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ABSTRACT 

Infant mortality is an important population health statistic that is often used to inform health 

policy decisions. For a small population, an infant mortality rate is subject to high levels of 

stochastic uncertainty and may not indicate the intrinsic mortality regime affecting the 

population.  This situation leads some agencies to either not report infant mortality for these 

populations or report infant mortality aggregated over space, time, or both.  A method is 

presented for estimating infant mortality rates that reflect the intrinsic mortality regimes 

underlying small populations. The method is described, tested for validity, and illustrated in a 

case study by estimating IMRs for the 15 counties in Estonia. The study suggests that the method 

can produce reasonable estimates of the “underlying” infant mortality rates for small populations 

subject to high levels of stochastic variation and for which infant deaths may not even be 

reported. In this regard, the method described here may assist in the generation of information 

about the health status of spatially concentrated immigrant and ethnic minority populations in 

Europe, particularly in terms of infant mortality. 
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INTRODUCTION 

 

The infant mortality rate (IMR) is widely used. It is an indicator not only as a measure of the risk 

of infant death but as an indicator of the availability and quality of health care services, poverty 

levels, and socio-economic status differentials (Hummer, 2005; Kitagawa and Hauser, 1973; 

Link and Phelan, 1995; Stockwell, Goza and Balisteri 2005; Stockwell et al., 1987).1 

Because statistical data are often used to guide health policy decisions, it is not surprising 

that the IMR also is used in this regard (Chen, Oster, and Williams, 2016; Kleinman, 1996; 

Misra et al., 2004; Stockwell et al. 1987).  Moreover, as observed by VanEenwyk and 

Macdonald (2012), questions concerning health outcomes and related health behaviors and 

environmental factors often are studied within small subgroups of a population, because many 

activities to improve health affect relatively small populations. Fortunately, the advent of 

geographic information systems and high volume, fast computer-based information systems 

often involving the matching of records from different sources means that this type of 

information is technically feasible. However, the demand for this information along with the 

technical feasibility of obtaining it is not always compatible with the need of for data 

confidentiality or the realities of stochastic uncertainty concerning small populations.2 This 

means that even when it is possible to provide data for a small population, it is not always the 

case that they are, a situation not often encountered when dealing with large populations (Office 

for National Statistics, 2015).  The Centers for Disease Control, the unit within the US National 

Center for Health Statistics that reports vital statistics, for example, does not present or publish 

death or birth counts of nine or fewer or rates based on counts of nine or fewer (in figures, 

graphs, maps, table, etc.) at the subnational level (US National Center for Health Statistics, no 

date).   
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Data representing small populations are not only subject to limitations posed by 

confidentiality concerns, they also are subject to higher levels of measurement bias and lower 

levels of precision than those typically found  in larger populations (Reeske and Razum, 2011; 

Swanson and Tayman, 2012: 216). These issues are typically associated with the stochastic 

uncertainty that affects small populations. A typical strategy for dealing with the combination of 

these issues is to aggregate data for small populations and generate what amounts to an 

arithmetic average from them.  Another strategy is to gain permission to access individual level 

records, match them and then construct statistics (Kinge and Kornstad, 2014). However, unlike 

the strategy of aggregation, this approach inevitably requires administrative approval and 

requires both a substantial amount of time and personnel costs implement. 

The issues concerning data availability for small populations directly affect immigrant 

populations because these groups tend to be clustered in the country of destination by ethnicity 

and country of origin and spatially segregated from the citizens of the country of origin 

(Andersson, 2013; Blom, 1999; Boal, 1996, Bråmå, 2008; Clark and Ware, 1997; Dunn, 1998, 

Kalandides and Vaiou, 2012; Kempen and Ozuerkren, 1998; Ljunggren and Andersen, 2015; and 

Massey, 1985). By virtue of being so clustered and segregated, immigrants represent small 

populations in the context of the countries in which they are found. Moreover, it is often not easy 

to obtain health and data on these same populations, especially in Europe. Rechel, Mladovsky 

and Devillé (2011), for example, find that accurate data on the health of migrants are lacking in 

many European Union countries.  

Unfortunately, data representing small populations are subject to high levels of stochastic 

uncertainty, which implies that reported IMRs for small populations can vary dramatically over 

time even though there is no substantive change in their respective intrinsic mortality regimes, 
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as reflected in their “underlying” infant mortality rates.  Awareness of this situation has led to a 

range of methods used in developing estimates of the underlying IMRs for small populations. 

One approach is “non-reporting,” which is to simply not report IMRs for small populations, as 

is the case with the Centers for Disease Control (US National Center for Health Statistics, no 

date). Unfortunately, this approach discards related information (e.g., reported births) that may 

be of use in estimating IMRs for small populations – a point to which I later return. 

Another general approach is to provide an estimate by embedding small population 

information within a larger context, which takes us back to the “aggregation strategy” discussed 

earlier. This approach is used by, among other agencies, the US National Center for Health 

Statistics (2018), for which the “larger context” is defined both in terms of time and space. In 

terms of time, the NCHS data on infant mortality rates by county are aggregated for the period 

2007-2015 and in terms of space, counties with small populations are aggregated. One 

drawback to both approaches is that neither is specific to the time and county of interest, which 

implies that in terms of the IMRs constructed from them are, in fact, simple arithmetic averages.  

Related to this issue is the fact that these averages are biased unless appropriate weights or other 

procedures are used to reduce bias (Voss et al., 1995), steps that may not be feasible in a given 

situation.  Another “large context” approach, one taken in this paper, which, unlike the “non-

reporting” approach, has the potential to provide estimates of the IMRs underlying small 

populations, while also avoiding the drawbacks found in the aggregated approach. Another 

benefit of this approach is that it is a statistical estimator and, as such, is not in conflict with 

confidentiality issues. To this end, a publication by Link and Hahn (1996) was used as a starting 

point in generating the approach described, tested, and applied here.  
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Estonia is used as a case study because it is an example of a small population in and of 

itself in that only 13,197 births were reported by Statistics Estonia (2017) for the country as a 

whole in 2015.3 Among its 15 counties (see Exhibit 1), the number of births ranges from a low 

of 70 births in Hiiu County to a high of 6,864 in Harju County (where the capital city, Tallinn, 

is located). Making Estonia even more suitable as a case study is the fact that Estonia’s National 

Institute for Health Development reports infant deaths not only for the country as a whole, but 

by county. For example, it reports 35 infant deaths for the country as a whole in 2015.Among its 

15 counties, zero infant deaths were reported in seven of them for 2015, while for those 

reporting at least one infant death, the number ranged from one in Jõgeva County to 15 in Harju 

County.  Having the ability to compute IMRs for these counties (including those that are zero) 

allows one to compare IMRs based on reported data to the estimates aimed at portraying the 

underlying IMRs and their intrinsic mortality regimes. 

                                                    (Exhibit 1 About Here) 

Methods 

There are two major components of the method introduced here. The first part of the methods 

section discusses the fundamental binomial nature of Infant mortality rates in that they are the 

proportion of births that result in deaths during the first year of life that constitute a beta 

binomial process. The second part of the methods section looks at the second component by 

extending the beta binomial process to a set of two estimates constituting samples of the mean 

and variance of the underlying process and argues that by averaging them one can produce a 

superior estimate of the mean proportion of births that result in deaths during the first year of 

life. 
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Part I: Infant Mortality Rates as a Beta Binomial Process 

Infant mortality rates measure the proportion of births that result in deaths during the first year of 

life.  As such, they measure the relationship between events (deaths) and trials (births) with the 

distribution of infant deaths in a given area i at a given time t is (approximately) binomial, with 

parameter d, where  

di,t = Di,t/Bi,t           [1] 

where 

i = area (i = 1 to n) 

t = time 

D = infant deaths 

B = births 

and is typically described as a beta binomial random process with a probability mass function 

defined by two parameters:  α and β. The first parameter, α, can be interpreted as the count of the 

event of interest, which in our case is the number of infant deaths, the number of births in which 

the infant dies before achieving the first year of life. The second parameter, β, can be interpreted 

as the count of “non-events,” which in our case is the number of children born who survive to 

reach one year of age.  Note that “rate” = α/(α + β), which in our case is equivalent to” infant 

mortality rate” = infant deaths/(infant deaths + survivors to age 1), which reduces to infant 

deaths/births. Thus, parameter α is the numerator in the expression defining a rate, and when 

added together, the parameters α and β represent the denominator. Together, the IMR may be re-
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expressed the IMR as the compound distribution of α and β captured in the beta-binomial 

probability model:   

IMR = α/(α + β) = infant deaths/(infant deaths + infant survivors)               [2] 

 Since the IMR may be conceptualized directly using the beta-binomial model, IMRs may 

be thought of as stochastic processes that occur within each county while also contributing to 

higher-level meta-populations within which they are nested (Taylor and Karlin, 2001;  Graham 

and Talay, 2013).   

Part II: An Indirect Estimator of IMR Using Averaging of Samples from a Beta-

Binomial Stochastic Process 

A potential number of strategies exist for dealing with small sample size dynamics or 

confidentiality suppression in making estimates of infant mortality rates. First, one might simply 

use the national IMR in place of highly-uncertain localized estimates of IMR.   This would 

stabilize estimates for IMR on the local level, but at the expense of potentially masking 

heterogeneity in IMRs across geographic units.   For purposes of capturing spatial patterns in 

IMR, a main priority in smaller-level analyses, this solution is less acceptable.  A second 

alternative might be to make local adjustments based on judgment.  While this may improve 

estimates overall, especially when judgments are made by applied demographers with significant 

experience, this approach is subject to the criticism that non-standard methods are applied across 

different geographies and/or population groupings. With resource allocation decisions often tied 

to demographic estimates, this solution may not be satisfactory either.  An ideal approach would 

be to utilize a principled method for adjusting local estimates of IMR. Simple model averaging, 

based on the beta-binomial model represents a viable approach for achieving this goal.  
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Because it has been established that the IMR constitutes a beta-binomial probability 

process, think of two estimates of this process as constituting samples of the mean and variance 

of the underlying process.  Therefore, these can be considered as samples obtained from the 

same underlying mortality process and in averaging them it can be anticipated that a superior 

estimate of the mean proportion is obtained (Graham and Talay, 2013; Gardiner, 1983; Taylor 

and Karlin, 2001).  As such, the averages of two estimates based on the model may also be 

averaged as:   

   IMRaveraged = (α1 + α2)/ ((α1 + β1) + (α2 + β2))      [3]  

where the subscripts (1,2) now represent estimates of death and survivorship counts for two 

groups.  This method can, of course, be extended to k groups as desired. Such model averaging 

yields an estimate where a larger-scale and representationally-appropriate model IMR is 

leveraged to make smaller-scale estimates more precise in a manner similar to that observed in 

the literature on indirect estimation in demography (Brass, 1968; Moultrie et al. 2013, Siegel and 

Swanson 2004, UN, 1967).  Recent attempts to extend indirect estimation based on stochastic 

process theory have been introduced (Baker et al., 2011) and here this idea is leveraged further in 

developing indirect estimates of IMR based on model averaging.  

Before turning to a discussion of the data, it is appropriate here to discuss in some detail 

the averaging process just described.  Because an IMR is typically expressed per 1,000 births, it 

can be turned into a binomial variable by dividing it by 1,000 (or more generally if IMR is 

expressed as infant deaths per k births, it would be divided by k). In this form, IMR is strictly 

bound in that it cannot be less than zero nor greater than (0 ≤ IMR ≤ 1).  In practice, it is 

substantially less than one. Once in this form, a Beta model (Binomial) can be fitted to a 

distribution of IMRs, which when fitted, produces two estimated parameters, α and β. The first 
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parameter, α, can be interpreted as the count of the event of interest, which in our case is the 

number of births in which the infant dies before achieving the first year of life. The second 

parameter, β, can be interpreted as the count of “non-events,” which in our case is the number of 

children born who survive to reach one year of age.  Note that “rate” = α/(α + β), which in our 

case is equivalent to” infant mortality rate” = infant deaths/(infant deaths + survivors to age 1), 

which reduces to infant deaths/births. Thus, parameter α is the numerator in the expression 

defining a rate, and when added together, the parameters α and β represent the denominator. 

The two parameters estimated by fitting the Beta model to a distribution of IMRs are then used 

to adjust the reported infant deaths (a) and births (b) for the population in question, even when 

either one or both is equal to zero. The adjustment is straightforward:  adjusted IMR = (a + α)/ 

((a + b) + (α + β)). Note, as stated earlier that if a = zero then the adjusted IMR = α/( b + α + β) 

and that if both a and b are zero, then the adjusted IMR = α/(α + β). 

DATA 

As discussed in endnote 3, the 2015 county birth data used for Estonia are those reported by 

Statistics Estonia (2018) while the county infant death data are those reported by the National 

Institute for Health Development (2018). As the “representative” set of IMRs, 2015 birth and 

infant death data available from Eurostat (2018) for eight Baltic Sea countries (Denmark, 

Estonia, Finland, Germany, Latvia, Lithuania, Poland, and Sweden) are used.  Table 1 shows the 

reported births and infant deaths by county for Estonia during calendar year 2015 and Table 2 

provides the birth and infant death data for the eight Baltic Sea countries, along with their IMRs.4  

(Tables 1 and 2 About Here) 

 



 

10 
 

RESULTS 

The Beta Binomial model procedure found within the “survival/reliability” module of the NCSS 

statistical analysis package (release 8) was used to obtain the two Beta Model parameters using 

the infant mortality rates for the eight Baltic Sea countries (Table 2).  The major results of 

interest found in running this procedure with the data are found as Exhibit 2.  Note that there are 

two different estimates of the α and β parameters, one accomplished by the method of moments 

and the other by Maximum Likelihood Estimation. The parameters of the latter are used here, 

namely:  α = 12.20081, and β = 3741.966. 

                (Exhibit 2 About Here) 

Table 3 shows the estimated 2015 underlying IMRs for the 15 counties found by using 

the two Beta parameters in conjunction with reported 2015 infant deaths and reported births by 

county using the averaging formulas described earlier. 

(Table 3 About Here) 

A Validity Test 

Given that the method is producing a revised IMR that is likely to be close to the underlying 

IMR for a small population and therefore reflective of its intrinsic mortality regime, one would 

expect the method to do this where one could observe the intrinsic mortality regime. Model 

stable populations afford this opportunity because they have known intrinsic mortality regimes, 

the model life tables associated with a given set of model stable populations. To examine how 

the method works in this environment, I employed the IMR associated with a model stable 

population found in Manual IV, Methods of Estimating Basic Demographic Measures from 

Incomplete Data (1967). For this purpose, I selected the infant mortality rate associated with 
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West Level 23 for both sexes, which shows that of 100,000 births, 98,166 are expected to reach 

the first birthday. This yields an IMR of 0.0184 = 1 -.98166.  

Using the IMR of 0.0184 and a seed population of 100,000, a random sample of 5,000 

IMRs was generated using the Beta Model simulation provided by the NCSS statistical system 

(release 8). The sample is sufficiently large to allow the simulation program the opportunity to 

generate outliers, which it did. As can be seen in Exhibit 3, the mean is 0.01838 with a standard 

deviation of 0.000423 and a coefficient of variation equal to 0.02305. The minimum IMR is 

.016849 and the maximum is .020147.   

(Exhibit 3 about Here) 

From the 5,000 randomly generated observations, I extracted two sets of data.  For the 

first set, I extracted the initial 43 IMR randomly generated observations from the simulation. For 

the second, I rank-ordered the 5,000 observations: from high to low and then from low to high, 

and extracted the eight highest IMR and seven lowest IMRs, respectively from them. The idea is 

that the entire set represents a synthetic population with 58 observations while the second set of 

43 simulated IMRs represents the subset of the synthetic population in which IMRs are reported, 

and the  third set of 15 simulated IMRs represents a subset of “small populations” subject to a 

high level of stochastic uncertainty. These characteristics mimic the 2009-2011 IMRs reported 

for the 58 counties of state of California, where the results are not reported for 15 counties (due 

to their small populations).5 The 43 observations are expected to be closer, on average, to the 

“underlying” IMR of 0.01838 and have variation, respectively, than that found in the 15 

observations.  For the set of 43 observations, the mean IMR is 0.01834 and the coefficient of 

variation is .02305. For the set of 15 observations, the mean IMR is .01855 and the coefficient of 

variation is .07692. Thus, the set of 43 observations has a mean and a coefficient of variation 
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closer to the mean and coefficient of variation found in the full set of 5,000 observations than 

does the set of 15 observations.  

A Beta model was fit to the set of 43 observations and its parameters were used to revise 

the IMRs in the set of 15 observations. The expectation is that the revised IMRs will yield a 

mean IMR closer to that found for the full 5,000 set of simulated observations and that the 

variation among these revised means will decline, yielding a smaller coefficient of observation.  

The results show that the Beta model moved the initial IMR estimates for the 15 

observations closer to the underlying IMR. As such, they are more reflective of the West Level 

23 mortality regime that is intrinsic to them: the mean of the original IMRs for the 88 

observations is 0.01855 while the mean for the revised IMRs is 0.01839, which is closer to the 

underlying IMR of 0.01838.  In terms of variation, the coefficient of variation for the initial set 

of 14 IMRs is .07692, while that for the revised set is 0.00338. These results support the 

argument that the method described in this paper is capable of moving IMRs subject to stochastic 

uncertainty closer to the underlying IMRs and their respective intrinsic mortality regimes.6 

DISCUSSION OF RESULTS 

The estimated IMRs for the 15 Estonian counties in 2015 all appear reasonable. Supporting this 

argument is the fact that Harju County has the lowest estimated IMR (2.562) and is distinct in 

this respect from all of the other 14 counties. This can be seen in Exhibit 4, a scatterplot that 

displays IMRs by the driving distance from each of the county capitals to Tallinn, the capital of 

the country, which is located in Harju County. This graph suggests that there is no strong 

gradient in terms of increasing IMRs as distance from Tallinn increases. Rather, there is a 

distinct difference between Harju County and the other 14 counties.  Looking at this difference in 
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terms of the variables that affect the occurrence of infant deaths, and in particular, socio-

economic status, as well as health care quality and access, it is not surprising to find that Harju 

County has a wide range of medical services and a per-household 2015 disposable income of 

€11,743.54, which is well above any other county as well as the country as a whole (€10,102.21).   

 (Exhibit 4 About Here) 

Although the estimated IMRs are subject to errors, the fact that Harju County is estimated 

to have a distinctly lower IMR than the other 13 counties supports the argument that they are 

valid, as does the clustering of IMRs found in the other 14 counties. However, it needs to be kept 

in mind that if the “larger context” selected for this illustration (The IMRs for the eight Baltic 

Sea countries of Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, and Sweden) 

was modified, then the estimated IMRs would also be modified. Here, consider the case of the 

Russian Federation, which borders Estonia, but unlike the eight Baltic Sea countries, is a huge 

country that encompasses a wide range of demographic characteristics and has a higher 

(estimated) IMR than any of the eight Baltic Sea countries. With an estimated 2016 IMR of 7.00 

(The World Bank, https://data.worldbank.org/indicator/SP.DYN.IMRT.IN), it is well above the 

average IMR (3.25) for the eight Baltic Sea countries. Adding the Russian Federation to them as 

part of the “larger context,” would change the two Beta model parameters from α = 12.20081, 

and β = 3741.966 to   α = 7.060866 and β = 1918.59. This change does not affect the ranking of 

the Estonian counties by IMR, but it does affect the IMRs estimated for each of them. For 

example, the IMRs in all counties but Harju increase. As examples of the changes: (1) the 

estimated IMR for Harju County would decline from 2.562 to 2.510;  (2) the IMR for Rapla 

County would increase from 3.511 to 4.088; and (3)  the IMR for Hiiu County would increase 

from 3.190  to 3.538.   

https://data.worldbank.org/indicator/SP.DYN.IMRT.IN
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While the consistency found in the rank ordering suggests that the process is robust, the 

fact that the individual IMRs change illustrates the sensitivity of the estimated IMRs to the 

“larger context” selection. In this regard, it is clear that the estimates are subject to judgment. 

However, the entire process is transparent, which means that the results are not subject to 

arbitrary and capricious judgments that render them difficult to replication.  Moreover, it makes 

sense that with a different model, one would have different IMR estimates. However, as the 

validity test indicates, a different model, can be expected to move, on average, the IMRs for the 

Estonian counties closer to their underlying IMRs, better reflecting their “underlying IMRs.” 

This argument can be generalized to other potential data sets that could be used to build different 

beta-binomial models. This feature of the beta-binomial approach suggests that while a model 

built from a given “representational” data set may move the estimated IMRs closer, on average, 

to their underlying values, than a model built from a different “representational” data set, even a 

less-than-optimal model should provide reasonable estimates. Couple these features with the fact 

that the estimates can be efficiently generated by the process described here, suggests that they 

have the potential to support policy decisions while keeping time and resource requirements low; 

characteristics that  Swanson and Tayman ( 2012: 304) suggest are important components in 

deciding what methods to use in developing estimates.  Given this, what are the implications for 

studying and monitoring infant mortality among immigrant populations in Europe?   

First, note that while these immigrant populations tend to be clustered and segregated 

within countries, their aggregate number across all the European Union is not small. Salt (2011: 

20) reports that by 2008 nearly 31 million foreign citizens lived in the EU’s 27 member 

countries, up from around 26 million in 2004.  He finds that Turks were the largest group at 2.4 

million and constituting 7.9% of all non-nationals, followed by Moroccans at 1.7 million, (5.6%) 



 

15 
 

and Romanians at 1.7 million, constituting 5.4% of all non-nationals (Salt 2011: 22).   Eurostat 

(2017) reported that there were 35.1 million people born outside of the EUs 28 member countries 

in 2016. With a total EU population of about 511 million in 2016, the foreign-born accounts for 

about 6.9 percent of the EU’s 28 member countries. 

With up to 35.1 million of the EU’s residents likely to be in spatially segregated clusters 

and characterized by higher mortality than other populations, it appears that a method for 

estimating the underlying death rates of small populations and thereby gaining a picture of their 

intrinsic mortality regimes, would appear to be useful, especially given the call for better health 

monitoring of these populations (Rechel, Mladovsky and Devillé. 2011). While the method 

described and evaluated in this paper is aimed at the estimation of infant mortality rates, it can be 

adapted to the estimation of other mortality rates. Given the small populations of several of the 

Estonian counties (e.g., Hiiu County’s population in 2015 is only 8,582 while that of Lääne 

county is 24,070 (Statistics Estonia, 2017)), it would appear that even in the absence of data on 

infant deaths, the method could be used for sub-county estimates, given the availability of birth 

data. Knowledge of the location of spatially concentrated immigrant populations could be 

entered into GIS-based data systems in which birth data for same spatial areas could be layered 

(Chung, Yang, and Bell, 2004). This would set the stage for the estimation of underlying IMRs 

and other mortality data for these populations and thereby revealing an idea of their intrinsic 

mortality regimes.7  

CONCLUDING REMARKS 

While the beta-binomial model has been used in medical research (Kim and Lee, 2013; 

Arostegui, Nuṅez-Antón, and Quintana, 2007, and Young-Xu and Chan, 2006), consumer 

studies (Chatfield and Goodhardt, 1970), bioinfomatics (Pham et al., 2010) and public health 
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research (Alanko and Lemmons, 1996; Gakidou and King. (2002), it has not found much traction 

in demographic research.  This is surprising on two counts: (1) the components of demographic 

change, births, deaths, and migration, can all be constructed as rates that are inherently binomial 

variables; and (2) the method is simple to use, explain, and understand. 8 This paper illustrates 

one such use with a sub-set of the mortality component, the infant mortality rate. Although the 

paper focuses on a European application, namely the concentration of ethnic migrant groups, the 

method can be applied to many other situations where small numbers are present and affected by 

stochastic uncertainty.  As such, it could be used in conjunction not only with other mortality 

measures such as neo-natality rates, crude death rates, age-specific death rates and cause- 

specific death rates, but with fertility measures such as crude birth rates and age-specific birth 

rates. Even more broadly, it could be used with any binomial variable of interest affecting small 

populations, such as a housing occupancy (or vacancy) rate, employment (or unemployment) 

rate, cigarette smoking (or non-smoking) rate. 

 

ENDNOTES 

1. Murray (1996) has argued that the infant mortality rate is flawed when it is used as an 

index of overall mortality (i.e., the mortality regime affecting a given population) and that 

Disability Adjusted life Expectancy (DALE) should be used in its place. However, it has 

been pointed out by Reidpath and Allotey (2003) that the infant mortality rate and the 

DALE are so highly correlated that it merely goes to reinforce the intuition that the 

causes of infant mortality are strongly related to those structural factors like economic 

development, general living conditions, social well-being, and environmental factors, 

and, and such, the infant mortality rate remains a useful and comparatively inexpensive 

indicator of population health. Guillot et al. (2013) also note that infant mortality is very 

useful because it involves a short lag between the timing of mortality exposures and the 

timing of corresponding births. 

 

2. I use a classic definition of stochastic uncertainty provided by Doob (1952), namely that 

it is the manifestation of a process representing numerical values of some system 

randomly changing over time, 
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3. The BIRTH data for Estonia are all taken from the online query system available through 

Statistics Estonia. The entry point for the system is http://pub.stat.ee/px-

web.2001/dialog/statfile1.asp. Once there, birth data by county are found by going 

through the Population database and into the “vital events” folder. In this folder one can 

obtain births for 2015 by county by selecting the subfolder, “PO11: LIVE BIRTHS BY 

COUNTY -Modified: 02.06.2017” and following the query system instructions.   

 

The entry point for obtaining reported infant deaths for 2015 is through the online query 

system made available by Estonia’s National Institute for Health Development, which is 

similar  to the one found at Statistics Estonia: 

http://pxweb.tai.ee/PXWeb2015/pxweb/en/01Rahvastik/01Rahvastik__04Surmad/SD50.

px/?rxid=2cf1fa43-7457-4166-a3c7-e43fdb0a9b97 . This link will take you to “SD50: 

Infant deaths by sex, county and age at the moment of death.” Once there, follow the 

query system instructions.  

 

The 2015 per-household disposable income by county was obtained by going through the 

Social Life database and selecting the “income” folder. Once there, the 2015 disposable 

income per household can be obtained by selecting the subfolder, “IM15: EQUALISED 

YEARLY DISPOSABLE INCOME BY COUNTY AND SEX -Modified: 18.12.2017” 

and following the query system instructions.  

 

The 2015 population by ethnicity (Estonian, Russian and “other ethnic nationalities”) and 

county is located in the subfolder “ PO0222: POPULATION BY SEX, ETHNIC 

NATIONALITY AND COUNTY, 1 JANUARY.” Once there, select 2015 in the first 

box as the year, both males and females in the second box , all counties in the third box, 

and Estonians, Russians, and other ethnic nationalities in the fourth and final box. 

 

The files assembled from these data and all other data files constructed for use in this 

study are available from the author.  

 

4. The births and infant deaths are for the calendar year 2015, so the denominator (the 

number of births during calendar year 2015) is temporally consistent with the numerator 

(the number of infant deaths during calendar year 2015) as a period measure. The 

population and income data employed in the discussion are for January 1st, 2015 and are 

consistent with each other. There was no need to center the birth and infant death data on 

the population data because the latter are not used in constructing the infant mortality 

rate.  

 

5. Note that as stated in the text,  the validity test mimics the fact that for its 58 counties 

California reports IMRs only for 43 of them for the 2009-11 period, leaving the 

remaining 15 counties without reported IMRs,  As such, the validity test was set up as if 

there were 43 units for which IMRs were reported and 15 for which they were not, 

However, all of the data used in the validity test were generated from the synthetic 

population that is based on Model Life Table, Level 23, as described in the text. The 

reporting structure as well as the actual data for California can be found through the Open 

http://pub.stat.ee/px-web.2001/dialog/statfile1.asp
http://pub.stat.ee/px-web.2001/dialog/statfile1.asp
http://pxweb.tai.ee/PXWeb2015/pxweb/en/01Rahvastik/01Rahvastik__04Surmad/SD50.px/?rxid=2cf1fa43-7457-4166-a3c7-e43fdb0a9b97
http://pxweb.tai.ee/PXWeb2015/pxweb/en/01Rahvastik/01Rahvastik__04Surmad/SD50.px/?rxid=2cf1fa43-7457-4166-a3c7-e43fdb0a9b97
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Portal service provided by the California Health and Human Services Agency via a 

download of a CVS data set assembled by the California Department of Public Health. 

This data set can be accessed by going to  

https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-

indicator-01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3  

and then clicking on the “download” tab, which downloads the file, “Infant Mortality, 

Deaths Per 1,000 Live Births (LGHC Indicator 01) (CSV)”  in CVS form. Once 

downloaded, it can be saved as an excel file. The data in this file include the infant 

mortality rates (identified as “rate” in the file) and the infant deaths (identified as 

“numerator” in the file) and live births (identified as “denominator” in the file) used to 

calculate the IMRs for all counties and other administrative areas, including the state as a 

whole. The data represent the period 2009-11. A description of the methods, caveats, and 

so forth associated with this data set can be found on the ULR shown above. 

6. In the validity test, different populations are simulated from a common beta distribution, 

and the result is that the two sets of populations, large and small, are normally distributed 

around the intrinsic mean IMR of the “population.” The simulation shows that the 

adjusted IMRs of the small populations move closer the underlying IMR, which indicates 

that the method works when both the small and large populations represent samples taken 

from the same underlying population. If the small populations represent a sample from a 

different population than the sample of large population, then the adjustment may yield a 

“biased” estimate of the former’s underlying IMR. This shows the importance of having a 

reference set that conceptually represents a sample from the same underlying population 

as the small population sample. One way to visualize the unbiased and biased outcomes 

is to picture the case where the method yields: (1) an “unbiased” estimate, which is when 

the mean IMR of the large populations is between the underlying IMR and the mean IMR 

of the small populations; and (2) a “biased” estimate when the method does not move the 

mean IMR for the small population closer to its underlying IMR, which occurs where the 

mean IMR of the small population is between the underlying IMR and the mean IMR of 

the large populations.  

 

7. Keep in mind that small populations, however defined, with approximately the same total 

populations may have different age compositions. For example, one may have a relatively 

large aged population and another a relatively large young population. This simple 

example is meant to illustrate the effect of demographic heterogeneity, which can affect 

measures of mortality (Vaupel and Missov, 2014). In situations where substantial 

heterogeneity may be present, a model with additional covariates may prove useful 

because the latter can potentially take into account the effects of demographic 

heterogeneity.    

 

8. Although Green and Armstrong (2015) discuss simple vs. complex methods in terms of 

forecasting, their discussion applies here in that the beta-binomial approach falls into the 

simple methodological category rather than the complex category. Adapting their 

discussion to methods in general, the work of Green and Armstrong (2015) suggests that 

while there is no evidence that shows complexity improves accuracy, complexity remains 

https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3
https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3
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popular among: (1) researchers, because they are rewarded for publishing in highly 

ranked journals, which favor complexity; (2) methodologists, because complex methods 

can be used to provide information that support decision makers’ plans; and (3) clients, 

who may be reassured by incomprehensibility.  I believe that the argument by Green and 

Armstrong (2015) can be applied to Bayesian methods, which represents the “complex” 

alternative to the “simple” Beta-binomial approach. I prefer the Beta-binomial approach, 

however, not only because of the argument presented by Green and Armstrong, but also 

because the application of a Bayesian approach can be difficult, effortful, opaque and 

even counter-intuitive (Goodwin 2015). 
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  Table 1. Infant Deaths and Births by County, Estonia, 2015 

 

Sources: the births are taken from Statistics Estonia (2017) and the                                                                    

deaths from Estonia’s National Institute of Health Development (2018) 

 

 

 

 

 

Area

2015 Total  

Infant Deaths

2015 LIVE 

BIRTHS

Harju county 15 13,907

Hiiu county 0 6,864

Ida-Viru county 3 70

Jõgeva county 1 1,222

Järva county 0 289

Lääne county 0 263

Lääne-Viru county 3 218

Põlva county 0 594

Pärnu county 3 206

Rapla county 2 807

Saare county 0 291

Tartu county 6 306

Valga county 0 1,747

Viljandi county 0 278

Võru county 2 453

Estonia 35 298

Unknown N/A 1
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Table 2. Infant Mortality, Infant Deaths and Live Births in 2015 for Eight Baltic sea 

countries. 

 

Source: Eurostat (2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COUNTRY/REGION

2015 Infant mortality rate 

(PER 1000 LIVE BIRTHS)

2015 Infant mortality 

rate/1000

2015 INFANT DEATHS 

(=IMR/1000*BIRTHS)

2015 Number of 

live births

Denmark 3.7 0.0037 215 58,205

Germany 3.3 0.0033 2,434 737,575

Estonia 2.5 0.0025 35 13,907

Latvia 4.1 0.0041 90 21,979

Lithuania 4.2 0.0042 132 31,475

Poland 4 0.004 1,477 369,308

Finland 1.7 0.0017 94 55,472

Sweden 2.5 0.0025 287 114,870
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Table 3.  Reported IMR and the Estimated Underlying IMR by County in Estonia for 2015 

 

Sources cited elsewhere. Calculations are by the author. 

 

 

 

 

 

 

 

 

AREA

IMR (PER 1000) BASED 

ON REPORTED INFANT 

DEATHS & BIRTHS

ESTIMATED 

UNDERLYING IMR 

(PER 1000) 

ESTONIA 2.5167 2.673

Harju county 2.1853 2.562

Hiiu county 0.0000 3.190

Ida-Viru county 2.4550 3.055

Jõgeva county 3.4602 3.265

Järva county 0.0000 3.037

Lääne county 0.0000 3.072

Lääne-Viru county 5.0505 3.496

Põlva county 0.0000 3.081

Pärnu county 3.7175 3.333

Rapla county 6.8729 3.511

Saare county 0.0000 3.005

Tartu county 3.4345 3.309

Valga county 0.0000 3.026

Viljandi county 0.0000 2.900

Võru county 6.7114 3.504
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Figure 1.  Map of Estonia by County 

 

Source: ww.worldgenweb.org  
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Figure 2. NCSS Report on the Fit of the Beta Model to the IMRs of Eight Baltic Sea 

Countries 

Parameter Estimation Section 
 Method of Maximum MLE MLE MLE 
 Moments Likelihood Standard 95% Lower 95% Upper 
Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
Minimum (A) 0 0 
Maximum (B) 1 1 

α 12.4456 12.20081 6.018849 0.4040834 23.99754 

β 3816.97 3741.966 1884.298 48.80914 7435.123 

Log Likelihood  -44.7225 
Mean 0.00325 0.003249938 
Median 0.003163931 0.003162153 
Mode 0.002990425 0.002985158 
Sigma 0.0009196273 0.0009287869 
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Figure 3. Characteristics of the Synthetic Population used in the Validity Test 

Data Simulation Report 
                                                      Histogram Section of Simulated Data 
 

 
 
Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 0.01838248 Minimum 0.01684878 
Standard Deviation 0.0004237251 1st Percentile 0.01744547 
Skewness 0.07195781 5th Percentile 0.01769227 
Kurtosis 2.934381 10th Percentile 0.0178332 
Coefficient of Variation 0.02305049 25th Percentile 0.01808544 
Count 5000 Median 0.01838394 
  75th Percentile 0.01866444 
  90th Percentile 0.0189272 
  95th Percentile 0.01908542 
  99th Percentile 0.01937772 
  Maximum 0.02014658 
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Figure 4. Scatterplot of IMRs for Counties by distance from County Capital to Tallinn, the 

National Capital 

 

 

 


