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Abstract

This paper examines the utility of using international large-scale educational assessments

for the purposes of forecasting country-level change over time in policy-relevant educational

outcomes. We use the example of country-level change in math achievements for girls as an

example. We adopt a fully Bayesian perspective by first estimating the change over time in

girls’ math achievement via Bayesian growth curve modeling with non-informative priors.

Next, we regress the country estimated changes in girls math achievement on 15

explanatory variables. We account for model uncertainty through the use of Bayesian

model averaging. Finally, we demonstrate the utility of our approach by forecasting the

change over time in girls’ math achievement for two countries. We close by arguing that

our approach is useful for exploiting international large-scale educational assessments for

purposes of prediction and forecasting, but we note that the collection of explanatory

background variables are not currently designed for robust prediction. Future directions

are discussed.
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Development and Application of Cross-Country Growth

Regressions Using International Large-Scale Educational

Assessments

Introduction

Of critical importance to education policy is the monitoring of trends in educational

outcomes over time. The United Nations Sustainable Development Goals identified Goal 4

as focusing on quality education for all. Goal 4.6 states

“By 2030, ensure that all youth and a substantial proportion of adults, both

men and women, achieve literacy and numeracy."

If we wish to monitor progress toward these, and other, agreed-upon goals then it is

necessary to develop optimally predictive models. It is a premise of this study that because

international large-scale educational assessments (ILSAs) such as PISA, PIAAC, and

TIMSS are longitudinal at the country level, they can be used to monitor trends in

important educational outcomes. Inspired by Fernández, Ley, and Steele (2001b) in the

economics domain, we apply a fully Bayesian cross-country growth growth modeling

approach to TIMSS: Trends in International Mathematics and Science Study (Mullis,

2013). We demonstrate our approach to obtaining optimal prediction of growth by

accounting for model uncertainty in the prediction of growth by employing Bayesian model

averaging

The organization of this paper is as follows. In the next section we describe Bayesian

growth curve modeling. This is followed by a discussion of Bayesian model averaging with

attention paid to the elicitation of parameter and model priors. Next, we describe the data
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source and analysis steps for our example, focusing on change over time in girls

mathematics achievement. This is followed by the results and then the discussion, where

we outline the opportunities and challenges of using international large-scale educational

data for prediction and forecasting.

Example: Change Over Time in Math Achievement for Girls

The data for this demonstration come the Trends in International Mathematics and

Science Study TIMSS (Mullis, 2013). For countries with data back to 1995, TIMSS 2015

provides the sixth in a series of trend measures collected over 20 years. We restrict our

attention to 5 waves of TIMSS starting with 1999 to provide more complete data. Our

analysis sample consists of twenty-three countries that span the entire range of global

GDP. Note that this is a very small sample size for our proposed demonstration. The

outcome variable is GirlsMathAchXX, the country-level math achievement scores (first

PV) for girls for the five waves (XX = 99, 03, 07, 11, 15) of TIMSS.

Bayesian Growth Curve Modeling

The first step in developing optimally predictive models of change over time in math

achievement for girls is to obtain estimates of rate of change over all countries and for each

country separately. To this end, we use the method of Bayesian growth curve modeling.

We write the intra-country model as

yti = π0i + π1iati + rti (1)

where, for this paper yti is the average math achievement score for girls in country i at time

t of the survey, π0i is the country-specific math achievement score at the beginning of the

survey, π1i is the country-specific rate of change in girls’ math achievement over the time
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interval ati, and rti is the residual term for country i at time t. Considerable flexibility is

permitted in the specification of the time interval ati. For this study, the time intervals are

specified to be 4 years apart corresponding to the cycle of the TIMSS assessment and is the

same for each country. Thus, we can drop the individual country subscript i and write the

time interval as at.

The inter-country model can be written generally in terms of a function of predictors of

growth as

πqi = βq0 +

Kq∑
k=1

βqkxqi + εqi, (2)

where πqi are the q random coefficients (intercept π0i and rate of change π1i) that vary

across the i countries, βq0 is the regression intercept, βqk is the regression coefficient of the

growth parameters on predictors xqi for country i, and εqi is the regression disturbance

terms. The model in Equation 2 is flexible enough to allow the growth parameters to be

predicted by country level time-invariant covariates. For this study, we will concern

ourselves with the prediction of the rate of change in country level math achievement for

girls, π1i

Bayesian growth curve modeling requires priors on model parameters. For this paper, we

use default non-informative priors on all model parameters. We use the R software program

“blavaan" (Merkle & Rosseel, 2018), a latent variable modeling program that interfaces

with JAGS (Plummer, 2016) to produce posterior distributions of the growth parameters

Bayesian Model Averaging

The Bayesian framework recognizes uncertainty in the choice of models used to predict and

forecast growth. The uncertainty is due to not knowing whether the chosen model for

predicting change in girls’ math achievement is the true data-generating model. Not

accounting for model uncertainty can lead to “over confident inferences and decisions that
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are more risky that one thinks they are" (pg. 382 Hoeting, Madigan, Raftery, & Volinsky,

1999). A Bayesian approach to addressing the problem of model uncertainty is Bayesian

model averaging.

Bayesian model averaging has had a long history of theoretical developments and practical

applications. Early work by Leamer (1978) laid the foundation for Bayesian model

averaging. Fundamental theoretical work on Bayesian model averaging was conducted in

the mid-1990s by Madigan and his colleagues (e.g., Madigan & Raftery, 1994; Raftery,

Madigan, & Hoeting, 1997; Hoeting et al., 1999). Additional theoretical work was

conducted by Clyde (1999). Draper (1995) has discussed how model uncertainty can arise

even in the context of experimental designs, and Kass and Raftery (1995) provide a review

of Bayesian model averaging and the costs of ignoring model uncertainty. A more recent

review of the general problem of model uncertainty can be found in Clyde and George

(2004). Bayesian model averaging has been implemented in the R software programs

“BMA" (Raftery, Hoeting, Volinsky, Painter, & Yeung, 2015) and “BMS" (Zeugner &

Feldkircher, 2015).

In addition to theoretical developments, Bayesian model averaging has been applied to a

wide variety content domains. A perusal of the extant literature shows Bayesian model

averaging applied to economics (e.g., Fernández et al., 2001b), bioinformatics of gene

express (e.g., Yeung, Bumbarner, & Raftery, 2005), weather forecasting (e.g., Sloughter,

Gneiting, & Raftery, 2013), and causal inference within the propensity score framework

(Kaplan & Chen, 2014; Wang, Parmigiani, & Dominici, 2012; Zigler & Dominici, 2014), to

name just a few. An overview of Bayesian model averaging with applications to education

policy research can be found in Kaplan and Lee (2018).
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BMA Specification

To begin, let Mk, k = 1, 2, . . . , K be a set of competing models of growth. The posterior

distribution of a predicted growth, Υ, given data y can be written as

p(Υ|y) =
K∑
k=1

p(Υ|Mk)p(Mk|y). (3)

where p(Mk|y) is the posterior probability of model Mk written as

p(Mk|y) =
p(y|Mk)p(Mk)∑K
l=1 p(y|Ml)p(Ml)

, l 6= k. (4)

p(y|Mk) is the integrated likelihood and p(Mk) is the prior on the space of models. A key

insight into BMA is that the quantity p(Mk|y) is a measure of the probability that model

Mk is the true data-generating model after having observed the data y, and of course, this

quantity will likely be different for different growth models. Thus p(Mk) expresses the

uncertainty in model choice and are used as weights in the summation given in equation (3).

Default Priors

As with Bayesian growth curve modeling, BMA requires that priors be place not only on

model parameters, but also on the space of models that could have possible generated the

data. In the analysis we describe below, unit information priors are placed on model

parameters. Unit information priors are weakly informative (data-based) priors that are

diffused over the region of the likelihood where parameter values are considered mostly

plausible, but not overly spread out. They can be considered priors for an individual with

unbiased but weak prior information (Hoff, 2009). The unit information prior is equivalent

to Zellner’s g-prior (Zellner, 1986), where g = 1/N , and where N is the sample size.
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Regarding the space of possible models, it is assumed that all models are equally likely to

be the true model, and indeed, it is assumed that the true model is one of the models in

the set – the so-called M -closed framework. Therefore, priors on the model space are are

assumed equivalent for all models – namely, 1/M , where M is the number of models.

Other parameter and model priors can be specified.

Computational Issues

As pointed out by Hoeting et al. (1999), Bayesian model averaging is difficult to

implement. In particular, they note that the number of terms in equation (3) can be quite

large, the corresponding integrals are hard to compute, the specification of p(Mk) may not

be straightforward, and choosing the class of models to average over is also challenging.

The problem of reducing the overall number of models that one could incorporate in the

summation of equation (3) has led to several interesting solutions. The solution used in

this study is based on is based on the Metropolis-Hastings algorithm and is referred to as

Markov chain Monte Carlo Model composition (MC3).

Following Hoeting et al. (1999), the MC3 algorithm proceeds as follows. First, let M

represent the space of models of interest; in the case of our study, this would be the space

of all possible combinations of explanatory variables used to predict change in girls’ math

achievement. The manner in which models are retained under MC3 is as follows. First, for

any given model currently explored by the Markov chain, say Mi, we can define a

neighborhood for that model which includes one more variable and one less variable than

the current model. So, for example, if our model has four predictors x1, x2, x3 and x4, and

the Markov chain is currently examining the model with x2 and x3, then the neighborhood

of this model would include {x2}, {x3}, {x2, x3, x4}, and {x1, x2, x3}. Now, a transition

matrix is formed such that moving from the current model Mi to a new model Mj has

8



probability zero if Mj is not in the neighborhood of Mi and has a constant probability if

Mj is in the neighborhood of Mi. The model Mj is then accepted for model averaging with

probability

min

{
1,
pr(Mj|y)

pr(Mi|y)

}
, (5)

otherwise, the chain stays in model Mi. This form of MC3 is also referred to as the

birth-death sampler (Zeugner & Feldkircher, 2015)

Design

The steps in our approach are as follows.

1. Model the change in the girls math achievement and obtain estimates of change in

each country using Bayesian growth curve modeling.

2. Validate the fit of the growth curve model.

3. Regress the country-level changes in girls math achievement on 15 country level

predictors (averaged across cycles).

4. Use Bayesian model averaging to account for uncertainty in the prediction model.

5. Use BMA results to predict changes girls math achievement in two countries based on

information from the remaining countries as well as the predictors of the two

countries.

For this paper, we use the “BMS" software package (Zeugner & Feldkircher, 2015) in R.

The Markov Chain Monte Carlo Model Composition – M3 (Madigan and Raftery, 1994) is

used to reduce the space of possible models.Benchmark unit information priors based on

Zellner’s g factor for the parameters based on Fernandez, Ley, & Steele (2001a). We also

use the uniform prior on the space of models. Many other choices are possible.
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It is important to note that this is a demonstration example only, and no presumption is

made regarding the policy importance of results. Specifically, TIMSS (and other ILSAs)

was not specifically designed for the purpose of probabilistic forecasting. The issue stems

from the availability of relevant background explanatory variables developed for ILSAs. A

thorough discussion of the design of background questionnaires for ILSAs is given in Kuger,

Klieme, Jude, and Kaplan (2016), however what should be noted that these questionnaires

were not developed for purposes of probabilistic forecasting. In addition to our outcome of

interest, the 15 explanatory variables used in this study are give in Table 1.

Results

To begin, it may be of interest to provide a simple plot of country-level math achievement

score for girls over the five waves of TIMSS to get a sense of the general trend. An

inspection of Figure 1 shows that the change in mathematics achievement for girls is

relatively flat. Figure 2 shows the empirical growth trajectories in girls math achievement

for each country. Here we see that for most countries, the change over time in girls math

achievement is also relatively flat, but some variability can be seen in countries such as

#376.

The results of the Bayesian growth curve analysis are given in Table 2. Under the

specification of non-informative priors (provided in the last column of Table 2), we find

that the average 1999 math achievement score is approximately 500 with a small positive

slope of .124 over the five waves of this study. The 95% posterior probability interval

around the slope indicates that zero is a credible value for the slope, which is consistent

with the visual inspection of Figure 1.

The fitted growth trajectory across countries and for each country separately can be see in

in Figures 3 and 4. We see that the linear model provides a reasonably good fit to the
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empirical trajectory of girls’ math achievement.

OLS Comparative Results

For comparison purposes, Table 3 provides the results of an ordinary least squares

regression of the posterior slope values of each country on the predictors given in Table 1.

Note that none of the predictors in this model reach conventional significance levels. The

overall model R2 is 0.70 which is statistical significant at the 0.05 level. However, it is

important to note, that the OLS model does not account for model uncertainty. Rather, it

is assumed that this OLS model is the true data generating model. Moreover, OLS can

only provide a dichotomization of the evidence - namely whether a predictor is statistically

significant or not.

BMA Results

Table 4 presents the BMA results for the predictors of change in girls math achievement.

The interpretation of this table rests on recalling that BMA searches over a large space of

possible models based on combinations of predictors, and weights each model by the

posterior probability of each model. In this example, there were 215 = 32, 736 possible

models (not accounting for interactions). Under the algorithm, 2,011 models were visited.

The cummulative posterior model probability across all of the models was 0.01, which is

very small and indicates considerable model uncertainty. This degree of uncertainty is most

probably due to the fact that these explanatory variables were not designed to predict and

forecast change in math achievement for girls.

Continuing with the demonstration, the predictor Beh8avg (mean level of vandalism in the

school) was found to have a posterior inclusion probability (PIP) of 0.70, meaning that this

predictor appeared in 70% of the models explored. There is no specific rule-of-thumb
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regarding the importance of the variable on the basis of the PIP, and must be judged

substantively. The averaged coefficient (post. mean) for Beh8Avg is -1.02 with a posterior

standard deviation of 0.85 The column labeled (Cond.Pos.Sign) is the conditional

probability that the coefficient is 0.00 given the model. Here we see that the conditional

probability that the coefficient is positive is very small, indicating that the sign of the

coefficient is very likely negative. Thus, countries reporting, on average, larger levels of

vandalism are associated with decreasing change over time in girls’ math achievement. The

remaining predictors indicate very little importance as judged by the posterior inclusion

probability – a result consistent with the OLS findings in Table 3. Again, it is important to

note that this example is based on only 23 countries and the predictors used in this model

were not developed to address the policy issue of change over time in girls’ math

achievement.

Cross-country specific results

It may be of interest to explore more deeply the impact of mean level of vandalism in the

school on change in girls’ math achievement. Figure 5 displays the posterior distributions

of the regression coefficient relating mean reported amount of school vandalism (left) and

mean difference in math self-concept between boys and girls (right) on the change in girls’

math achievement. These posterior distributions are a result of adopting a Bayesian

perspective to the problem. In particular, Figure 5 shows that Beh8avg is almost normal

with a mean and median approximately equal. Moreover, we find that the value of zero lies

outside the 95% posterior probability interval while we find that for the effect of country

level average self-concept difference, zero lies in the 95% posterior probability interval. It is

important to note that the information conveyed in diagrams such as these as well as the

information in Table 4 allows one to address other intervals of interest. For example, with

respect to the self-concept difference, it may be less important to know if zero is in the 95%
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posterior interval, and instead calculate the probability that the effect is greater than some

number of interest. Such a fine-grained analysis of the impact of these regressors on our

math achievement outcome is not possible from a frequentist framework.

Country-specific forecasts

The primary goal of this paper is to examine whether ILSAs have utility in forecasting

trends in important educational outcomes – in our example, forecasting trends in

country-level math achievement for girls. To this end, our approach allows us to choose a

particular country of interest and use the information provided by remaining countries as

well as the explanatory data from the country of interest to forecast the trend. Figure 6

provides the forecasted change in girls’ math achievement for country 840 (left) and country

764 (right). Based on the 95% posterior probabilities, we find fhat for country 840 a

predicted change in girls’ math achievement between approximately -1 and 1 is quite likely.

For country 764, another story emerges. The expected change in girls’ math achievement is

negative; however, we find that the actual values are quite far from the expected forecast.

This suggests that either the forecasting model is inappropriate for country 764 or that this

country is an outlier. To investigate this further, one could change the forecasting model

settings. For example, one could choose a variety of combinations of priors on the model

parameters as well as priors on the space of models itself (Fernández, Ley, & Steele, 2001a).

Conclusions

This paper demonstrates the potential of using TIMSS (and ILSAs generally) for Bayesian

probabilistic forecasting, accounting for uncertainty in models and model parameters. A

key advantage of BMA compared to the choice of a single model is that over long forecast

periods, BMA is known to provide better predictive performance than choosing any single
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model. In addition, adopting a fully Bayesian approach to prediction and forecasting,

unlike frequentist approaches, yields the full probability distribution of regression effects

and the full probability distribution of forecasted values. Studying these full probability

distributions provide richer information than frequentist approaches which tend to lead to

a dichotomization of evidence. It is important to also note that in the case of outliner

forecasts, alternative forecast settings can be examined and predictive accuracy can be

compared. Such comparisons were outside the scope of this paper. Finally, we note again

that this demonstration suffered from the fact that the background explanatory variables

were never developed for the purposes of probabilistic forecasting. Future ILSA

development should consider country-level BQ indicators for developing probabilistic

educational forecasting models.
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Table 1
Explanatory variables for BMA

Name Definition
Migavg Percent students born outside of country

Migparavg Percent both parents born outside of country
Langavg Percent students who do not speak lang. of tests at home

BOK1avg Percent students with more than 100 books at home
SCSGDavg Mean male - female self conf. in overall science ability

SCMAGDavg Mean male - female self conf. in overall math ability
MathShort2avg mean shortage of calculators
MathShort1avg Mean shortage of computer software
MathShort3avg mean shortage of library materials

Beh8avg Mean level of school of vandalism
Beh10avg Mean level of intimidation of students
Beh11avg Mean level of injury of students
Beh12avg Mean level of intimidation of teachers
Beh13avg Mean level of injury to teachers
HDIavg Human development index

Note: Predictors are averaged over time.
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Table 2
Selected growth curve regression results

Parameter Estimate Post.SD HPD.025 HPD.975 PSRF Prior

intercept 500.135 3.068 494.226 506.233 1.000 dnorm(500,.1)
slope 0.124 0.473 -0.792 1.084 1.001 dnorm(0,1e-2)

V ar(intercept) 2996.778 924.099 1484.445 4807.966 1.000 dwish(iden,3)
V ar(slope) 4.441 1.856 1.229 8.135 1.002 dwish(iden,3)

Cov(int, slp) 4.074 26.302 -48.177 57.869 1.000 dwish(iden,3)
Note: Post.SD=Posterior standard deviation; HPD=Highest Posterior Density; PSRF=Potential Scale Reduction Factor; Prior
= Prior distribution on model parameters.
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Table 3
Comparative ordinary least squares results

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2479 7.6364 0.43 0.6834

Migavg -5.6588 13.2035 -0.43 0.6811
Migparavg 5.9352 8.6090 0.69 0.5128
Langavg -1.2739 1.6067 -0.79 0.4539

BOK1avg 1.2100 2.1677 0.56 0.5941
SCSGDavg -2.0534 3.0639 -0.67 0.5242

SCMAGDavg 0.9237 4.3578 0.21 0.8382
MathShort1avg -1.3632 1.5394 -0.89 0.4052
MathShort2avg -1.1217 1.0129 -1.11 0.3047
MathShort3avg 2.3700 1.3881 1.71 0.1315

Beh8avg -2.0428 1.2479 -1.64 0.1457
Beh10avg -0.8360 1.7367 -0.48 0.6450
Beh11avg 2.3442 2.6054 0.90 0.3981
Beh12avg 0.7686 2.4958 0.31 0.7671
Beh13avg 0.1933 2.3494 0.08 0.9367
HDIavg -3.9166 5.4068 -0.72 0.4923
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Table 4
BMA results

PIP Post Mean Post SD Cond.Pos.Sign
Beh8avg 0.70 -1.02 0.85 0.00
Beh11avg 0.55 1.09 1.25 0.99

SCSGDavg 0.41 -1.15 1.81 0.00
MathShort3avg 0.40 0.38 0.67 0.96
MathShort2avg 0.39 -0.32 0.55 0.02

BOK1avg 0.31 0.36 0.91 0.98
Migavg 0.26 -0.35 2.93 0.42

SCMAGDavg 0.26 -0.65 1.71 0.04
Beh13avg 0.25 0.20 0.68 0.90
HDIavg 0.23 -0.41 1.68 0.19
Langavg 0.23 -0.24 0.65 0.02

MathShort1avg 0.22 0.01 0.41 0.54
Beh10avg 0.22 -0.03 0.31 0.27
Beh12avg 0.21 -0.06 0.47 0.22
Migparavg 0.17 0.29 1.80 0.71

Note: PIP=Posterior inclusion probability, Post Mean = BMA regression coefficient, Post SD = posterior standard deviation,
Cond.Pos.Sign = posterior probability of a positive coef. conditional on inclusion. The posterior model probability of the top
model was 0.011, indicating considerable model uncertainty.
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