
data

Article

Linking Synthetic Populations to Household
Geolocations: A Demonstration in Namibia

Dana R. Thomson 1,2,3,*,† ID , Lieke Kools 4,† and Warren C. Jochem 1,2

1 Flowminder Foundation, SE-11355 Stockholm, Sweden; w.c.jochem@soton.ac.uk
2 WorldPop, Department of Geography and Environment, University of Southampton,

Southampton SO17 1BJ, UK
3 Department of Social Statistics, University of Southampton, Southampton SO17 1BJ, UK
4 Department of Economics, Leiden University, 2311 EZ Leiden, The Netherlands; l.kools@law.leidenuniv.nl
* Correspondence: dana.thomson@flowminder.org; Tel.: +44-238-202-6000
† These authors contributed equally to this work.

Received: 18 June 2018; Accepted: 7 August 2018; Published: 9 August 2018
����������
�������

Abstract: Whether evaluating gridded population dataset estimates (e.g., WorldPop, LandScan) or
household survey sample designs, a population census linked to residential locations are needed.
Geolocated census microdata data, however, are almost never available and are thus best simulated.
In this paper, we simulate a close-to-reality population of individuals nested in households geolocated
to realistic building locations. Using the R simPop package and ArcGIS, multiple realizations of a
geolocated synthetic population are derived from the Namibia 2011 census 20% microdata sample,
Namibia census enumeration area boundaries, Namibia 2013 Demographic and Health Survey
(DHS), and dozens of spatial covariates derived from publicly available datasets. Realistic household
latitude-longitude coordinates are manually generated based on public satellite imagery. Simulated
households are linked to latitude-longitude coordinates by identifying distinct household types with
multivariate k-means analysis and modelling a probability surface for each household type using
Random Forest machine learning methods. We simulate five realizations of a synthetic population
in Namibia’s Oshikoto region, including demographic, socioeconomic, and outcome characteristics
at the level of household, woman, and child. Comparison of variables in the synthetic population
were made with 2011 census 20% sample and 2013 DHS data by primary sampling unit/enumeration
area. We found that synthetic population variable distributions matched observed observations and
followed expected spatial patterns. We outline a novel process to simulate a close-to-reality microdata
census geolocated to realistic building locations in a low- or middle-income country setting to support
spatial demographic research and survey methodological development while avoiding disclosure
risk of individuals.

Keywords: simulation; census; simPop; LMIC

1. Introduction

The ideal resource to evaluate the accuracy of gridded population datasets and certain household
survey methodologies would be a complete set of individual records from a population linked to
location of residence, though this is generally not available. Gridded population datasets model
counts of human population in small grid cells, often based on census data and spatial covariates
such as land cover type [1–4]. Various gridded population datasets have evaluated the accuracy
of population counts at the geographic scale of input census data [3–5], and other analyses have
evaluated whether cells were accurately classified as populated or not populated [6]; however,
accuracy of population count per grid cell has not been evaluated because it requires a geo-located
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microdata census (thus negating the need for a population model). In the realm of household
surveys, evaluation of sample variability, measurement error, and missing values due to sample
design requires a close-to-reality census of microdata to perform statistical simulations of repeated
samples of households [7].

Although microdata are commonly made publicly available as census samples [8] or household
survey samples [9], full census microdata are almost never publicly released to protect the anonymity
of respondents. A more realistic option for researchers to obtain a dataset of all household observations
and associated characteristics in a population is to simulate it, and recent advances in generating
synthetic populations have made this approach a viable alternative [10]. Synthetic population datasets
also have the advantage over actual census data that multiple scenarios can be generated to test
outcomes in potential future populations.

Previous work to simulate or reconstruct synthetic human populations has explored multiple
methods. Most commonly, small area estimates of populations and socio-demographic characteristics
are created by expanding or reweighting observations from a survey of individuals to meet totals
and marginal distributions in more aggregated areal units. Iterative proportional fitting (IPF) is often
used to incrementally improve the fit of a joint probability distribution of person- or household-level
attributes (e.g., from a household survey) subject to known joint probabilities of attributes (e.g., from an
aggregated census) [11,12]. Combinatorial optimization procedures, such as simulated annealing
(SA) [13] or quota sampling [14], can also be used to prevent sub-optimal combinations of attributes
in the simulated dataset. Templ and colleagues discuss a model-based approach to simulation of
individual or household attributes with regression models, which they implement in an open-source
software [15]. Agent-based models (ABMs) can also produce a realistic count of individuals,
or “agents”, along with key attributes and relationships [16,17]. Some ABMs have also incorporated
space into agent interactions, or produce outputs allocated to semi-realistic spaces such as a city [18].

Despite the advances in simulation methods, a lack of geographic specificity is a problem in
most previous studies. The simulated populations are often only allocated to small output areas,
such as census enumeration areas (EAs). While small area units are sufficient for many studies,
they do not allow for local-scale analyses of health, education, and demographics. Some attempts
have been made to associate simulated households to random points in space or along roads [19,20].
There is a growing demand for such spatially-disaggregated population datasets, particularly in low-
and middle-income counties (LMIC) to plan projects and monitor progress toward the Sustainable
Development Goals [21], which has led to novel techniques for producing gridded populations [3,22]
and other high spatial-resolution maps of sociodemographic characteristics interpolated from cluster
survey locations [23–25]. However, it is difficult to assess the accuracy of these techniques in the
absence of reliable population data at an equally fine spatial resolution.

The aim of this paper is to simulate a close-to-reality static population of individuals nested within
households and then to geo-locate this synthetic population to realistic building locations in a LMIC
context. Our approach uses two commonly available population datasets (a census microdataset and a
household survey), as well as openly available geospatial layers derived from public data sources to
enable replication in other areas. This work was motivated by a need for a population dataset that could
be used to develop and evaluate household survey methodologies in general, and gridded population
survey methodologies in particular (e.g., GridSample [26]), though georeferenced population datasets
will be useful for many applications and might be made dynamic with spatiotemporal modelling.
The synthetic population has to be located in both a real-world context to take advantage of the realistic
spatial covariates used in gridded population modelling, and at, or below, the same geographic scale
as the gridded population data (approximately 100 m × 100 m grid cells). The use of realistic, rather
than randomly generated, latitude-longitude coordinates to represent home locations, however, raises
new ethical questions for population simulations. We discuss how we approached these issues while
openly releasing the code and simulated datasets from our case study in Namibia.
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2. Methods

2.1. Setting

Namibia was selected for the simulation because the population varies widely from low-to-high
density, and the 2011 Namibia census meets the UN recommendations for high-quality census data [27].

We selected Oshikoto, one of Namibia’s 13 regions in northern Namibia, to demonstrate the
simulation methods discussed here because it presents a rich microcosm of conditions and population
types (Figure 1). Oshikoto covers an area of 38,653 square kilometres and is home to roughly 182,000
people [28]. The region has an unpopulated desert in the southwest, rural settled agriculture area in the
north, rural area comprised mostly of a nomadic population in the southeast, and two cities comprised
of planned and unplanned neighborhoods. Oshikoto is comprised of 10 administrative sub-regions
called constituencies, for which there are published census population and household totals.
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Figure 1. Map of Oshikoto Region, Namibia and Oshikoto’s 10 constituency boundaries.

2.2. Data

Input data included the 20% microdata sample from the 2011 Namibia Population and Housing
Census, available by request from the Namibia NSA [29]; 2011 Namibia census enumeration area
boundaries, provided by request from the Namibia NSA [30]; 2013 Namibia Demographic and Health
Survey (DHS) recode files and geo-displaced cluster coordinates, available by request from ICF
International [31]; high-resolution (30 cm) satellite imagery available through ESRI via ArcGIS 10.5 [32];
and multiple spatial data layers derived from public sources such as land cover type, nighttime lights
intensity, and health facility locations summarized in Table 1. Building off of earlier work [33], spatial
covariates were processed as part of the “Global High Resolution Population Denominators” Project
by the WorldPop team at University of Southampton and Center for International Earth Science
Information Network at Columbia University, and are detailed in a forthcoming paper (Alessandro
Sorichetta, personal communication, July 2018).
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Table 1. Data sources used to generate a simulated population in Oshikoto, Namibia.

Name Description Source; Original Unit Output Unit

Population

dhs_hh Individual recode file summarized by
household 2013 Demographic and Health Survey [31] region

dhs_geo Geo-displaced cluster coordinates 2013 Demographic and Health Survey [31] coordinate (cluster)

census_housing,
census_person 20% census microdata sample 2011 National Statistics Agency [29] constituency

census_report Final census report 2011 National Statistics Agency [28] constituency

Used to generate new spatial data

imagery High resolution satellite imagery 2014–2016 DigitalGlobe Quickbird imagery [32];
50 cm Coordinate (household)

census_ea 2011 Census EA boundaries 2011 Namibia Statistics Agency [30] EA

Spatial covariates

ccilc_dst011_2012 Distance to land-cover: Cultivated
terrestrial lands

2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst040_2012 Distance to land-cover: Woody/Trees 2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst130_2012 Distance to land-cover: Shrubs 2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst140_2012 Distance to land-cover: Herbaceous 2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst150_2012 Distance to land-cover: Other terrestrial
vegetation

2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst190_2012 Distance to land-cover: Urban 2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

ccilc_dst200_2012 Distance to land-cover: Bare 2012 ESA CCI annual LC maps v2.0.7 [34];
10 arc seconds (≈300 m) * 3 arc seconds (≈100 m)

cciwat_dst Distance to water bodies ESA CCI, Water bodies v4.0 [34];
5 arc seconds (≈150 m) * 3 arc seconds (≈100 m)

dmsp_2011 Nighttime lights intensity
2011 inter-calibrated version of the v4

DMSP-OLS Nighttime Lights Time Series [35];
30 arc seconds (≈1 km) *

3 arc seconds (≈100 m)

gpw4coast_dst Distance to coastline GPWv4 input administrative units [36];
3 arc seconds (≈100 m) * 3 arc seconds (≈100 m)

osmint_dst Distance to road intersections 2016 OSM highways [37] * 3 arc seconds (≈100 m)

osmriv_dst Distance to major water ways 2016 OSM waterways [37] * 3 arc seconds (≈100 m)

slope Slope 2000 Viewfinder Panoramas [38]; (≈100 m) * 3 arc seconds (≈100 m)

topo Elevation 2000 Viewfinder Panoramas [38]; (≈100 m) * 3 arc seconds (≈100 m)

tt50k_2000 Travel time to populated places of 50,000
or more people

2000 EC-JRC Travel time to major cities [39];
30 arc seconds (≈1 km) * 3 arc seconds (≈100 m)

urbpx_prp_1_2012 Proportion of settlement pixels with a one
cell radius

2012 DLR Global Urban Footprint [40];
0.4 arc seconds (≈12.5 m) & 2000 EC-JRC Global

Human Settlement Layer [41]; 38 m *
3 arc seconds (≈100 m)

hfacilities_dst Distance to health center or hospital 2001 UN-OCHA [42] 3 arc seconds (≈100 m)

schools_dst Distance to primary or secondary school 2001 UN-OCHA [43] 3 arc seconds (≈100 m)

npp_2012 Annual net primary productivity 2010 MODIS [44]; 30 arc seconds (≈1 km) 3 arc seconds (≈100 m)

* Spatial covariate was processed by the “Global High Resolution Population Denominators” Project.

The 2011 Namibia 20% census microdata sample is comprised of 36,137 individuals in 7536
conventional households selected at random from a complete census enumeration [28], and the DHS
survey sample is comprised of 3316 individuals in 705 households located in 38 primary sampling
units (PSUs) [31] (Table 2). In addition to the variables age, sex, relationship, and household size
used to simulate household membership configurations, six covariates, common to both the DHS
and census microdata, were simulated to support modelling of household type and prediction of
outcome variables (Table 2). Four of these covariates are often used to operationalize the UN-Habitat
definition of a “slum household”: lack of improved toilet, lack of improved water source, inadequate
space defined as three or more people per sleeping room, and unimproved structure defined as having
an earthen or wood floor [45]. Other characteristics include urban versus rural location, use of solid
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fuel for cooking, whether the head of household has no formal education, and whether there are any
children under age five in the household.

While the microdata provides a large, systematic sample reflecting the distribution of
characteristics in the population, it is not a complete census and cannot be linked to local geographic
positions (in this case, below the constituency level). The DHS survey on the other hand, provides
geographic coordinates, albeit displaced, for each PSU allowing us to explore spatial variation in the
population. The method developed here leveraged the strengths of each dataset and took advantage
of variables common to both datasets in order to link a simulated population to geographic positions.

Table 2. Size of Namibia 2011 20% Census Microdata Sample and 2013 DHS Sample, by sub-group.

Variable Name Category 20% Census
Unweighted n (%)

DHS Unweighted
n (%)

DHS Weighted
n (%)

Households Oshikoto (N) 7475 705 817

urban_rural
Urban 1167 (15.6) 113 (16.0) 139 (17.1)
Rural 6308 (84.4) 592 (84.0) 678 (82.9)

structure
Durable floor 2910 (38.9) 281 (39.8) 340 (41.6)

Non-durable floor 4551 (60.9) 422 (59.9) 475 (58.1)
Missing/unknown 14 (0.2) 2 (0.3) 2 (0.3)

fuel
Non-solid fuel 1217 (16.3) 141 (20.0) 182 (22.3)

Solid fuel 6253 (83.6) 562 (79.7) 633 (77.4)
Missing/unknown 5 (0.1) 2 (0.3) 2 (0.3)

water
Improved water 5388 (72.1) 589 (83.6) 688 (84.2)

Unimproved water 2045 (27.3) 72 (10.2) 80 (9.8)
Missing/unknown 42 (0.6) 44 (6.2) 49 (7.0)

toilet
Improved toilet 1955 (26.1) 207 (29.4) 258 (31.6)

Unimproved toilet 5491 (73.5) 492 (69.8) 553 (67.6)
Missing/unknown 29 (0.4) 6 (1.0) 6 (0.8)

space
Adequate space 6529 (87.3) 619 (87.8) 717 (87.7)

Inadequate space 946 (12.7) 82 (11.6) 95 (11.6)
Missing/unknown 0 (0.0) 4 (0.6) 6 (0.7)

noedu
Head household—any education 5797 (77.6) 581 (82.4) 677 (82.8)
Head household—no education 1528 (20.4) 111 (15.7) 125 (15.3)

Missing/unknown 150 (2.0) 13 (1.9) 15 (1.9)

any_u5 No child under age 5 4267 (57.1) 405 (57.5) 478 (58.5)
Any child under age 5 3208 (42.9) 300 (42.5) 340 (41.5)

Individuals Oshikoto (N) 36,137 3316 3576

relationship

Head 7475 (20.7) 705 (22.5) 817 (22.9)
Spouse 2391 (6.6) 218 (7.0) 250 (7.0)
Child 10,394 (28.8) 785 (25.0) 888 (24.8)

Grandchild 8635 (23.9) 591 (18.9) 660 (18.5)
Extended 5519 (15.3) 622 (19.8) 713 (19.9)

Other 1723 (4.8) 215 (6.9) 247 (6.9)

sex Female 18,814 (52.1) 1669 (53.2) 1899 (53.1)
Male 17,323 (47.9) 1467 (46.8) 1677 (46.9)

age

0 1136 (3.1) 87 (2.8) 99 (2.8)
1–4 3968 (11.0) 364 (11.6) 414 (11.6)
5–9 4514 (12.5) 404 (12.9) 461 (12.9)

10–14 4895 (13.6) 389 (12.4) 435 (12.2)
15–19 4643 (12.9) 385 (12.3) 433 (12.1)
20–24 3284 (9.1) 280 (8.9) 323 (9.0)
25–29 2391 (6.6) 213 (6.8) 245 (6.9)
30–34 1912 (5.3) 195 (6.2) 230 (6.4)
35–39 1756 (4.9) 161 (5.1) 193 (5.4)
40–44 1371 (3.8) 106 (3.4) 120 (3.4)
45–49 1341 (3.7) 118 (3.8) 139 (3.9)
50–54 968 (2.7) 102 (3.3) 118 (3.3)
55–59 872 (2.4) 68 (2.2) 76 (2.1)
60–64 802 (2.2) 71 (2.3) 79 (2.2)
65–74 1105 (3.1) 98 (3.1) 107 (3.0)
75+ 1177 (3.3) 95 (3.0) 104 (2.9)
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2.3. Simulation

We generated realistic household membership with realistic household point location and
demographic and social characteristics in the following three phases. In phase A, we defined household
types and then predicted the spatial distribution of the types in Oshikoto using DHS data, spatial
covariates, and visual inspection of satellite imagery. The output was a probability surface for each
household type. In phase B, we generated the synthetic population using a census microdata sample
and assigned the population to household point locations using the household type probability
surfaces generated in phase A. Phase C involved prediction of additional population characteristics
in each household. The code was written in R [46] and spatial data were generated in ArcGIS [47].
Each phase is summarized in Figure 2 and described below. Five realizations of the simulated
population (Supplement 1), the code (Supplement 2), and interim output (Supplement 3) is provided.

Data 2018, 3, x FOR PEER REVIEW  6 of 19 

 

45–49 1341 (3.7) 118 (3.8) 139 (3.9) 
50–54 968 (2.7) 102 (3.3) 118 (3.3) 
55–59 872 (2.4) 68 (2.2) 76 (2.1) 
60–64 802 (2.2) 71 (2.3) 79 (2.2) 
65–74 1105 (3.1) 98 (3.1) 107 (3.0) 
75+ 1177 (3.3) 95 (3.0) 104 (2.9) 

2.3. Simulation 

We generated realistic household membership with realistic household point location and 
demographic and social characteristics in the following three phases. In phase A, we defined 
household types and then predicted the spatial distribution of the types in Oshikoto using DHS data, 
spatial covariates, and visual inspection of satellite imagery. The output was a probability surface for 
each household type. In phase B, we generated the synthetic population using a census microdata 
sample and assigned the population to household point locations using the household type 
probability surfaces generated in phase A. Phase C involved prediction of additional population 
characteristics in each household. The code was written in R [46] and spatial data were generated in 
ArcGIS [47]. Each phase is summarized in Figure 2 and described below. Five realizations of the 
simulated population (Supplement 1), the code (Supplement 2), and interim output (Supplement 3) 
is provided. 

 
Figure 2. Cont.



Data 2018, 3, 30 7 of 19
Data 2018, 3, x FOR PEER REVIEW  7 of 19 

 

 
Figure 2. Simulation workflow with steps 1 through 8 organized in three phases. Green indicates 
original dataset, and orange indicates derived dataset. 

2.3.1. Phase A: Predict Spatial Distribution of Household Types 

Using the DHS dataset, we first defined realistic and distinct types of households present in 
Oshikoto based on the 2013 DHS data of 705 households. We used the kmeans function in R [46] to 
generate a large number of clusters (k = 20) from eight household demographic and social variables 
common to both the DHS and census microdata (urban_rural, noedu, any_u5, toilet, water, structure, 
space, fuel). K-means is a form of unsupervised clustering which seeks to partition observations into 
groups by minimizing the within group sum of squares. We then utilized the output dendrogram 
visualizing the hierarchically clustered k-means centroids to choose a smaller number of statistically 
distinct household types (long Euclidean distance between parent and child clusters in the 
dendrogram) that were easily interpretable. In the case of Namibia 2013 DHS, seven household types 
are identified. To interpret and label household types, we considered whether the household type 
values were above, below, or near the Oshikoto average (Table 3). We saved the k-means centroids 
and hierarchical clustering cut-off points to classify household types in other datasets in steps 3 and 5. 

Second, we processed 19 spatial covariates from free, public data sources including land cover 
types, night time light intensity, and health facility locations (see Table 1). These datasets were 

Figure 2. Simulation workflow with steps 1 through 8 organized in three phases. Green indicates
original dataset, and orange indicates derived dataset.

2.3.1. Phase A: Predict Spatial Distribution of Household Types

Using the DHS dataset, we first defined realistic and distinct types of households present in
Oshikoto based on the 2013 DHS data of 705 households. We used the kmeans function in R [46] to
generate a large number of clusters (k = 20) from eight household demographic and social variables
common to both the DHS and census microdata (urban_rural, noedu, any_u5, toilet, water, structure, space,
fuel). K-means is a form of unsupervised clustering which seeks to partition observations into groups
by minimizing the within group sum of squares. We then utilized the output dendrogram visualizing
the hierarchically clustered k-means centroids to choose a smaller number of statistically distinct
household types (long Euclidean distance between parent and child clusters in the dendrogram) that
were easily interpretable. In the case of Namibia 2013 DHS, seven household types are identified.
To interpret and label household types, we considered whether the household type values were above,
below, or near the Oshikoto average (Table 3). We saved the k-means centroids and hierarchical
clustering cut-off points to classify household types in other datasets in steps 3 and 5.
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Second, we processed 19 spatial covariates from free, public data sources including land cover
types, night time light intensity, and health facility locations (see Table 1). These datasets were available
for the whole region, enabling predictive mapping, and were shown to be related to population
density [3,48]. We converted each covariate into a 100 m × 100 m raster, and then for each cell,
calculated the minimum, maximum, and average values within a five kilometer buffer using WGS84
geographic projection. This five-kilometer moving window was used because the DHS data used to
fit models in the next step were randomly geo-displaced up to five kilometers in rural areas. Further,
the average covariate value within a five-kilometer buffer of a displaced DHS PSU location was
closer to the real, non-displaced, unpublished covariate value than the published, displaced covariate
value [49,50]. Although DHS PSU coordinates were only displaced up to two kilometers in urban
areas, a five-kilometer buffer was used for all PSUs, and urban probability surfaces were improved
manually in step 4.

Third, using the 2013 DHS data for all of Namibia (N = 550 clusters) and household types created
in step 1, we calculated the most common household type for each PSU using the k-means centroids
and cut-off points. Next, we extracted the five-kilometer averaged spatial covariates created in step 2
to each DHS PSU location, resulting in 550 observations of household type linked to (19 × 3) 57
spatial covariates. In this step 3, we found a relationship between household type and buffered
spatial covariates in order to predict household types over the whole region. To do this, we used a
Random Forest model—a non-parametric ensemble machine-learning algorithm that grows a “forest”
of decision trees during the modelling process [3]—to model this relationship and predict a 100 m by
100 m probability surface for each household type across Namibia.

Fourth, we manually created household type probabilities for urban EAs. This step was necessary
because initial tests found that the household type probability model generated in step 3 could not
adequately distinguish household types within urban areas. This was expected given the displacement
of the DHS PSU locations and the summary of geospatial covariate data, which are essentially identical
across urban household types. Without step 4, simulated households of different socioeconomic
types would be evenly spatially integrated in urban areas, which was unrealistic. Poor and rich
households are often segregated in urban areas worldwide [51], and visual inspection of satellite
imagery indicates that socioeconomic segregation was present in Oshikoto’s urban areas as well.
From Step 1, we labeled the two urban household types as poor and rich, then manually assigned
a proportion of households that we judged to be rich versus poor within each EA based on satellite
imagery, such that the probabilities summed to 1. These manually created EA-level urban household
type probabilities were multiplied by the predicted household type probability surfaces created in
step 3 to create the final 100 m × 100 m household type probability surfaces.

Table 3. Average prevalence of variables and label for each k-means household type cluster.
Red indicates that the value is above the Oshikoto average (less desirable), and green indicates the
value is below the Oshikoto average (desirable).

Cluster Urban_Rural Noedu any_u5 Toilet Water Structure Space Fuel Household Type Label

Type 1 0.00 0.00 0.04 0.06 0.00 0.00 0.00 0.00 Urban rich
Type 2 0.00 0.19 0.07 0.85 0.06 0.47 0.32 0.80 Urban poor
Type 3 1.00 0.05 0.12 0.55 0.00 0.00 0.04 0.10 Rural rich
Type 4 1.00 0.12 0.06 0.46 0.07 0.39 0.09 0.79 Rural middle
Type 5 1.00 0.012 0.11 0.81 0.04 0.45 0.01 0.97 Rural middle (lack fuel)
Type 6 1.00 0.012 0.16 0.92 0.49 0.83 0.06 0.96 Rural poor (lack water)
Type 7 1.00 0.22 0.13 0.91 0.09 0.83 0.04 0.98 Rural poor (lack education)

Oshikoto 0.84 0.016 0.12 0.77 0.11 0.60 0.07 0.79

2.3.2. Phase B: Generate Synthetic Population and Assign Household Locations

Fifth, we simulated a population of realistic households in Oshikoto using the 20% census
microdata sample and multinomial logistic regression techniques proposed by Alfons and colleagues
(2011) and operationalized by Templ and colleagues (2017) in the R simPop package [7,15]. In this
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approach, we first calculated the proportion of households to simulate per household-size, per stratum
(defined by constituency and urban/rural boundary). Second, we selected random resamples from
the microdata until the number of target households was reached in each household size and strata.
Third, demographic characteristics of the household members (age, sex, relationship) were replicated
from the microdata. Fourth, we added household socioeconomic characteristics to the simulated
dataset (education, toilet, water, structure, space, fuel) using a multinomial regression. This allowed for
the simulation of combinations of demographic characteristics that existed in the population but were
not present in the census microdata. For each simulated household, we assigned the household type
by selecting the class from step 1 with the smallest distance (i.e., most similar) between each household
record and the k-means centroids.

Sixth, the census microdata sample was provided with a weight equal to five for nearly all
conventional households. We recalibrated these weights to the total number of households per
constituency in the 2011 census [28]. However, this process could lead to too few observations in some
constituency-urban/rural strata, and too many observations in other strata. Therefore, we increased
the weights to simulate an extra 5% of households from which a random selection of households was
assigned to latitude-longitude coordinates in step 7.

Seventh, we joined reweighted household type probabilities (100 m × 100 m grid cells) created
in step 4 to the household latitude-longitude coordinates created in step 6. Finally, for each
household simulated in step 5, we randomly sampled one latitude-longitude coordinate within
the constituency-urban/rural strata based on the probability of household type. We repeated the
assignments until all coordinates were assigned a simulated household, and then discarded the extra
5% unassigned simulated households.

2.3.3. Phase C. Predict Additional Population Characteristics, Generalize Locations

In step 8, we used the 2013 DHS records in Oshikoto (N = 705 households) to develop multinomial
models of socioeconomic and health outcome variables. We stored the coefficients of each model and
applied them to our simulated dataset to predict outcomes in each simulated household. The three
simulated outcome variables represented different prevalence levels and patterns of dispersion in the
population. These outcome variables represented children under age five, women of reproductive age,
and households in order to support within household clustering analyses. The outcome variables were:
household wealth (expressed in quintiles), women’s use of modern contraception (approximately
50% in Namibia and Oshikoto), and child’s receipt of the third Diphtheria-Tetanus-Pertussis (DPT)
vaccination (approximately 90% in Namibia and Oshikoto) [52]. Multinomial models were used for
both multi-category and binary outcomes

Pr(Yi = K − 1) =
eβK−1·Xi

1 + ∑K−1
k=1 eβK−1·Xi

(1)

where K is the number of categories in the outcome variable, Yi is the outcome value for individual i,
and Xi is a matrix of covariate values belonging to individual i. Model coefficients were applied to
covariates of the 37,298 households in the simulated dataset to predict outcome values.

2.4. Assessment

We conducted global assessments to evaluate whether each of the five realizations of the simulated
population were realistic overall, and a local assessment to evaluate whether the realizations were
realistic at an EA level. In the global assessment, we aggregated the DHS records to PSU and the
simulated census records to EA, and graphically compared the distributions of simulated covariates
and outcomes. We also mapped simulated census records by EA to visually inspect the spatial
distributions across Oshikoto. In the local assessment, DHS data were averaged by PSU and compared
to the distribution from repeated samples simulating a set of survey respondents. For each of
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10,000 simulations, a random EA was selected within 5 km of each DHS PSU coordinate, then the
same number of households as the observed DHS cluster were drawn from the simulated population.
The characteristics were averaged from the sampled EAs and compared to the observed DHS data.

2.5. Ethics

Before releasing our simulated data, we closely reviewed papers about privacy of synthetic
population data including a paper by Alfons and Templ (2010) who calculated disclosure risk
of close-to-reality synthetic data generated with the simPop [R package] algorithm used in this
analysis [53]. The authors found extremely low risk of disclosure for five worst case scenarios and
concluded that simulations “implemented in simPop are confidential and can be distributed to the
public” [53]. Any additional risk in our study due to linking simulated records to realistic building
locations is negligible due to random spatial components in the analysis, and as a result of beginning
with a random sample of the original census microdata in phase B. Any match between characteristics
in a simulation realization of a household at a given building location and a real-world household at
that same location is purely by chance.

The main risk in this analysis is misinterpretation and/or misuse of the synthetic population data
by users (e.g., believing that the simulated data are from actual households and treating real-world
household members, or their communities, with stigma). To minimize misinterpretation, we release
five realizations of the synthetic population and label each dataset as “synthetic”. To further minimize
the risk of maltreatment of real-world people in the case that these data are misinterpreted, we only
simulated commonly mapped variables which have been interpolated with real-world survey data to
1 km × 1 km grid cells by the MeasureDHS project [54].

This analysis and public release of simulated data was reviewed by the University of Southampton
Ethics Review Committee (#41006).

3. Results

Demographic and socioeconomic characteristics of the five simulated populations in Oshikoto
(Table 4) were consistent with the 2013 DHS and 20% census distributions presented in Table 2.

Table 4. Prevalence of demographic and socioeconomic characteristics in five realizations of the
synthetic population in Oshikoto, Namibia.

Variable Category pop_1 (%) pop_2 (%) pop_3 (%) pop_4 (%) pop_5 (%)

Households Oshikoto (N) 37,298 37,298 37,298 37,298 37,298

urban_rural
Urban 84.3 84.3 84.3 84.3 84.3
Rural 15.7 15.7 15.7 15.7 15.7

structure
Durable floor 38.6 38.7 38.6 38.5 37.9

Non-durable floor 61.4 61.3 61.4 61.5 62.1

fuel
Non-solid fuel 16.2 16.4 16.0 16.0 15.9

Solid fuel 83.8 83.6 84.0 84.0 84.1

water
Improved water 73.2 73.2 72.9 73.1 72.7

Unimproved water 26.8 26.8 27.1 26.9 27.3

toilet
Improved toilet 20.1 20.1 19.9 19.7 19.5

Unimproved toilet 79.9 79.9 80.1 80.3 80.5

space Adequate space 92.5 92.2 92.3 92.5 92.3
Inadequate space 7.5 7.8 8.7 7.5 7.7

noedu
Head household—any education 70.8 70.5 70.5 70.8 70.9
Head household—no education 29.2 29.5 29.5 29.2 29.1

any_u5 No child under age 5 57.4 57.0 56.8 57.1 57.0
Any child under age 5 42.6 43.0 43.2 42.9 43.0
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Table 4. Cont.

Variable Category pop_1 (%) pop_2 (%) pop_3 (%) pop_4 (%) pop_5 (%)

Individuals Oshikoto (N) 179,931 179,854 180,233 180,164 180,111

relationship

Head 20.7 20.7 20.7 20.7 20.7
Spouse 6.6 6.6 6.5 6.6 6.6
Child 28.8 28.8 28.7 28.9 28.8

Grandchild 23.8 24.0 23.9 23.8 23.8
Extended 15.1 15.1 15.2 15.0 15.3

Other 4.9 4.8 5.0 4.9 4.8

sex Female 52.2 52.0 51.9 51.8 52.0
Male 47.8 48.0 48.1 48.2 48.0

age

0 3.1 3.1 3.2 3.1 3.2
1–4 10.9 11.1 11.1 10.9 10.9
5–9 12.7 12.6 12.5 12.4 12.7

10–14 13.6 13.6 13.6 13.7 13.6
15–19 12.9 12.9 12.7 13.0 12.9
20–24 9.0 9.0 9.1 9.1 9.0
25–29 6.7 6.6 6.6 6.6 6.6
30–34 5.2 5.3 5.3 5.2 5.3
35–39 4.9 4.9 5.0 4.9 4.9
40–44 3.8 3.8 3.7 3.9 3.8
45–49 3.7 3.8 3.8 3.8 3.7
50–54 2.7 2.7 2.7 2.7 2.7
55–59 2.4 2.4 2.4 2.4 2.4
60–64 2.2 2.2 2.2 2.2 2.2
65–74 3.1 3.1 3.1 3.0 3.0
75+ 3.2 3.1 3.2 3.2 3.2

The distribution of the three outcomes were heaped in the 2013 DHS dataset, perhaps due to
small sample size. In the global assessment of the simulated population by PSU/EA in Oshikoto,
Namibia, the distributions of households per wealth quintile, contraceptive use among reproductive
age women, and percent children who received third DPT vaccination were consistent between the
2013 DHS PSUs and the synthetic population EAs in all five realizations of the population (Figure 3).
A key difference was that the Oshikoto synthetic populations distributed more households in the
lowest wealth quintile, while the DHS measured a greater percent of Oshikoto households in the
second lowest wealth quintile.
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Figure 3. Comparison of prevalence (y-axis) distributions (x-axis) in the 2013 Namibia DHS for Oshikoto
region (solid line) and five synthetic population realizations (dotted lines) across wealth categories,
contraceptive use, and DTP3 vaccination.

Maps showing simulated household wealth by EA followed expected spatial patterns with higher
wealth in planned urban neighborhoods and large rural towns, and lowest household wealth in remote
rural areas (Figure 4, realization 1). Similarly, higher rates of contraceptive use were located in urban
EAs, and wealthier rural EAs, as expected. Namibia has greater DTP3 vaccination coverage in rural,
rather than urban, populations, which is atypical of LMICs [52]. This atypical pattern was reflected in
the maps of DPT3 vaccination coverage among one of the simulated populations.

In the local EA-level assessment, we found that DHS estimates for each of the 38 Oshikoto clusters
fell within the 95% confidence interval of repeated random simulated samples from the simulated
population EAs near to the DHS PSU (Figure 5). This implied that the observed DHS results could
potentially have been drawn from the synthetic population.
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Figure 5. 2013 Namibia DHS PSU-level estimates (black dot) of average household wealth level,
contraceptive use, and DTP3 vaccination versus the distribution of estimates from 100 samples (bar)
selected in EAs located within 5 m of the DHS PSUs for five synthetic population realizations.

4. Discussion

Close-to-reality simulated populations are needed to answer questions at the forefront of
spatial demographic research and survey methodological development while reducing disclosure
risks of releasing high spatial resolution census data. We outline a novel process to simulate
multiple realizations of a population linked to realistic latitude-longitude coordinates in a LMIC
setting. Our approach used the strengths of two commonly available population datasets, namely
household surveys and census microdata samples. We also drew together computational methods
in microsimulation of individuals and households with high-resolution mapping of household
characteristics using geospatial data. The result was a full enumeration of a synthetic population with
household relations and characteristics, linked to realistic locations. The simulated population was
assessed and found to be realistic in terms of socioeconomic and health outcomes at both regional
and local (community) levels. We released the code and five realizations of the simulated population
to encourage additional simulations of close-to-reality populations to realistic latitude-longitude
coordinates, and to support development of household surveys and gridded population survey
sample frames for LMICs.

One such question is whether one-stage sampling can result in precise and feasible household
surveys compared to the classic two-stage sampling design. Nearly every nationally-representative
multi-topic household survey implemented since the 1980s in LMICs has used a two-stage sampling
design with census enumeration areas comprising the first-stage sample frame and a manual household
listing comprising the second-stage sample frame [9]. This has proven to be an effective sample design
when census EAs are the only available first-stage sample frame, maximizing statistical power while
reducing field costs [55–57]. Two-stage sampling, however, requires that two field visits are made to
each sampled household several months (or even years) apart, making it more likely that mobile and
vulnerable households are excluded from the survey or fail to respond compared to stable long-term
households [58]. This problem is of increasing concern in LMICs cities today as rates of urbanization
and mobility increase [51], possibly leading to increased bias in standard two-stage household surveys.
Gridded sampling frames open the door for one-stage surveys, such that households are listed and
interviewed on the same day, which can theoretically improve the accuracy of poor and vulnerable
households in household surveys, however, one-stage sampling comes at the risk of increased design
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effect, requiring increased sample size. The use of close-to-reality simulated populations can be used
to compare various sample designs under different realistic conditions of population distribution,
mobility, and characteristics.

Another application of close-to-reality population simulations is the evaluation of gridded
population dataset accuracy at the cell-level. Several gridded population datasets are generated
at 100 m × 100 m scale from census data [3,4]. Accuracy of these models is often performed at the
geographic scale of the input census data; however, accuracy is never evaluated at the grid cell-level.
Microdata located to realistic household locations and aggregated to 100 m × 100 m grid cells provides
a first opportunity for this kind of accuracy assessment.

One limitation of this approach is it resulted in some spatial smoothing of household type
probabilities due to the use of buffered covariates in the Random Forest model in step 3. The choice,
however, was to either introduce substantial measurement error by training models on covariates
at the location of geo-displaced DHS coordinates [50], or to reduce spatial precision in prediction
of household type probabilities by using aggregated covariate values within a buffer region around
the geo-displaced DHS coordinates. We opted for the latter approach because rural Oshikoto was
sparsely populated, and thus we expected minimal impact of spatial imprecision of household type.
Furthermore, we manually corrected the spatial distribution of urban household type probabilities
during step 4 via manual inspection of satellite imagery and classification of census EAs. However,
researchers applying these methods in more densely populated and/or heterogeneous settings might
consider smaller buffers in urban area.

A related consideration when extending these methods is that Random Forest models cannot
extrapolate beyond the range of the training data [3]. This could impact the accuracy of the prediction of
household type maps. To ensure accuracy of predicted household types in step 3, the same geographic
unit should be used in both training and prediction datasets (e.g., 5 km buffers), and the range of
covariate values in the training data (e.g., all Namibia DHS clusters) must be similar or larger than the
range in covariate values in the region of study (e.g., Oshikoto). We checked that training locations
had a wider range of covariate values than the Oshikoto household locations (see Supplement 3).

A second limitation of this work is that it relied on manually digitized building point locations,
and delineation of rich versus poor EAs in urban areas. Manual data creation was manageable for a
subnational region but would require substantial time to scale nationally. It took one GIS analyst nearly
one week of full-time work to generate building point locations and to classify urban census EAs in
Oshikoto for this analysis. However, as coverage of publicly available sub-meter satellite imagery
increases globally, so does automated feature extraction of individual buildings in LMICs [59], which
is promising to help scale this simulation approach to larger geographic areas. Note that if feature
extraction is used to generate building locations, additional information or researcher judgement may
still be needed to identify multi-household building locations and to remove non-residential buildings.
Furthermore, machine learning techniques are showing promise in mapping neighborhood types
from very high-resolution imagery [60] and other building datasets [61], which can also help address
this limitation.

A third limitation is potential errors introduced by temporal differences between datasets.
The census and DHS datasets were collected two years apart, so major differences in population
totals or demographic distributions were not expected; however, several covariates related to roads,
travel time, facilities, and topography were more than a decade older and might not reflect most
recent development. Furthermore, household point locations were digitized from more recent imagery,
and thus might include new buildings not reflected in the spatial covariates. The predictive model
may be improved with better temporal alignment to covariate data.

One might wonder why not generate random points for building locations within administrative
areas near roads, or by using some other set of simple rules, as other researchers have done to simulate
close-to-reality populations [19]. While this would permit certain types of analysis, such as the
comparison of one-stage and two-stage sampling, creation of random points for households within
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large administrative areas is not recommended if the simulated population will be used to evaluate
accuracy of gridded population models, particularly gridded populations with real-world spatial
covariates at fine geographic scale (e.g., 100 m × 100 m). There is a large amount of heterogeneity in
human population distribution, and this must be reflected accurately at a very local level to be able to
evaluate gridded population models on a cell-by-cell basis.

This novel method to simulate close-to-reality household records linked to realistic building
locations in a LMIC stands to support development of more accurate household survey methods
and gridded population datasets as household survey sample frames. These methods are feasible
to implement in other LMIC settings and will become globally scalable as feature extraction
methods evolve.
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Data S1: Five realizations of a simulated, geo-located population in Oshikoto, Namibia, Code S2: R code to
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simulated, geo-located population in Oshikoto, Namibia.
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