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Abstract

Measuring adult mortality is fundamental to science and policy, yet hundreds of millions of
people are affected by the scandal of invisibility: they live in places where death rates cannot
be directly measured because most deaths are never formally recorded (Setel et al. 2007).
Developing methods to estimate death rates has been challenging in part because it is rarely
possible to collect data needed to estimate death rates in an environment where a gold standard
is available for comparison. To help address this challenge, we conducted household surveys in
27 Brazilian cities (n ≈ 25, 000) to empirically validate several leading approaches to estimating
adult death rates, including the new network survival method, the sibling survival method, and
models based on those two methods. Our study will contribute to understanding both how data
about deaths should be collected and also how models can be used to improve the accuracy and
precision of estimated death rates.

1 Extended Abstract

1.1 Introduction

Measuring adult mortality is fundamental to science and policy, yet hundreds of millions of people
are affected by the scandal of invisibility: they live in places where death rates cannot be directly
measured because most deaths are never formally recorded (Setel et al. 2007). Developing methods
to estimate death rates has been challenging in part because it is rarely possible to collect data
needed to estimate death rates in an environment where gold standard death rates are available
for comparison. To help address this challenge, we conducted household surveys in 27 Brazilian
cities (n ≈ 25, 000) to empirically validate several leading approaches to estimating adult death
rates, including the new network survival method, the sibling survival method, and models based
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on those two methods. Our study will contribute to understanding both how data about deaths
should be collected and also how models can be used to improve the accuracy and precision of
estimated death rates.

1.2 Study design

Researchers who wish to estimate adult mortality are faced with different possible ways to collect
information about deaths and different possible ways to estimate death rates from the collected
information. There has been little empirical guidance available to help inform these decisions
because it is typically difficult to collect the data needed to estimate death rates in a setting where
gold standard rates are available for comparison. We designed our study to help overcome this
challenge by collecting the data needed to estimate death rates using a variety of different methods
in 27 different cities where gold standard estimates are available.

We used a multistage probability design to obtain a representative sample of adults over age 18
living in Brazil’s 26 state capitals and in Brasilia (Figure 1; further details are in Appendix 3.1).
The 27 cities in our sample have essentially complete death registration at adult ages, meaning that
gold-standard adult death rates are available from the vital registration system1.

In order to estimate death rates in each city, our survey collected two types of information2: reports
about deaths in respondents’ personal networks (Feehan et al. 2017); and respondents’ sibling
histories (Brass 1975; Graham et al. 1989; Rutenberg and Sullivan 1991).

Given the information we collected from survey respondents, two different statistical philosophies
can be used to produce estimates: design-based and model-based. Design-based estimators rely
upon the assumption that the observed data are a random sample from the population, where
the sampling mechanism — i.e., the survey design — is known. In this design-based framework,
uncertainty in a given estimate comes from sample to sample random variation due to the sampling
mechanism (Sarndal et al. 2003). Design-based estimates are appealing because the estimators
are simple and transparent; they rely upon a smaller number of assumptions than model-based
estimates; and they are often amenable to sensitivity analyses that reveal the possible impact of
errors in reporting or other factors affecting estimated death rates (Feehan and Salganik 2016a;
Feehan et al. 2017).

However, design-based estimates can be inefficient – i.e., they can have large uncertainty intervals
when sample sizes are not large. Design-based estimates can also perform poorly when the mech-

1A secondary source of adult mortality estimates in these 27 cities can be obtained from the data collected in
Brazil’s 2010 census.

2In this extended abstract, we present preliminary results from two types of estimates: design-based estimates
from personal network reports and one set of model-based estimates from personal network reports. The paper will
explore a wider range of models, and will also include estimates based on the sibling histories.
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anism that produced the data differs from the assumed sampling design because of nonresponse,
incomplete sampling frames, or other problems. Finally, design-based estimates may not take
advantage of all of the information available to the researcher.

Research in statistics and demography has proposed a wide range of model-based approaches as
an alternative to the design-based approach. A well-specified model has the potential to produce
estimates that are more efficient and robust than design-based estimates. However, building a model
requires adding complexity and assumptions, and a poorly specified model can lead to inaccurate
estimates. Therefore, the extent to which a given model improves upon design-based estimates is
an empirical question.

In our study, we use the results of our survey to produce design and model-based estimates, with
the aim of comparing several different methods for estimating adult death rates in a setting where
gold-standard estimates are available for validation. Critically, we will not compare any estimates
to the gold-standard until after all of the estimates have been finalized and pre-registered. Thus,
our project can be conceptually divided into three phases: (1) study design and data collection; (2)
constructing estimated death rates; and (3) evaluating the accuracy of estimated death rates. By
separating steps (2) and (3) – i.e., by not looking at the gold standard until all of the estimates
have been computed – we mimic the situation that researchers estimating adult death rates usually
face: the gold standard is not known.

1.3 Design-based estimates

One way to estimate adult death rates from a sample survey is the network survival method. Feehan
et al. (2017) showed that the design-based network survival estimator for the death rate in group
α in city i is:

M̂ (i)
α =

ŷ
(i)
F,Dα̂̄

d
(i)
Fα,F

1
N̂

(i)
Fα

, (1)

where α is a demographic group (e.g. women aged 40-49 in 2012); M
(i)
α is the death rate in group

α and city i (i ∈ 1, . . . 27); ŷF,Dα is an estimate of the total number of reported deaths among

respondents’ personal network members; ̂̄
d

(i)
Fα,F is the estimated average personal network size for

people in group α, and N̂
(i)
Fα

is the estimated number of people in group α. Details of the network
survival method, including how the data are collected and the derivation of the estimator, can be
found in Feehan et al. (2017).

We used the network survival method to estimate death rates in the 12 months before the survey
for each of the 27 cities in our sample; the solid lines in Figure 2 show the results. Estimated death
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rates for males are generally higher than for females, and that estimated death rates tend to increase
with age. However, without comparing the estimates to the gold standard, it is difficult to assess
how accurate they are. Moreover, some of the patterns in the design-based estimates look unusual;
for example, in MG (Belo Horizonte, the capital of the state Minas Gerais), estimated death rates
for males seem to decrease across the middle age range. While it is possible that these unusual
patterns are the result of interesting trends in mortality, it is also possible that these design-based
estimates are noisy and could be improved by modeling. Ultimately, this is an empirical question
that can be resolved by comparing design- and model-based estimates to the gold standard.

1.4 Model-based estimates

Many different approaches have been proposed for modeling death rates at adult ages; most of
these approaches are based on some combination of three big ideas: (1) information can be pooled
across groups whose death rates are expected to be related to one another (e.g., Fay and Herriot
1979; Raftery et al. 2013; Schmertmann and Gonzaga 2018; Wakefield et al. 2018); (2) researchers
may expect that true, underlying death rates will change smoothly from age to age, with no sharp
jumps (De Beer 2012; e.g., Girosi and King 2008; Schmertmann and Gonzaga 2018); (3) researchers
may expect that true, underlying death rates should follow the same general pattern that has been
previously observed in other places or time periods (e.g., S. J. Clark et al. 2009; Coale and Demeny
1966).

The full paper will explore models that make use of all three ideas. In this extended abstract, we
present the results from a preliminary model which makes use of the first idea by hierarchically
pooling information for age-sex groups and cities. The preliminary model also accounts for the
complex design we used to obtain our sample, using ideas from the literature on small area esti-
mation (Fay and Herriot 1979; J. N. Rao and Molina 2015; Wakefield et al. 2018). Appendix 3.2
describes the preliminary model in detail.

Figure 2 shows estimated age-specific death rates using the model, comparing them to the design-
based estimates. The hierarchical pooling in the model-based estimates leads them to be smoother
and more similar across cities than the design based estimates.

Design- and model-based estimates can also be compared in terms of precision, or the amount of
uncertainty associated with each estimate. Figure 3 compares the standard error of estimates pro-
duced for the design-based estimates (based on the bootstrap; x axis) and model-based estimates
(from the estimated model posterior; y axis) for one of the modeled quantities: ȳF,Dα (results
for ȳFα,A are qualitatively similar, but not shown here). Figure 3 reveals that model-based esti-
mates have much smaller uncertainty intervals. However, the extent to which the model-based
estimates are more accurate and have better-calibrated uncertainty estimates can only be revealed
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by comparing the design and model-based estimates to the gold standard.

1.5 Next steps

The final paper will expand the discussion above in several ways. First, we plan investigate more
model specifications, trying various combinations of the three big ideas described above. A focus
of this model-building will be to assess the models themselves and also to assess techniques for
checking and improving the models in the absence of gold-standard estimates.

We also plan to add the sibling history data to our analysis; we plan to produce both design and
model-based estimates from the sibling history data.

Finally, after all estimates have been finalized, we plan to evaluate the quality of each approach to
estimating death rates by comparing them to the gold standard estimates from the vital registration
data. Our results will enrich our understanding of how adult death rates should be estimated in
settings affected by the scandal of invisibility.
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Figure 1: The cities in our sample: 26 state capitals and the Federal District (Brasilia).
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Figure 2: Preliminary design- and model-based estimates for age-specific death rates at adult ages
using the network survival method in 27 cities across Brazil. (Note that the y-axis is on a log scale.)
Uncertainty estimates are not shown in Figure 2 in order to reduce complexity; Figure 3 compares
uncertainty estimates for the two estimators.
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Figure 3: Comparison of estimated standard error for design-based estimates (x axis) and one set
of model-based estimates (y axis) for death rates at adult ages using the network survival method
in 27 cities across Brazil. Design-based estimates for sampling variance can be obtained from the
rescaled boostrap, which accounts for the complex sample design (Feehan and Salganik 2016b;
Feehan et al. 2017; J. N. K. Rao and Wu 1988; J. Rao et al. 1992). Model-based uncertainty
estimates come from the model posterior.
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3 Appendix

3.1 Sample design

We used a multistage probability design to obtain a sample that is representative of adults over
age 18 living in Brazil’s 26 state capitals and in Brasilia (Figure 1). The first and second stages
of our sample used the Cadastro Nacional de Endereços para Fins Estatísticos (CNEFE), which
is a list of the addresses of all Brazilian households that was produced by Brazil’s Census agency
(IBGE) in 2010. In the first stage, we selected census blocks with probability proportional to size.
In the second stage, we used simple random sampling without replacement to select 6 households
to be interviewed in each sampled census block. In the third stage, we selected a member of
each household to be interviewed by using the next-birthday method: the interviewer listed the
birthdays of all household members aged 18 or older, and selected as the respondent the household
member whose next birthday was closest to the interview date (Salmon and Nichols 1983). If the
selected resident was not at home or could not be interviewed during the study team’s first visit,
up to two additional visits were scheduled to try and reach the selected respondent. After three
unsuccessful attempts, the household was replaced by another one previously selected from the
same census block. The sampling design was the same within each of the 27 cities, except that the
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target number of census blocks to be sampled in the first stage varied from city to city based on
the city’s total population.

Each respondent verbally consented to participate in the study and was then interviewed using a
questionnaire that contained a basic socio-demographic module as well as the questions necessary
to produce network scale-up estimates for the size of the three key populations. All data were
collected on paper forms and then entered electronically, subjected to quality checks, and finally
deposited into the analysis dataset. Data collection was carried out from April to November of
2012 and produced a final dataset with 24,977 interviews, distributed across the 27 cities.

3.2 Preliminary model

In order to model death rates based on network survival data, it is helpful to re-express the network
survival estimator (Equation 1) using a different, equivalent expression:

M̂ (i)
α =

ŷ
(i)
F,Dα

ŷ
(i)
Fα,A

N
(i)
A

N̂
(i)
F

=
̂̄y(i)

F,Dα̂̄y(i)
Fα,A

N
(i)
A

N̂
(i)
Fα

. (2)

Equation 2 is useful because it expresses network survival estimates in terms of two quantities that
are averages across survey respondents: ̂̄y(i)

F,Dα
and ̂̄y(i)

Fα,A. We expect these averages to be more
reasonable to model than totals, which will be influenced by city size.

We model each of these two average quantities separately; for concreteness, we discuss the model
for ȳF,Dα , which is the average number of reported connections to deaths in group α; the model for
ȳFα,A is analogous.

We assume that the observed, design-based estimate for the population average number of reported
deaths in city i, ̂̄y(i)

F,Dα
is a function of the underlying population parameter µ

(i)
Dα

and sampling
variation given by the design-based standard error σ̂

(i)
D :

ŷ
(i)
F,Dα

∼ Normal(µ(i)
Dα

, σ̂
(i)
D ).

We use the bootstrap-based estimate for the sampling variation σ̂
(i)
D of the estimate ̂̄y(i)

F,Dα
; thus, we

treat the sampling variation σ̂
(i)
D as a known parameter in the model.

The remainder of the model specifies a hierarchical relationship between the parameters µ
(i)
D,α within

a city across age-sex groups, and within an age-sex group across cities:
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µ
(i)
Dα

= α0 + βC
city[i] + βAS

age−sex[α]

βC
j ∼ Normal(0, σC) for j ∈ 1 . . . 27

βAS
k ∼ Normal(0, σAS) for k ∈ 1 . . . K

where j indexes the 27 city-specific parameters βC
j , and k indexes the K age-sex group parameters

βAS
k . Finally, we put diffuse priors on the overall mean α0, and on the two hierarchical variance

parameters σC and σAS .

This model can be seen as having two, non-nested random effects: one for the age-sex group, and
one for the city. Roughly, estimates are regularized, or shrunk towards a common mean, across
cities and across age-sex groups.

Given the model for y
(i)
F,Dα

and an analogous model for yFα,A, we calculate death rate estimates
using

M̂ (i)
α =

µ
(i)
Dα

µ
(i)
Fα

N (i)

N̂
(i)
Fα

,

where µ
(i)
Fα

is the model-based parameter for y
(i)
Fα,A, analogous to µ

(i)
Dα

and y
(i)
F,Dα

; N
(i)
A is known from

the study design (i.e., the size of the known populations; see Feehan et al. (2017)); and N̂
(i)
Fα

is an
unmodeled, design-based estimate for the size of the frame population in group α and in city i.

We fit the model using the Stan software package (Carpenter et al. 2017).
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