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Introduction 
Quantitative population health researchers are drawn from diverse disciplines, such as 
epidemiology, sociology, and economics. Investigators in these fields employ diverse 
terminologies and methodologies, even when addressing identical research questions. Lack of 
shared language and understanding has inhibited mutually beneficial interdisciplinary dialogue 
and collaboration. Moreover, preferences for the methodologies in one’s home discipline have 
led to within-field reliance on only a subset of promising causal inference tools. These divides 
have motivated comments and efforts to bridge across disciplines (Krieger, 2000; Lynch, 2006; 
Abrams, 2006; Gunasekara et al., 2008; Kindig, 2007; Craig et al., 2012).  
 
Many questions of central interest to population health researchers involve drawing causal 
inferences in the absence of conventional randomized controlled trials (RCTs). In this paper, we 
review and contrast common methodological strategies used by population health scientists to 
approach causal inference using nonexperimental designs. Drawing on examples from the 
literature on educational attainment, we contrast approaches that depend on accounting for 
factors that influence both the treatment and outcome (which we refer to as “covariate-
control” methods) against approaches that leverage arguably random sources of variation in 
treatment, such as quasi-experiments or policy changes. We provide simplified summaries that 
aim to highlight strengths, weaknesses, and points of greatest contrast. Because inconsistent 
terminology is a persistent challenge for interdisciplinary research, we provide informal 
definitions for how we use important terms in this paper in Boxes 1-3 (for formal definitions, 
see (Angrist and Pischke, 2008; Pearl, 2000; Rothman et al., 2008; Shadish et al., 2002)). 
 
Choosing a method entails tradeoffs between statistical power, internal validity, measurement 
quality, and generalizability. Therefore, neither covariate-control nor quasi-experimental 
approaches will be preferable for all substantive questions. The assumptions for covariate-
control methods differ markedly from those required in quasi-experimental designs, but both 
depend on unverifiable assumptions. Thus, convincing arguments need to triangulate evidence 
from different approaches, and the most useful research design is likely to evolve as evidence 
on a particular research question accumulates. Clarifying these tradeoffs between approaches  
will help population health researchers to strengthen the evidence in the population health 
sciences by selecting the most appropriate method for any given research question and better 
integrating evidence from heterogeneous designs.  

Defining the research question 
Consider the question of whether college completion affects adult mortality. The research 
question of interest is causal and much more difficult to answer than a research question that is 
merely predictive or documenting an association. We define causal effects by contrasting 
potential outcomes associated with specific treatments (Box 1). For any individual, we would 
like to know whether her survival if she completes college is longer than her survival would be if 
she stopped her education at the end of high school. In practice, one of these survival 
outcomes is known and the other is unknown. The challenge of causal inference is to 
approximate this unknown potential outcome, using observed data on a sample of people. We 



observe the actual survival outcomes for some individuals who completed college and others 
who did not. We would like to know what would have happened if we could roll back the clock 
and observe the same individuals, but under the scenario in which individuals with a high 
school education were instead college graduates and vice versa. Simply comparing survival of 
individuals with high school degrees to those with college degrees is unlikely to be successful in 
estimating the effect of education because those with differing levels of education also likely 
differ on other characteristics that will influence survival.  

Box 1. Terms Describing Variables in Causal Inference 

Causal model: A tool, most often a system of equations or a diagram, used to describe 
background assumptions about hypothesized or known causal relationships among variables 
that are relevant to a particular causal question.  
Treatment or exposure or independent variable: The explanatory variable of interest in a 
study. These terms are often used synonymously even for exposures that are not medical 
“treatments”, such as social resources or environmental exposures.  
Outcome or dependent variable: The causal effect of interest is the impact of the treatment or 
exposure on this variable.  
Potential outcome: The outcome that an individual (or other unit of analysis, such as family or 
neighborhood) would experience if his/her treatment takes any particular value. Each individual 
is conceptualized as having a potential outcome for each possible treatment value. Potential 
outcomes are sometimes referred to as counterfactual outcomes. 
Exogenous versus endogenous variables: These terms are common in economics, where a 
variable is described as exogenous if its values are not determined by other variables in the 
system under consideration. The variable is called endogenous if it is influenced by other 
variables in the system. If a confounder influences treatment variable and outcome, this implies 
the treatment is endogenous.  
Instrument or instrumental variable: An external factor that induces treatment differences and 
has no other reason to be associated with the outcome. An instrument—for example, random 
assignment to treatment—can be used to estimate the effect of treatment on the outcome. 

 
Randomized trials are typically conceptualized as an optimal approach to estimating causal 
effects, because random assignment helps to balance measured and unmeasured differences 
between treated and untreated groups that could otherwise lead to bias. However, many 
questions of interest to population health researchers involve situations where randomization 
is not ethical or feasible. Approaches to estimating causal effects in the absence of 
randomization can be broadly categorized into two groups. In this paper, we refer to these as 
observational and quasi-experimental (Box 2). In observational studies, researchers compare 
outcomes for people observed to have differing treatments and use covariate-control to 
account for imbalances in characteristics between treatment groups. In quasi-experimental 
studies, researchers leverage an external or “exogenous” (Box 1) source of variation in the 
treatment received—often a change in a program, policy, or other accident of time and space—
that influences treatment but is not likely to be otherwise associated with outcomes. The 
assumptions required to estimate causal effects for each approach are distinct and we 
elaborate on these assumptions in the sections that follow. 



Box 2. Terminology for Study Designs and Causal Effects 

Observational study: A study in which effects of a treatment are estimated by comparing 
outcomes of treated to untreated individuals. Treatment in these settings may be determined 
by the individual’s own preferences, behaviors, or other naturally occurring influences.  
Quasi-experimental study: A study in which effects of a treatment are estimated by leveraging 
the influence of an external factor that induces differences in treatments between individuals 
who are otherwise similar.  
Average treatment effect (ATE): The difference in average outcome if everyone in the 
population were treated compared to if nobody in the population were treated. 
Local average treatment effect (LATE): The average treatment effect among those whose 
treatment status is changed by the instrument (i.e., the effect among compliers). 

Observational approaches to estimating causal effects 
Observational study designs are conducted in settings in which the treatment and outcome are 
each determined by a potentially large set of factors, and variation in the exposure is not due to 
the interventions of the researcher. Observational studies are particularly common in 
epidemiology. In cohort studies, the archetypical observational study design in epidemiology 
(Rothman et al., 2008), exposure is characterized in a group of individuals who are then 
followed to assess subsequent health outcomes. The National Longitudinal Study of Youth is an 
example of a typical cohort study that might be used to evaluate the effects of college 
completion on mortality. 
 
The analytic strategy used to estimate the causal effect of interest is to ascertain, measure, and 
appropriately adjust for a “sufficient set” of variables to control confounding (Box 3). Modern 
frameworks define confounding as arising from shared causes of treatment and outcome; such 
factors can create non-causal influences linking treatment and outcome. Sufficient sets are 
often determined from substantive knowledge, prior research, or expert judgement. In the 
modern epidemiologic approach to causal inference, causal diagrams have emerged as popular 
tools to select sufficient sets of covariates (Pearl, 2000; van der Laan and Rose, 2011). Causal 
diagrams are causal models (Box 1) that visually represent background knowledge and 
assumptions about the causal structures linking variables. They are similar to the conceptual 
models used in many disciplines but are drawn and interpreted with formal mathematics-based 
rules that provide a rigorous method for determining sufficient sets. Usually, there is some 
uncertainty about the correct diagram, and several diagrams are considered plausible. Ideally a 
set of covariates is available that would be sufficient to control confounding under any of the 
causal diagrams. If the variables in a sufficient set are correct, have been measured in the 
available data, and can be appropriately controlled—the key assumption of observational 
approaches—then valid effect estimates can be delivered.  
 
Once a sufficient set of covariates has been selected, several options can be used to account for 
these covariates. Researchers typically adopt a modeling approach. Because confounding arises 
from variables that influence both exposure and outcome, strategies to reduce confounding 
may focus on breaking the association of the confounders with the outcome (e.g., regression 



adjustment), the association of the confounders with the exposure (e.g., matching, adjustment, 
or weighting based on propensity scores), or both (i.e., doubly robust methods). These methods 
all effectively reduce confounding bias by making comparisons within subgroups or pseudo 
populations that have balanced covariates, such that the covariates cannot bias the treatment-
outcome association.  
 
Both covariate-control approaches can be incorporated into numerous statistical models, such 
as generalized linear regressions or time-to-event (survival) models. The choice of a particular 
statistical model is driven by concerns about the parameter of interest, bias-efficiency 
tradeoffs, and convenience. For example, the investigator might use a regression to model the 
risk of mortality by age 60 as a function of whether the individual completed college, as well as 
baseline individual, psychosocial, interpersonal, and community covariates such as gender, 
conscientiousness, marital status, and access to care. The parameter most commonly estimated 
by covariate-control analyses is the average treatment effect (ATE; Box 2). That is, the average 
outcome if everyone in the population were exposure versus if no one were exposed—for 
example, the difference average survival times if everyone in the population completed college 
versus if nobody completed college. The ATE is commonly of interest in population health.  
 
Panel fixed effects can also be considered a type of covariate-control approach, particularly 
when a program or policy is itself the treatment. In this approach, treatments and outcomes 
are typically measured on the same participants or places over time. Binary variables (also 
known as indicator variables) representing each place are used to control for features of 
participants/places that do not change over the study period (e.g. genes). Indicator variables 
representing each time period are used to control for features of time that are common across 
places (e.g. a nationwide recession). For example, the investigator might leverage variation in 
the timing and location of compulsory schooling law (CSL) implementation across states, 
modeling mortality rates across states and years as a function of state indicators, time 
indicators, and a variable representing CSL implementation (Fletcher, 2015). This approach 
relies on the same assumption of adequately identifying, measuring, and adjusting for all 
confounders, but indicator variables serve to control for time-invariant aspects of units and 
unit-invariant aspects of time, so the remaining confounders of concern are those that vary in 
time and are specific to each place.  

Quasi-experimental approaches to estimating causal effects 
Quasi-experiments yield variation in the treatment other than the processes typically involved 
in determining treatment. They therefore create differences in treatments between individuals 
who are presumably otherwise similar that can be leveraged to estimate the causal effect of 
the treatment on the outcome. The key assumption for this category of approaches is that the 
external source of variation in treatment is unrelated to the potential health outcomes of the 
individuals in the study.  
 
Sources of quasi-experimentation include lotteries (sometimes used to assign housing vouchers 
(Sanbonmatsu et al., 2011) or other resources (Eisenberg and Rowe, 2009; Pallais, 2009) when 



there is not enough for all eligible individuals), arbitrarily assigned judges (who have different 
propensities for leniency (Roach and Schanzenbach, 2015)) or clinicians (who have different 
preferences for treatment modalities (Brookhart and Schneeweiss, 2007)), month or quarter of 
birth (which influences years of schooling (Acemoglu and Angrist, 1999)), or biological chance, 
such as the sex of a child (which influences chances parents will wish to conceive another child 
(Angrist and Evans, 1998)). Quasi-experiments also take the form of arbitrary discontinuities or 
determinants of treatment that are not associated with other determinants treatment—for 
example, an arbitrary cutoff for social program eligibility or arbitrary variation across states and 
time in the implementation of a policy.  
 
Study designs such as instrumental variables (IV), regression discontinuity (RD), and differences-
in-differences (DiD) (each described below) are often discussed separately, but all rely quasi-
experiments. This collection of techniques is common in economics and other social and 
behavioral sciences (Angrist and Pischke, 2008; Shadish et al., 2002). For these techniques, it is 
useful to distinguish between research questions about the health effects of a specific policy 
and research questions about the health effects of an exposure, treatment, or resource 
delivered by a policy. Both are usually of interest. IV analyses deliver estimates of the effects of 
exposure, which may be of interest for two reasons. First, once the effect of exposure is known, 
policy alternatives that influence treatment can be compared to one another and some may be 
preferable for other reasons (e.g., political feasibility). Second, the overall effect of the policy is 
partly dependent on how many people were influenced by the policy, i.e., how many people 
became eligible because of the policy change, or how the policy was enforced. These factors 
may change as evidence accrues, and knowing the effects of the exposure is more likely to be 
useful to predict health impacts of future policy changes. Quasi-experimental designs can be 
deployed to evaluate effects of policies themselves, but they are also powerful designs for 
evaluating the effects of treatments determined by those policies. In the latter case, each 
design (IV, RD, DiD) can be conceptualized and executed as an IV approach, in which case the 
quasi-experiment is considered an IV that can be used to evaluate the effect of the treatment 
they influence on health outcomes (Angrist and Pischke, 2008). 
 
IV analyses control confounding by leveraging a source of variation in the treatment (the 
instrument) that is distinct from other determinants of treatment. A typical IV analysis requires 
the assumptions of relevance (the instrument must affect the treatment), exclusion (the 
instrument only affects the outcome through the treatment), and exchangeability (instrument 
does not share unmeasured common causes with the outcome) (Box 3). Some assumptions 
(e.g. relevance) can be tested, but others (e.g. exclusion) cannot be tested and must be judged 
substantively. The treatment itself may have numerous determinants, but when these 
assumptions are met, the variation in treatment that is predicted by the instrument will be 
independent from these other determinants. IV analyses quantify the effect of this instrument-
predictable variation in exposure on the outcome. If the instrument is randomization, as in an 
RCT, this is the effect of the treatment among compliers. This is the core of IV analysis.  
 
In RD methods, there is an arbitrary discontinuity in the probability of being treated depending 
on the value of a third variable (such as class size, date or hour of birth, age, or income). It is 



assumed that individuals immediately above and below that discontinuity have equivalent 
potential health outcomes, but stark differences in treatment probability, and that the shape of 
the relationship between the third variable and treatment probability is known. Under these 
assumptions, this third variable can be considered an IV to evaluate the effect of treatment on 
health outcomes. Such an analysis is termed “fuzzy” RD and analyzed in the same manner as a 
traditional IV. For example, Goodman et al (Goodman et al., 2015) noted that admission to 
Georgia’s State University System was granted only to applicants with math SAT scores above 
400, creating a discontinuity at this score threshold in probability of beginning college at a 4-
year institution. They took advantage of this discontinuity to estimate the effect of starting 
college at a 4-year institution (the treatment) on chances of college completion (the outcome). 
If the research question were instead about the effect of Georgia State’s SAT score admission 
policy itself as the treatment, the investigator could use a regression approach to directly 
compare college completion for those just meeting and just missing the SAT score threshold. 
Termed “sharp” RD, this approach effectively reduces to covariate-control and assumes that no 
unmeasured factors affecting college completion coincide with the SAT score threshold and 
that functional form of the model relating SAT scores to mortality is known. 
 
DiD methods combine an RD with one or more comparison groups, which can account for other 
sources of variation at the discontinuity. This approach is especially valuable when the date of 
change in a policy affecting treatment (e.g., mandatory schooling law changes) is used as a 
discontinuity. For example, in 1918, Mississippi implemented a law requiring children to attend 
a minimum number of years of schooling. We might hope to use this discontinuity to estimate 
the health effects of extra schooling. However, World War I or the influenza pandemic of 1918 
might have altered long-term outcomes for those cohorts in ways completely unrelated to the 
additional schooling. In a DiD design, we might include a state that did not change its schooling 
law in those years to control for these historical events. The key assumption of DiD is that, 
conditional on measured covariates, if the state that changed its mandatory schooling policy 
had not done so, the trends in outcomes would be parallel for individuals in that state as in 
states that did not change their policy. This amounts to an assumption of no confounders that 
vary at the same time as the mandatory schooling policy. DiD methods are commonly analyzed 
as traditional IVs where the interaction of treatment and time variables serves as an 
instrument. However, if the research question is about the policy as a treatment itself, DiD 
reduces to an observational covariate-control approach analogous to panel fixed effects.  
 
The strength of an analysis drawing on a valid quasi-experiment is that it may deliver accurate 
effect estimates even if there are unmeasured confounders of the treatment-outcome 
association (Duncan, 2008; Moffitt, 2005). However, in many cases, the assumptions for quasi-
experimental approaches are assumed to hold only after conditioning on a set of covariates. 
When this is needed is determined by the assumed causal model (i.e., background assumptions 
about hypothesized or known causal relationships between variables; Box 1), which can be 
expressed as equations or with graphical models.  
 
Interpreting IV estimates—whether from a discontinuity, a difference-in-difference, or another 
exogenous source of variation in treatment—requires some additional assumptions. If one 



assumes that the effect of treatment on outcome is identical for everyone in the population, 
then the IV estimates the ATE. This rarely seems likely however. Most IV analyses instead adopt 
the assumption of monotonicity: that the IV does not have opposite effects on the treatment 
for any two people in the population, i.e., if the policy increases treatment for some people, it 
must not decrease treatment for anyone (Pearl, 2000). Under this assumption, the parameter 
estimated by an IV approach is the local average treatment effect (LATE; Box 2). That is, the 
effect among those whose treatment is affected by the instrument—for example the effect of 
attending a four-year college on people who would attend a four-year college if and only if they 
scored above the SAT threshold. The LATE is generally estimated using two-stage least squares 
(2SLS) regression. The choice of parameter has important implications for generalizability which 
we discuss in the next section. 

Box 3. Types of Bias and Assumptions for Causal Inference 

Confounding or omitted variable bias or bias from selection into treatment: A bias that occurs 
when the association between treatment and outcome is partially attributable to the influence 
of a third factor that affects both the treatment and the outcome. This bias is the key problem 
posed by lack of randomization. It is often referred to as omitted variables bias because it is a 
problem when the common cause is omitted from a regression model. Selection bias in this 
context specifically refers to selection into treatment and is distinct from biases due to 
selection into the study sample (which is the phenomenon typically referred to as selection bias 
in epidemiology).  
Information bias or measurement error: A bias arising from a flaw in measuring the treatment, 
outcome, or covariates. This error may result in differential or non-differential accuracy of 
information between comparison groups. 
Reverse causation or simultaneity: When the outcome causes the treatment, rather than the 
treatment causing the outcome.  
Exchangeability, ignorability, no confounding, or randomization assumptions: The assumption 
that which treatment an individual receives is unrelated to her potential outcomes if given any 
particular treatment. This assumption is violated for example if people who are likely to have 
good outcomes regardless of treatment are more likely to actually be treated. In the context of 
instrumental variables analysis, exchangeability is the assumption that the instrument does not 
have shared causes with the outcome. 
Conditional exchangeability, conditional ignorability, or conditional randomization: The 
assumption that exchangeability, ignorability, or randomization is fulfilled after controlling for a 
set of measured covariates. When this assumption is met, we say that the set of covariates—
known as a sufficient set—fulfills the backdoor criterion with respect to the treatment and 
outcome. Relevance: In the context of instrumental variables, the assumption that the 
instrument affects the treatment. 
Exclusion: In the context of instrumental variables, the assumption that, conditional on 
measured covariates, the instrument only affects the outcome through the treatment.  
Monotonicity: In the context of instrumental variables, the assumption that all those affected 
by the treatment are affected in the same direction 



Stable unit treatment value assumption (SUTVA): The assumption that there is only one 
unique version of the treatment, and each unit’s outcomes are unaffected by the treatment 
values of other units. 

Considerations and tradeoffs for all population health studies 
Choosing among observational and quasi-experimental approaches entails tradeoffs (Table 1).  
Shadish, Cook, and Campbell’s (SCC) causal inference framework (Shadish et al., 2002), which 
has been widely influential an a range of population health disciplines (Cook, 2018), is useful to 
consider which study design is preferable. SCC categorizes the types of validity necessary for 
studies to provide convincing causal inferences into four types:  
 

1. Internal validity: the extent to which the estimated association in the study sample 

corresponds to a causal effect from treatment to outcome;  

2. Statistical conclusion validity: appropriate use of statistical methods to assess the 

relationships between study variables;  

3. Construct validity: the extent to which measured variables capture the concepts the 
investigator intends to assess with those measures; and 

4. External validity: the extent to which study results can be generalized to other units, 
treatments, observations made on units, and settings of study conduct. 

 
Under this framework, the study design and analysis are critical to internal validity. Correct 
statistical inference, measurement, and external validity, which are arguably insufficiently 
addressed in training and practice in many population health sciences, are also critical for 
accurate and precise interpretation and relevance of causal inferences.  

Internal validity 
Internal validity requires some type of conditional exchangeability or randomization 
assumption (Box 3). The choice between observational and quasi-experimental approaches is 
often driven by which untestable assumptions to achieve exchangeability seem most plausible. 
Adequately accounting for confounders is particularly challenging for social determinants of 
health where causal pathways are complex, cyclical, and difficult to identify. It is clear that 
those who pursue college differ from those who do not on a wide variety of factors that can 
impact health outcomes. Thus, the primary limitation of standard observational approaches is 
the reliance on identifying, measuring, and correctly adjusting for a sufficient set of 
confounders. Observational study designs are particularly appealing when achieving this task 
seems feasible, or when observational approaches can make improvements in covariate-control 
over previous studies. Quasi-experimental strategies that can address unmeasured confounding 
factors are powerful tools for preventing threats to internal validity that may be particularly 
persistent in research on social determinants of health. The major weakness of quasi-
experimental approaches is that finding an adequate quasi-experiment or valid instrument to 
answer the study question of interest can be challenging.  
 



Confounding constitutes the core threat, but internal validity may also be threatened by 
imperfectly measured variables, regression model misspecification, reverse causation or 
simultaneity (Box 3), inadvertently controlling for factors that are influenced by exposure, or 
differential loss-to-follow-up, among others. For example, in a covariate-control regression 
model, if a continuous confounder with a linear relationship to the outcome is modeled as a 
binary variable with a threshold effect, the model will not fully account for that variable. In both 
observational and quasi-experimental approaches, design tools such as falsification tests or 
negative control exposures or outcomes can help to rule out alternative explanations and 
contribute to internal validity.  

Statistical conclusion validity 
All causal inference approaches rely on appropriate statistical inference. This includes ruling out 
random error, having sufficient support in the data for the statistical estimate of the target 
causal quantity to be defined, meeting necessary assumptions of the statistical test or model 
(e.g. independent and identically distributed observations on units; no interference or 
spillover), accounting for multiple testing (e.g. through a Bonferroni correction), and correctly 
specifying the statistical model (e.g. the association between age and mortality is linear). The 
stable unit treatment value assumption (SUTVA; Box 3)—that each unit’s outcomes are 
unaffected by the treatment values of other units—is assumed for the statistical validity of 
many analyses.  
 
All approaches can be threatened by low statistical power, but power may be a particular 
challenge in quasi-experimental studies, because inferences are constrained to the fraction of 
the study population whose exposure is affected by the quasi-experiment. For example, if 
compulsory schooling laws only impact educational attainment for a fraction of the study 
population (a common occurrence in quasi-experiments), the sample size is effectively limited 
to that fraction. The result can be wide confidence intervals or under-powered studies. An 
observational approach to the same question could potentially leverage the entire study 
population. 

Construct validity 
Construct validity concerns relate to whether study measurements capture the constructs they 
are intended to capture. Causal inferences will be invalid if observed effects are interpreted or 
attributed incorrectly. Many threats to construct validity could be described as information bias 
or measurement error (Box 3). Misunderstanding the “active” component of a program (e.g., 
college completion may improve health outcomes because of the college credential, the 
knowledge and skills gained through coursework, or the social network established) threatens 
construct validity. Failing to recognize that program participation had multiple consequences 
besides the intentionally delivered services (e.g. if college attendance is accompanied by job 
search support that substantially enhances subsequent earnings) is another threat to construct 
validity of particular relevance for population health research. Similar concerns relate to 
measurement error (e.g. if self-reports of educational attainment are affected by investigator 
expectations). When threats to construct validity are recognized, they can be addressed in 



design or measurement innovations (e.g., incorporating multiple or objective measures of the 
outcome) or simply by tempering interpretation of the study’s findings.  
 
Greater construct validity can come at the expense of statistical power, because the highest 
quality measurements are often expensive and time-consuming to collect, and thus performed 
on smaller samples. This tradeoff is one that population health researchers must often grapple 
with as they seek to make valid causal inferences. Studies grounded in large administrative 
datasets benefit from greater statistical power but tend to have less detailed measurements 
while smaller studies can afford more and higher quality measurements. To the extent that 
observational or quasi-experimental approaches more commonly use one data type over 
another, they may bring different strengths. Important approaches to solving measurement 
quality problems for both designs include detailed measurements on subsamples of large data 
sets (Langa et al., 2005), large data initiatives (Sudlow et al., 2015) and, in the case of quasi-
experiments, targeted data collection enrolling a smaller sample of individuals most affected by 
the quasi-experiment (Schneider and Harknett, 2018). 

External validity 
External validity concerns relate to the populations and places to which study results can be 
generalized. Causal inferences about populations external to the one under study will be invalid 
if the causal relationship of interest is modified by participant characteristics, settings, the types 
of outcomes measured, or treatment variations. Researchers address generalizability based on 
a priori knowledge or theory guiding interpretation of results, delineating the target population 
to whom the results refer (e.g. with respect to sociodemographics or geography), and judging 
the extent to which the findings are relevant to settings beyond the ones studied. External 
validity concerns can also be addressed with design or analytic features such as oversampling of 
underrepresented groups, modeling causal interactions, or applying analytic methods of 
generalization such as transportability estimators (Pearl and Bareinboim, 2011).  
 
Population representative, or at least diverse, data sources are necessary to understand how 
treatments influence both population average health outcomes and inequalities in health 
outcomes, the central issues in population health research. Many observational studies are 
well-suited to these goals, because they are frequently based on large, population-
representative samples and estimate population average treatment effects. The diversity of 
participants these studies also supports the evaluation of differential effects across population 
subgroups, facilitating generalization of effect estimates to new populations with different 
compositions. For example, observational studies of education and health typically include both 
White and Black participants, and differential effects can be directly evaluated (Assari and 
Mistry, 2018; Cohen et al., 2013; Kaplan et al., 2008; Liu et al., 2015; Vable et al., 2018).   
 
Generalization can be more challenging in quasi-experimental studies, because they typically 
deliver local average treatment effects (LATE), which apply only to the subset of participants 
whose treatment is affected by the quasi-experiment. Additionally, it can be challenging to find 
instruments that affect treatment for diverse population subgroups such that treatment effects 
can be estimated for each subgroup. For example, Lleras-Muney found evidence that 



compulsory schooling laws were not historically enforced for Black children, and thus cannot be 
used to tell us about the effects of education on black populations, unless we are willing to 
assume that effects in White students can be generalized to Black students (Lleras‐Muney, 
2002). 
 
However, the LATE can be an important population health parameter in some situations, such 
as when there is no possibility that everyone in a population would be treated. For example, 
when estimating the health effects of incarceration, it is most relevant to consider cases for 
which either incarceration or release is a reasonable sentence. Convicted murderers will always 
be incarcerated. Jaywalkers will not be incarcerated. Of interest are health effects for 
individuals with intermediate crimes, for whom reasonable people might disagree about a 
“just” sentence. In this case, the LATE delivered by quasi-experiments leveraging arbitrary 
differences in judicial leniency can be extremely informative in population health research.  



Table 1. Comparison of common approaches to nonexperimental causal inference for population health 

scientists studying the effects of treatments 
Feature Observational Quasi-experimental 

Main strategies for 
estimating causal 
effects 

Identify, measure, and control for a sufficient set of 
confounders through regression adjustment, propensity 
score methods, or some combination. 

Identify and leverage a random or conditionally random  
source of variation in treatment through instrumental 
variables, regression discontinuity, differences-in-
differences, or related approaches. 

Key assumptions Conditional exchangeability, including no unmeasured 
common causes of treatment and outcome. 

Relevance, exclusion, exchangeability, and monotonicity 
or constant treatment effects. 

Assessment of 
assumptions 

Assumptions cannot be proven and are primarily 
evaluated based on background knowledge, negative 
controls, or testable implications of the hypothesized 
causal mechanisms. Measured covariates are often 
assumed to proxy for unmeasured covariates and used 
to inform sensitivity analyses.  

The “relevance” assumption can be proven. Other 
assumptions cannot be proven and are primarily 
evaluated using background knowledge, falsification 
tests drawing on multiple IVs, mathematical constraints 
implied by the assumptions (bounding approaches), or 
testable implications of the hypothesized causal 
mechanisms.  

Typical statistical 
analysis 

Regression with covariate-control 
Propensity score matching, adjustment, or weighting 
Doubly robust analyses 

Two-stage least-squares 
 

Key methodological 
advantages 

Analysis can incorporate entire populations, resulting in 
greater statistical power relative to studies of sub-
populations affected by quasi-experiments.  
Often based on diverse and representative samples that 
facilitate assessment of treatment effects across and 
within populations. 

Study design and analytic approaches can circumvent 
bias from unmeasured confounders. 
 

Key methodological 
challenges 

Reliance on identifying, measuring, and adjusting for all 
confounders.  

Valid instruments can be difficult to identify.  
Analysis limited to the sub-population affected by quasi-
experiment, resulting in reduced statistical power 
relative to total-population studies.  
Treatment effects (LATE) only generalize to the subset of 
participants whose treatment is affected by the quasi-
experiment.  



See Boxes 1-3 for definitions. For simplicity, the characterizations in this table generally refer to analytic methods for questions about the effect 
of receiving a treatment or resource, such as additional education, not the effect of a policy or program itself (e.g. providing vouchers to 
subsidize college completion). We present a simplified characterization of each approach to highlight key points of potential divergence.
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Discussion 
All population health researchers strive to generate compelling evidence on causal effects in 
situations when randomization is not possible or not ethical. Investigators use a variety of 
approaches to address this challenge, broadly falling into the categories of observational and 
quasi-experimental designs. The approaches presented in this paper are distinct, but rarely in 
conflict. Each approach entails tradeoffs, and within each approach are further analytic 
decisions with their own tradeoffs. Untestable assumptions must be made to derive useful 
inferences with any approach. Which set of untestable assumptions is more appealing depends 
on the disciplinary traditions of the investigator and the problem and data at hand. The 
preferred approach also depends on the prior research: if all prior research depends on the 
same untestable assumptions, additional work that does not depend on those assumptions will 
be more valuable than work invoking identical assumptions as prior studies. In other words, 
alternative methods allow triangulation (Lawlor et al., 2016). Limitations from one study can be 
addressed by inferences from another; a variety of studies with diverse strengths and 
weaknesses will provide stronger evidence than any single study alone (Cordray, 1986, 1986; 
Duncan, 2008).  
 
To our knowledge, there has been little systematic attention to categorizing the types of 
problems amenable to observational approaches, problems where quasi-experimental 
approaches are preferable, or problems for which neither will deliver particularly informative 
answers. Existing research comparing the performance of different analytic approaches relies 
primarily on “within-study comparisons”. Such comparisons align randomized trial effect 
estimates against estimates obtained using observational or quasi-experimental methods 
applied to the trial’s treatment group and an externally derived untreated population such as a 
population-representative survey (Wong and Steiner, 2018). These studies demonstrate that 
the performance of different approaches is highly context- and application-dependent. In some 
settings, no approach succeeds in replicating the experimental result, while in others, 
numerous quasi-experimental and observational approaches perform well (Pirog et al., 2009; 
Shadish, 2011). Reasons for this variability are not fully understood (Oliver et al., 2010). 
Although it has been suggested that regression discontinuity more reliably replicates 
experimental results than other observational and quasi-experimental approaches (Pirog et al., 
2009; Shadish, 2011), it is unclear whether this approach actually performs better, or whether 
the situations in which such methods can be applied are more promising for validity regardless 
of the analytic approach. Moreover, such studies rarely consider applications to social 
determinants of health (examples of exceptions are (Gennetian et al., 2010; Handa and 
Maluccio, 2010)), have not utilized modern methods that provide rigorous procedures for 
covariate selection or that make fewer assumptions about shapes of relationships between 
variables, rarely consider external validity (exceptions exist, e.g. (Jaciw, 2016)), and by 
definition cannot address the types of questions that are not amenable to randomization. At 
this point, there are simply too few truly parallel comparisons of effect estimates for social 
determinants of health relying on divergent research designs to draw general conclusions.  
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Fortunately, the techniques and concepts of observational and quasi-experimental approaches 
described in this paper are not mutually exclusive. Tools from one approach may complement 
or strengthen the tools in another. For example, in quasi-experimental studies where some 
covariate-control is needed, the causal diagrams popular with epidemiologists could provide a 
closed form procedure for covariate selection (Pearl, 2000; van der Laan and Rose, 2011). It is 
often useful to have evidence from both approaches, and when the results align, findings are 
especially convincing. For example, good correspondence has been seen for observational 
results and randomized trials in clinical epidemiology (Anglemyer, 2014), as well as for a subset 
of observational and quasi-experimental studies of educational attainment and mortality 
(cites). New evidence arising from diverse approaches is more convincing than evidence relying 
on the same, unverifiable assumptions. Preference for research design approaches often aligns 
with disciplinary tradition. Cross-disciplinary exchange can enhance technical toolkits and avoid 
research duplication.  

Limitations 
We present simplified characterizations of approaches to causal inference for non-randomized 
empirical studies on social determinants of health with the goal of fostering cross-disciplinary 
communication and enhanced use of the full spectrum of causal inference tools available to 
population health scientists. These are vast generalizations of rich methodologies that have 
substantial heterogeneity in implementation. We present the most common approaches, and 
highlight their main strengths and weaknesses. Other methods exist (e.g. synthetic control 
(Abadie et al., 2010; Doudchenko and Imbens, 2016) or comparative regression discontinuity 
(Tang et al., 2017)), and often build upon the core approaches we described.  

Conclusions 
For research on social determinants of health, the challenge of causal inference in the absence 
of randomization is a so-called “wicked” problem. For these wicked problems, no single 
approach will likely provide conclusive evidence. Diversity of data sources and methodological 
approach is a boon, not a problem. However, understanding how these diverse approaches fit 
together is critical for forming a full picture of the current state of the evidence. This broader 
lens will help population health researchers across disciplines to select the approaches that will 
most effectively answer their research questions and to strengthen the evidence needed to 
improve population health and health equity outcomes.   
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