects models predicting verbal ability by SES context and ability-related PGSs, with two measures of verbal 
ability for each individual at Waves 1 and 3 
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

 Education Occupation Income Family structure Neighborhood In school All SES 

Predictors coefficient(S.E.) coefficient(S.E.) coefficient(S.E.) coefficient(S.E.) coefficient(S.E.) coefficient(S.E.) coefficient(S.E.) 

PGSs Predicting Cognitive Ability               

PGS for Education 5.133(.43)*** 5.444(.43)*** 5.362(.44)*** 5.757(.44)*** 5.971(.44)*** 5.800(.44)*** 4.588(.42)*** 

PGS for IQ 1.171(.37)** 1.305(.37)*** 1.253(.37)*** 1.333(.38)*** 1.361(.38)*** 1.331(.38)*** 1.095(.36)** 

SES Context        
Mother’s Education        
    Less than high school -      - 

High school graduation/some college 6.724(1.00)***      4.947(.98)*** 

At least college graduation 13.922(1.21)***      10.092(1.22)*** 

Missing 0.777(1.72)      -0.786(1.79) 

Father’s Education        
Less than high school -      - 

High school graduation/some college 4.191(.96)***      3.121(.95)*** 

At least college graduation 5.759(1.18)***      3.042(1.17)** 

Missing 0.547(1.45)      1.046(1.68) 

Mother’s Occupation        
    Manual or blue collar  -     - 

None & Others  0.625(.70)     0.163(.69) 

Sales, service, or administrative  3.545(.72)***     0.974(.72) 

Professional or managerial  6.055(.71)***     1.582(.73)* 

Missing  -1.457(1.24)     -0.634(1.46) 

Father’s Occupation        
    Manual or blue collar  -     - 

None & Others  0.003(.76)     0.309(.75) 

Sales, service, or administrative  4.729(1.03)***     2.659(1.02)** 

Professional or managerial  8.261(.65)***     5.591(.66)*** 

Missing  -0.552(.64)     1.003(.72) 

Household Income at Wave 1        
    0-20 percentile   -    - 

20-40 percentile   5.357(1.03)***    3.744(1.00)*** 

40-60 percentile   8.696(.99)***    5.353(.99)*** 

60-80 percentile   12.012(1.00)***    6.814(1.02)*** 

80-100 percentile   17.032(1.01)***    8.709(1.08)*** 

    Missing   4.199(.93)***    1.398(.92) 

With 2 Biological Parents at Wave 1    3.249(.57)***   -0.183(.64) 

Sibship size        
    No sibling    -   - 

1 to 2 siblings    -3.266(1.37)*   -3.609(1.30)** 
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3 to 5 siblings    -6.868(1.41)***   -5.671(1.33)*** 

6 to 20 siblings    -9.026(1.47)***   -6.833(1.39)*** 

Other and Missing    12.850(7.60)+   12.084(7.19)+ 

  Neighborhood Disadvantages     -1.076(.18)***  -0.693(.18)*** 

  In School      6.473(.56)*** 5.319(.56)*** 

Demographics        

  Age 0.091(.04)* 0.029(.04) 0.099(.04)* 0.101(.04)* 0.092(.04)* 0.870(.08)*** 0.716(.08)*** 

  Female -2.141(.51)*** -2.288(.51)*** -2.281(.52)*** -2.321(.52)*** -2.486(.53)*** -2.634(.52)*** -2.077(.50)*** 

  Race and Ethnicity        

      White - - - - - - - 

  Black 1.569(2.66) 2.175(2.67) 1.425(2.69) 4.135(2.73) 4.033(2.74) 3.726(2.72) -0.209(2.59) 

  Asian -3.388(3.35) -3.085(3.37) -0.758(3.39) -1.570(3.43) -0.860(3.45) -1.344(3.42) -3.660(3.26) 

  Hispanic -1.408(1.40) -1.718(1.40) -1.656(1.41) -2.203(1.43) -2.119(1.44) -2.260(1.43) -1.126(1.36) 

  Native Americans and Others 1.484(3.91) 1.895(3.93) 3.102(3.95) 2.280(4.01) 2.486(4.03) 2.416(3.99) 1.489(3.80) 

  Immigration Status        

    US Born 4.509(.56)*** 4.608(.56)*** 4.503(.57)*** 4.515(.57)*** 4.887(.58)*** 4.704(.57)*** 4.121(.55)*** 

    Speaking English at Home 4.892(1.22)*** 6.670(1.22)*** 5.898(1.23)*** 8.769(1.24)*** 8.222(1.24)*** 8.600(1.23)*** 3.707(1.20)** 

Population Admixture        

PC1 -429.595*** -369.770*** -294.229** -404.555*** -434.359*** -455.959*** -282.941** 

PC2 116.949+ 144.085* 178.676** 139.380* 166.484* 162.662* 127.632* 

PC3 -198.696*** -248.015*** -237.030*** -243.276*** -264.309*** -262.267*** -176.929*** 

PC4 23.618 19.702 20.905 18.190 18.735 19.815 30.903 

PC5 139.695*** 135.268*** 131.594*** 124.307*** 135.734*** 131.474*** 132.129*** 

PC6 -131.597*** -119.966*** -126.233*** -134.386*** -148.398*** -147.541*** -86.651*** 

PC7 28.300 26.047 31.696 26.388 19.419 19.096 41.333+ 

PC8 -91.102*** -68.398** -73.471** -74.720** -74.770** -73.752** -75.959** 

PC9 -10.704 -13.253 -7.041 -7.605 -12.434 -13.762 -0.271 

PC10 4.290 15.362 23.604 18.059 21.737 22.015 6.164 

Constant 31.190(1.69)*** 37.146(1.72)*** 33.125(1.74)*** 41.657(2.11)*** 38.518(1.66)*** 20.102(2.28)*** 19.230(2.72)*** 

Random Effects        

  𝜎𝑢
2, family-level 2.707(.04)*** 2.730(.03)*** 2.743(.03)*** 2.771(.03)*** 2.789(.03)*** 2.781(.03)*** 2.657(.04)*** 

  𝜎𝑣
2, person-level 2.569(.04)*** 2.550(.05)*** 2.560(.05)*** 2.566(.05)*** 2.558(.05)*** 2.538(.05)*** 2.537(.05)*** 

  𝜎𝑒
2, wave-level 2.792(.01)*** 2.797(.01)*** 2.790(.01)*** 2.790(.01)*** 2.791(.01)*** 2.794(.01)*** 2.795(.01)*** 

Model-level Parameters        

  (-2)LogLikelihood 143,590 143,735 143,739 143,951 144,060 143,964 143,163 

  Person-observations 15,766 15,766 15,766 15,766 15,766 15,766 15,766 

  Number of Families 7,324 7,324 7,324 7,324 7,324 7,324 7,324 

  Number of Persons 8,116 8,116 8,116 8,116 8,116 8,116 8,116 

  OLS R-squared 0.216 0.210 0.201 0.183 0.176 0.191 0.255 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

Only level of significance are provided for the estimated PCs.           
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Table 4. Coefficients (standard errors) of random-effects models predicting verbal ability by SES 
context, ability-related PGSs, general health and health behaviors, and other PGSs, with two measures of 
verbal ability for each individual at Waves 1 and 3 

 Model 1 Model 2 

 Full Model Interaction 

Variables coefficient(S.E.) coefficient(S.E.) 

PGSs Related to Cognitive Ability     

PGS for Education 4.413(.42)*** 0.605(1.75) 

PGS for IQ 0.981(.36)** 1.005(.36)** 

SES Context   
Mother's Education   
    Less than high school - - 

High school graduation/some college 4.877(.98)*** 4.738(.99)*** 

At least college graduation 9.912(1.21)*** 9.817(1.22)*** 

Missing -0.722(1.78) -0.819(1.80) 

Father's Education   

    Less than high school - - 

High school graduation/some college 3.125(.95)*** 3.313(.96)*** 

At least college graduation 3.097(1.17)** 3.099(1.18)** 

Missing 1.034(1.68) 1.042(1.69) 

Mother's Occupation   

    Manual or blue collar - - 

None & Others 0.180(.69) 0.095(.69) 

Sales, service, or administrative 0.965(.71) 0.893(.72) 

Professional or managerial 1.606(.73)* 1.552(.73)* 

Missing -0.318(1.46) -0.332(1.46) 

Father's Occupation   

    Manual or blue collar - - 

None & Others 0.306(.75) 0.331(.75) 

Sales, service, or administrative 2.672(1.02)** 2.779(1.06)** 

Professional or managerial 5.485(.66)*** 5.504(.68)*** 

Missing 0.936(.72) 1.010(.72) 

Household Income at Wave 1   

    0-20 percentile - - 

20-40 percentile 3.640(1.00)*** 3.953(1.03)*** 

40-60 percentile 5.230(.99)*** 5.599(1.01)*** 

60-80 percentile 6.615(1.02)*** 7.016(1.05)*** 

80-100 percentile 8.477(1.08)*** 8.833(1.13)*** 

Missing 1.262(.92) 1.719(.95)+ 

With 2 Biological Parents at Wave 1 -0.348(.64) -0.259(.65) 

Sibship size   
    No sibling - - 

1 to 2 siblings -3.634(1.29)** -3.897(1.30)** 

3 to 5 siblings -5.687(1.33)*** -5.892(1.33)*** 

6 to 20 siblings -6.724(1.39)*** -6.801(1.40)*** 

Other and Missing 12.255(7.17)+ 11.848(7.22) 

   Neighborhood Disadvantages -0.680(.18)*** -0.786(.19)*** 

   In School 5.053(.56)*** 5.055(.56)*** 

General Health and Health Behaviors   
Self-reported Health 0.488(.21)* 0.478(.21)* 

Binge Drinking   
   0 times a year - - 

       1 to 12 times a year 0.972(.45)* 0.956(.45)* 

       2 or 3 days a month -0.277(.70) -0.312(.70) 

       1 or 2 days a week -0.204(.75) -0.241(.75) 

       3 to 5 days a week/(Almost) Every day -1.171(.99) -1.215(.99) 

Marijuana Use   
   0 time in past 30 days - - 

       1 to 5 times -1.496(.58)** -1.501(.58)** 

       6 to 15 times 0.111(1.03) 0.091(1.03) 

       16 to 30 times -2.659(.89)** -2.656(.89)** 

       31 times and above 0.518(1.60) 0.501(1.60) 

Smoking   
   0 cigarettes per day - - 

       1 to 5 cigarettes -0.555(.52) -0.525(.52) 

       6 to 15 cigarettes -1.683(.65)** -1.648(.65)* 

       16 to 30 cigarettes -2.336(.83)** -2.356(.83)** 
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       31 to 100 cigarettes -3.053(2.48) -3.162(2.48) 

Serious Delinquency   
None - - 

1 or 2 times -0.211(.40) -0.198(.40) 

3 or more times -0.954(1.53) -0.894(1.53) 

Missing -2.879(1.16)* -2.809(1.16)* 

Other Polygenic Scores   
PGS for Birthweight -0.370(.46) -0.334(.46) 

PGS for BMI -0.628(.56) -0.617(.56) 

PGS for Head Circumference 0.725(.91) 0.692(.91) 

PGS for Cigarette per day -0.493(.36) -0.467(.36) 

PGS for Agreeableness -0.204(.39) -0.220(.39) 

PGS for Conscientiousness -0.846(.37)* -0.852(.37)* 

PGS for Extraversion 0.355(.35) 0.375(.35) 

PGS for Neuroticism -0.066(.37) -0.075(.37) 

PGS for Openness 0.836(.44)+ 0.830(.44)+ 

Interactions between SES & Education PGS   
  PGS*Mother's Education   
      PGS*Less than High School  - 

  PGS*High School  -0.188(.96) 

  PGS*College  1.281(1.19) 

  PGS*Missing  -1.168(1.82) 

  PGS*Father's Education   
      PGS*Less than High School  - 

  PGS*High School  1.122(.94) 

  PGS*College  0.997(1.16) 

  PGS*Missing  2.241(1.75) 

  PGS*Mother's Occupation   
      PGS*Manual or blue collar  - 

  PGS*Missing  -0.295(.67) 

  PGS*None & Other  -0.400(.74) 

  PGS*Sales, service, or administrative  -1.789(.71)* 

  PGS*Professional or managerial  -0.576(1.52) 

  PGS*Father's Occupation   
      PGS*Manual or blue collar  - 

  PGS*Missing  0.126(.85) 

  PGS*None & Other  -0.690(1.23) 

  PGS*Sales, service, or administrative  -0.314(.75) 

  PGS*Professional or managerial  0.065(.70) 

  PGS*Household Income at Wave 1   
      PGS*0-20 percentile  - 

  PGS*20-40 percentile  0.680(.92) 

  PGS*40-60 percentile  0.477(.98) 

  PGS*60-80 percentile  0.478(1.06) 

  PGS*80-100 percentile  0.645(1.12) 

  PGS*Missing  1.496(.84)+ 

  PGS*Family Structure   

      PGS*With 2 Biological Parents at Wave 1  -0.137(.70) 

  PGS*Sibling size   

      PGS*No sibling  - 

      PGS*1 to 2 siblings  3.337(1.37)* 

      PGS*3 to 5 siblings  2.757(1.38)* 

      PGS*6 to 20 siblings  3.177(1.41)* 

      PGS*Other and Missing  3.016(7.36) 

   PGS*Neighborhood Disadvantages  -0.292(.15)+ 

   PGS*At School in the Past Year  -0.401(.30) 

Demographics   

  Age 0.717(.08)*** 0.728(.08)*** 

  Female -2.326(.51)*** -2.379(.51)*** 

  Race and Ethnicity   
      White - - 

  Black -0.288(2.59) -0.211(2.61) 

  Asian -3.401(3.25) -3.467(3.25) 

  Hispanic -1.148(1.36) -0.992(1.36) 

  Native Americans and Others 1.431(3.79) 1.612(3.79) 

  Immigration Status   

     US Born 3.893(.55)*** 3.921(.55)*** 



54 

 

     Speaking English at Home 4.273(1.20)*** 4.217(1.20)*** 

Population Admixture   
PC1 -350.729* -351.162* 

PC2 200.507** 203.686** 

PC3 -171.204*** -170.923*** 

PC4 43.381 42.859 

PC5 123.981*** 126.325*** 

PC6 -84.702** -82.235** 

PC7 47.315+ 47.428+ 

PC8 -77.312** -77.982** 

PC9 9.024 9.146 

PC10 4.833 4.484 

Constant 18.175(2.86)*** 17.831(2.87)*** 

Random Effects   

  𝜎𝑢
2, family-level 2.650(.04)*** 2.646(.04)*** 

  𝜎𝑣
2, person-level 2.536(.05)*** 2.538(.05)*** 

  𝜎𝑒
2, wave-level 2.793(.01)*** 2.793(.01)*** 

Model-level Parameters   

  (-2)LogLikelihood 143,082 143,052 

  Person-observations 15,766 15,766 

  Number of Families 7,324 7,324 

  Number of Persons 8,116 8,116 

  OLS R-squared 0.261 0.263 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

Only indicators of level of significance are provided for the estimated PCs. 
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Appendix 1. Descriptive statistics for the sample for the 2nd set of analyses requiring two measure of 
verbal ability from each individual (N=7,647) 

  Wave I Wave III 

Variable Mean or % S.D. Mean or % S.D. 

PVT Percentile Score (Verbal Ability) 50.2 28.7 50.7 29.3 

Polygenic Scores (PGS) predicting cognitive ability  
    

PGS for Education 0.0 1.0 - - 

PGS for IQ 0.0 1.0 - - 

Years of Education - - 13.2 1.9 

SES Context 
    

Mother's Education 
    

Less than high school 15.1  -  

High school graduation/some college 54.7  -  

At least college graduation 25.8 
 -  

Missing 4.4 
 -  

Father's Education     

Less than high school 15.0  -  

High school graduation/some college 52.9 
 -  

At least college graduation 24.8 
 -  

Missing 7.3  -  

Mother's Occupation     

None & Other 29.0 
 -  

Manual or blue collar 16.5 
 -  

Sales, service, or administrative 22.0  -  

Professional or managerial 27.4  -  

Missing 5.1 
 -  

Father's Occupation 
    

None & Other 14.1  -  

Manual or blue collar 32.4  -  

Sales, service, or administrative 5.1 
 -  

Professional or managerial 20.4 
 -  

Missing 28.0  -  

Household Income at Wave 1     

0-20 percentile 13.9 
 -  

20-40 percentile 13.5 
 -  

40-60 percentile 17.1  -  

60-80 percentile 17.7  -  

80-100 percentile 16.7 
 -  

Missing 21.1 
 -  

Family Structure     

Lived with Two Biological Parents 0.5  -  

Sibling size     

No sibling 4.1 
 -  

1 to 2 sibling(s) 49.0  -  

3 to 5 siblings 28.6  -  

6 to 20 siblings 18.2    

Other and Missing 0.1 
 -  

Neighborhood Disadvantages 0.0 1.0 0.0 1.0 

In School 

Demographics 0.9 0.3 0.1 0.4 

  Age - - 22.3 1.8 

  Gender 
    

  Female 0.5  -  

  Male 0.5  -  

  Race & Ethnicity 
    

  White 59.9 
 -  

  Black 20.1  -  

  Asian 5.4 
 -  

  Hispanic 14.2 
 -  

  Native American or Others 0.5 
 -  
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  Immigration Status     

  US Born 0.69  -  

  Speaking English at Home 0.92  -  

General Health and Health Behaviors 
    

Self-reported General Health 3.9 0.9 4.0 0.9 

Binge Drinking     

  0 times a year 73,5  50.8  

  1 to 12 times a year 15.6  27.2  

  2 or 3 days a month 4.7  9.1  

  1 or 2 days a week 3.8  8.9  

  3 to 5 days a week/(Almost) Every day 2.5  4.0  

Marijuana Use     

  0 time in past 30 days 84.7  77.2  

  1 to 5 times 10.4  11.4  

  6 to 15 times 2.0  3.8  

  16 to 30 times 2.1  6.2  

  31 times and above 0.8  1.5  

Smoking     

  0 cigarettes per day 74.2  65.5  

  1 to 5 cigarettes 16.8  12.7  

  6 to 15 cigarettes 6.4  12.8  

  16 to 30 cigarettes 2.4  8.4  

  31 to 100 cigarettes 0.3  0.6  

Serious Delinquency 
    

None 50.5  71.6  

1 or 2 times 46.0  25.0  

3 or more times 2.2 
 

0.4 
 

Missing 1.4 
 

2.9 
 

Other Polygenic Scores 
    

PGS for Birthweight 0.0 1.0 - - 

PGS for BMI 0.0 1.0 - - 

PGS for Head Circumference 0.0 1.0 - - 

PGS for Cigarette per day 0.0 1.0 - - 

PGS for Agreeableness 0.0 1.0 - - 

PGS for Conscientiousness 0.0 1.0 - - 

PGS for Extraversion 0.0 1.0 - - 

PGS for Neuroticism 0.0 1.0 - - 

PGS for Openness 0.0 1.0 - - 
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Table 5. Coefficients (standard errors) of random-effects models predicting verbal ability at Wave 3 
conditional on verbal ability at Wave 1 

 Model 1 Model 2 Model 3 Model 4 

 PGS SES+PGS ALL Interactions 

Predictors coefficient (S.E.) coefficient (S.E.) coefficient (S.E.) coefficient (S.E.) 

PVT Percentile Score at Wave 1 0.647(.01)*** 0.580(.01)*** 0.578(.01)*** 0.578(.01)*** 

Polygenic Scores (PGSs) Predicting to Cognitive 

Ability     

   PGS for Education 2.234(.41)*** 1.407(.40)*** 1.411(.40)*** 2.540(1.71) 

   PGS for IQ 0.176(.35) 0.083(.34) 0.064(.34) 0.064(.34) 

SES Context     

   Years of Education by Wave 3  1.943(.15)*** 1.925(.15)*** 1.932(.15)*** 

   Mother's Education     

    Less than High School  - - - 

High school graduation/some college  1.801(1.04)+ 1.679(1.04) 1.671(1.04) 

At least college graduation  2.903(1.32)* 2.751(1.32)* 2.739(1.32)* 

Missing  1.837(1.89) 1.821(1.89) 1.806(1.89) 

Father's Education     

    Less than High School  - - - 

High school graduation/some college  -0.699(1.04) -0.740(1.04) -0.739(1.04) 

At least college graduation  -0.274(1.30) -0.207(1.30) -0.202(1.30) 

Missing  0.031(1.88) 0.085(1.88) 0.101(1.87) 

Mother's Occupation (Wave 1)     

    Manual or blue collar  - - - 

None & Others  0.393(.74) 0.268(.74) 0.264(.73) 

Sales, service, or administrative  0.941(.80) 0.907(.80) 0.890(.80) 

Professional or managerial  0.664(.82) 0.650(.82) 0.636(.82) 

Missing  0.521(1.61) 0.451(1.61) 0.427(1.61) 

Father's Occupation (Wave 1)     

    Manual or blue collar  - - - 

None & Others  0.120(.76) 0.204(.76) 0.203(.76) 

Sales, service, or administrative  -1.432(1.14) -1.381(1.14) -1.362(1.14) 

Professional or managerial  1.890(.73)** 1.888(.73)** 1.907(.73)** 

Missing  -0.626(.75) -0.590(.75) -0.576(.75) 

Household Income at Wave 1     

    0-20 percentile  - - - 

20-40 percentile  1.483(.93) 1.380(.93) 1.356(.92) 

40-60 percentile  0.901(.92) 0.752(.92) 0.720(.92) 

60-80 percentile  0.953(.96) 0.908(.96) 0.882(.96) 

80-100 percentile  1.493(1.03) 1.463(1.03) 1.458(1.03) 

Missing  -0.497(.87) -0.618(.87) -0.627(.87) 

With 2 Biological Parents at Wave 1  -1.162(.63)+ -1.194(.63)+ -1.188(.63)+ 

Sibling size     

    No sibling  - - - 

1 to 2 siblings  0.250(1.21) 0.276(1.21) 0.282(1.21) 

3 to 5 siblings  -0.663(1.24) -0.654(1.24) -0.648(1.24) 

6 to 20 siblings  -1.166(1.30) -1.072(1.30) -1.061(1.30) 

Other and Missing  4.812(6.59) 4.579(6.58) 4.633(6.58) 

   Neighborhood Disadvantages (Wave 1)  -0.976(.29)*** -0.988(.29)*** -0.986(.29)*** 

   Neighborhood Disadvantages (Wave 3)  -0.285(.25) -0.285(.25) -0.286(.25) 

General Health and Health Behaviors     

Self-reported Health (Wave 1)   -0.320(.27) -0.320(.27) 

Binge Drinking (Wave 1)     

   0 times a year   - - 

       1 to 12 times a year   0.169(.71) 0.162(.71) 

       2 or 3 days a month   2.215(1.20)+ 2.210(1.20)+ 

       1 or 2 days a week   -3.322(1.33)* -3.307(1.33)* 

       3 to 5 days a week/(Almost) Every day   -2.999(1.61)+ -2.998(1.61)+ 

Marijuana Use (Wave 1)     

   0 time in past 30 days   - - 

       to 5 times   -0.066(.86) -0.053(.86) 

       6 to 15 times   -0.970(1.76) -0.955(1.76) 

       16 to 30 times   4.712(1.76)** 4.709(1.76)** 

       31 times and above   -0.997(2.69) -0.981(2.69) 

Smoking (Wave 1)     

   0 cigarettes per day   - - 

      1 to 5 cigarettes   -0.659(.69) -0.665(.69) 
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      6 to 15 cigarettes   -1.686(1.08) -1.721(1.08) 

      16 to 30 cigarettes   0.567(1.66) 0.514(1.66) 

      31 to 100 cigarettes   0.815(4.43) 0.761(4.43) 

Serious Delinquency (Wave 1)     

    None   - - 

1 or 2 times   -0.578(.51) -0.568(.51) 

3 or more times   0.307(1.75) 0.337(1.75) 

Missing   -4.927(2.07)* -4.888(2.07)* 

Other PGSs     

PGS for Birthweight   -0.270(.43) -0.271(.43) 

PGS for BMI   -0.294(.53) -0.297(.53) 

PGS for Head Circumference   1.280(.86) 1.274(.86) 

PGS for Cigarette per day   0.393(.34) 0.390(.34) 

PGS for Agreeableness   -0.328(.36) -0.327(.36) 

PGS for Conscientiousness   -0.055(.35) -0.058(.35) 

PGS for Extraversion   -0.578(.33)+ -0.576(.33)+ 

PGS for Neuroticism   -0.197(.34) -0.197(.34) 

PGS for Openness   0.371(.41) 0.366(.41) 

Interaction      

   PGS for Edu*Years of Edu by Wave 3    -0.086(.13) 

Demographics     

  Age (Wave 3)  0.850(.14)*** 0.879(.14)*** 0.883(.15)*** 

  Female  -0.753(.48) -0.931(.49)+ -0.933(.49)+ 

  Race and Ethnicity     

      White  - - - 

  Black  1.132(2.41) 1.122(2.41) 1.088(2.41) 

  Asian  2.641(3.07) 2.601(3.07) 2.580(3.07) 

  Hispanic  -0.339(1.26) -0.648(1.26) -0.671(1.26) 

  Native Americans or Others  2.293(3.53) 1.935(3.53) 1.934(3.53) 

  Immigration Status     

     US Born  1.066(.52)* 1.038(.52)* 1.027(.52)* 

     Speaking English at Home  -1.199(1.13) -1.047(1.13) -1.037(1.13) 

Population Admixture     

PC1 -151.995*** -226.129* -105.504 -103.845 

PC2 18.771 93.332 109.501 108.998 

PC3 -54.920* 13.423 31.085 30.362 

PC4 -3.058 8.696 -7.791 -7.797 

PC5 28.394 36.174 19.341 19.701 

PC6 -66.250** -21.115 -41.813 -42.520+ 

PC7 -18.412 -8.406 -7.963 -8.119 

PC8 -16.950 -13.021 -14.630 -14.711 

PC9 -27.943 -19.892 -17.510 -17.684 

PC10 3.608 0.544 -3.734 -3.707 

Constant 18.165(.52)*** -24.438(3.76)*** -22.726(3.95)*** -22.857(3.96)*** 

Random Effects     

  𝜎𝑢
2, family-level 2.052(.13)*** 2.018(.13)*** 2.026(.13)*** 2.026(.13)*** 

  𝜎𝑣
2, person-level 2.970(.02)*** 2.942(.02)*** 2.937(.02)*** 2.937(.02)*** 

Model-level Parameters     

  -2 Log-Likelihood 68247 67800 67754 67754 

  Number of Families 7,647 7,647 7,647 7,647 

  Number of Persons 6,921 6,921 6,921 6,921 

  OLS R-squared 0.485 0.514 0.517 0.517 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

Only indicators of level of significance are provided for the estimated PCs. 

 

 


